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Abstract
Aim: The environmental preferences of species are an important facet of their re-
sponse to changing conditions, and these have long been thought to exhibit phyloge-
netic conservatism. However, these bioclimatic envelopes have not previously been 
imputed from climate records at the date and location of occurrence, and the strength 
of their phylogenetic signal has not been studied at a broad scale. Here, we combine 
records from global climate reconstructions with contemporaneous plant occurrences 
for all available terrestrial plant species and test for phylogenetic niche conservatism 
in plant climatic traits.
Location: Global.
Time period: 1901–2018.
Major taxa studied: Terrestrial plants.
Methods: We used >100 million plant records from the Global Biodiversity Information 
Facility (GBIF) to produce distributions of bioclimatic envelopes for >200,000 spe-
cies, using a range of climate variables. We matched species observations to histori-
cal climate reconstructions from the European Centre for Medium-Range Weather 
Forecasting (ECMWF) and compared this with WorldClim climate averages. We tested 
for phylogenetic signal in a supertree of plants using Pagel's λ. Finally, to investigate 
how well bioclimatic envelopes could be inferred for poorly known and rare species, 
we performed cross-validation by removing occurrence records for some common 
species to test how accurately their bioclimatic envelopes were estimated.
Results: We found extremely strong phylogenetic signals (λ > 0.9 in some cases) for 
climate variables from both climate datasets, including temperature, soil temperature, 
solar radiation and precipitation. We were also able to impute missing bioclimatic en-
velopes for artificially removed species, having a correlation with observed data of .7.
Main conclusions: We reconstructed plant climatic tolerances for >200,000 plant 
species historically recorded on GBIF using a technique that could be applied to any 
comparable biodiversity dataset. Although global information on most species is 
sparse, we explored methods for bias correction and data imputation, with positive 
results for both.
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1  |  INTRODUC TION

The United Nations Framework Convention on Climate Change 
(UNFCC) Paris Agreement was ratified in 2015 in an effort to keep 
global temperature level rise well below 2°C above pre-industrial 
levels, with an ultimate goal of 1.5°C (UNFCCC, 2015). In 2018, the 
Intergovernmental Panel on Climate Change (IPCC) reported that we 
were likely to reach 1.5°C in the next few decades (2030–2052), with 
an estimated increase of c.  0.2°C per decade (Intergovernmental 
Panel on Climate Change, 2018). The impacts of such climate change 
are already being observed (Cheng et al.,  2019; EASAC,  2018; 
Marvel et al.,  2019; Slater et al.,  2020) and set to increase in se-
verity (Intergovernmental Panel on Climate Change,  2018), espe-
cially if mitigation measures against CO2 emissions are insufficient 
(Intergovernmental Panel on Climate Change,  2018). There is evi-
dence that historical and current CO2 emissions are tracking rep-
resentative concentration pathway (RCP) 8.5, the most extreme 
in terms of fossil fuel use of all RCPs used in climate modelling 
(Schwalm et al., 2020). Under the RCP8.5 scenario, global tempera-
tures would be likely to increase in the range of 2.6–4.8°C above 
pre-industrial levels by 2100 (IPCC,  2014). However, according to 
the United Nations Environment Programme, even if all of the action 
plans put in place as a result of the Paris Agreement were followed, 
we could still see a rise of 3.2°C by the end of the century (Olhoff & 
Christensen, 2019).

Heat waves, droughts and extreme weather events, such as cy-
clones, are all expected to increase in frequency over the coming 
years and are thought to have a particular impact on the survival 
and diversity of plant communities (Jentsch & Beierkuhnlein, 2008; 
Reyer et al.,  2013). These climate extremes, along with rising sea 
levels, are expected to contribute towards the loss of climatically 
suitable range for species in the future (Nunez et al., 2019; Warren 
et al.,  2018). Some studies already report widespread climate-
change-induced local extinctions in animals and plants, especially 
amongst tropical and subtropical regions when compared with tem-
perate regions (Wiens, 2016). In a study of c. 70,000 plant species, 
16% were estimated to lose >50% of their range if warming were to 
reach 2°C by 2100, compared with 8% if it were restricted to the 
lower 1.5°C scenario (Warren et al., 2018). These predictions paint 
a bleak picture for the future of plant biodiversity, particularly when 
an estimated fifth of assessed plant species were already classified 
as threatened with extinction and new reports suggest this figure 
could be as high as 40% (Antonelli et al., 2020; Brummitt et al., 2015).

Key to understanding the responses of species to climate change 
are their historical and current relationships with climate. According 
to traditional ecological theory, species are adapted for a particular 
set of environmental conditions, occupying a unique niche within 
the ecosystem (Hutchinson, 1957). The climate makes up a large part 

of this fundamental niche, the bioclimatic envelope, which is often 
modelled separately from other environmental variables, such as 
land cover or soil type, and from the biotic interactions that can limit 
ranges (Pearson & Dawson, 2003). Apart from the bioclimatic enve-
lopes produced by species distribution models (SDMs), there are few 
other sources of information for plant climatic envelopes. Although 
physiological information on the climatic tolerances of species can 
be inferred through experiments, it is impractical to do so for the 
vast majority of plants on Earth (Araújo & Peterson, 2012). There 
is some information on plant species traits through databases, such 
as TRY (Kattge et al., 2011; Weigelt et al., 2019) or the Global Root 
Traits database (GRooT; Guerrero-Ramírez et al.,  2020), but little 
relates to climatic variables, and what is available is either predom-
inately categorical data or taxonomically or geographically limited. 
Given that it is widely established that climate is one of the biggest 
drivers of plant morphology and function, it has long been posited 
that the climate range of plants can be predicted through using in-
formation on plant functional traits (Box,  1996; Stahl et al.,  2014; 
Woodward & Williams, 1987). Traits such as specific leaf area and 
woodiness are much more readily available than direct information 
on bioclimatic envelopes, but there is little consensus beyond small 
case studies on how to relate these traits to climate tolerance (Stahl 
et al., 2014).

Along with plant functional trait information, there is increasing 
incorporation of evolutionary history into the prediction of plant 
climate ranges. Although there is some evidence of a phylogenetic 
signal in climate variables, there are equally many discrepancies 
(Zhang et al., 2017). This has been hampered by a lack of resolved, 
global phylogenies and accompanying data on the climatic envelopes 
of species. It has been hypothesized that such climatic niches are 
phylogenetically conserved, a concept known as phylogenetic niche 
conservatism (PNC; Harvey & Pagel, 1991). There are a number of 
different factors that could contribute to a pattern of PNC, including 
evolutionary constraints on physiology and processes such as neu-
tral drift and dispersal limitation (Crisp & Cook, 2012). Therefore, the 
mechanism by which we measure PNC is confounded by the number 
of different processes that could give rise to such a pattern (Crisp & 
Cook, 2012; Losos, 2011). In many studies, measurements of phylo-
genetic signal (PS), such as Blomberg's K (Blomberg et al., 2003) or 
Pagel's λ (Pagel, 1999), are also used to detect PNC, although there 
is still some debate about the link between PNC and phylogenetic 
signal.

Here, we extract information on the climate experienced 
by >200,000 plant species recorded in the Global Biodiversity 
Information Facility (GBIF) from long-term climate re-analysis 
datasets created by the European Centre for Medium-Range 
Weather Forecasting (ECMWF), in addition to climate normals 
(averaged for a given month over a 30 year period) created by 

K E Y W O R D S
biodiversity, climate change, global, phylogenetic niche conservatism, plants, traits
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    |  2193HARRIS et al.

WorldClim. We then link these bioclimatic envelopes to a super-
tree of >30,000 plant species Qian and Jin (2016) to detect phy-
logenetic signals in climatic tolerances for the full tree and the 
top 5,000 most common species in GBIF. Given that most species 
in GBIF are under-recorded, we also correct for these biases and 
test the capacity of the models to predict bioclimatic envelopes 
for missing data.

2  |  METHODS

2.1  |  Data

We extracted the entire history of plant occurrences from the 
GBIF (GBIF, 2019), which totals c. 212 million individual records. 
The data were filtered for species with an accepted name in The 
Plant List (TPL, 2013), in order to remove marine species and fos-
sils, which left c. 215,000 species and slightly >100 million records. 
The data were additionally cleaned for the presence of 3,441 bo-
tanical garden locations with available GPS coordinates, taken 
from Botanic Gardens Conservation International (BGCI,  2019), 
to eliminate records erroneously georeferenced to the locations 
at which the collections are stored. A buffer of 0.02 decimal de-
grees was taken around each botanical garden, and all points that 
lay within this area were excluded. The same procedure was per-
formed for country centroids, which can be assigned erroneously 
to records during the georeferencing process if no locality infor-
mation is available. We also explored filtering this data further 
for the top 100 recording institutions, excluding those likely to 
include garden or greenhouse observations. Given that we found 
comparable results, we retain the original data in the study (for 
the small differences observed, see Supporting Information Figure 
S1; Table S1). GBIF also makes no distinction between native and 
alien records in their data. However, given that we are interested 
in the climate envelopes that these species could tolerate, rather 
than their native ranges, information from introductions to other 
climates is very valuable to this end because it indicates their sur-
vival in new environments.

We downloaded historical climate reconstructions from the 
ECMWF for two re-analysis datasets: CERA-20C and ERA-Interim 
(Dee et al., 2011; Laloyaux et al., 2018). We used the aggregated 

monthly datasets made available through the ECMWF, which are 
means of these 3  h records, for 11 climatic variables, including 
temperature, precipitation and solar radiation (see Table 1). We re-
placed the final 39 years (1979–2018) with the more spatially re-
solved ERA-Interim for the same variables to create a complete time 
line for 1901–2018. Finally, we compared this with the WorldClim 
dataset (Fick & Hijmans,  2017). In contrast to the ECMWF data, 
WorldClim is much less temporally resolved and is averaged over a 
30-year time period from 1970 to 2000 for every month in the year. 
For computational efficiency, we used a grid size of 10 min of arc, or 
c. 18 km at the equator (ranging in size down to 1 km at the poles). 
See Table 2 for an overview of the temporal and spatial resolutions 
of the datasets.

In order to correct for biases in plant occurrence data, we also 
used mean global-level enhanced vegetation index (EVI) as a proxy 
of plant density across the period 2001–2015 (Huete et al., 1999). 
The data were originally derived from the US National Aeronautics 
and Space Administration (NASA) Moderate Resolution Imaging 
Spectrometer (MODIS) dataset, with processing and gap filling 
in cloud cover performed by Gibson and Weiss  (2015). We ex-
cluded Antarctica and all islands within the Arctic circle, including 
Greenland, owing to poor data quality.

2.2  |  Data extraction and bias correction

Using the c. 215,000 plant species we obtained from GBIF and the 
climate reconstructions from ECMWF (and other sources), we ex-
tracted the plant bioclimatic envelopes using the timing and loca-
tion of occurrences. This created a raw dataset of global bioclimatic 
envelopes, and we also explored several adjustments to account for 
biases in historical collection practices. We present the full compiled 
database as an output of this work.

2.2.1  |  Raw data

For extracting profiles from ERA-Interim and CERA-20C data, we 
assumed that each of the individual plants recorded in GBIF, or a 
parent in the case of annuals, would have been present at the site 
for ≥1 year before collection. Thus, for every record available in 

TA B L E  1  Details of the climate variables downloaded from each dataset, where ✓ and ✕ denote availability

Climate variable
Derived 
variables Parameter Unit CERA-20C ERA-Interim WorldClim

Temperature at 2 m Minimum tmin °C ✓ ✓ ✓

Maximum tmax °C ✓ ✓ ✓

Mean tmean °C ✓ ✓ ✓

Total precipitation Mean tp mm ✓ ✓ ✓

Solar radiation Mean ssr kW ✓ ✓ ✓

Soil temperature layers 1–4 Mean stl °C ✓ ✓ ✕

Soil water volume layers 1–4 Mean swvl m3 ✓ ✓ ✕
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2194  |    HARRIS et al.

the filtered GBIF database, we extracted each of the variables in 
Table 1 (“climate variables”) at the month and location in which 
they were recorded and the preceding 11 months as a profile of 
climates in which the species could survive. We averaged across 
the 12  months for every record and for each climate variable, 
with the exception of temperature, for which we also calculated 
minimum and maximum values (Table 1, “derived variables”). For 
WorldClim data, we extracted the entire 12 months of averaged 
data at the location where the plants were found. We then binned 
all records per species into 1,000 bins for each climate variable 
to produce a set of plant bioclimatic envelope profiles, to which 
we could then apply various corrections for bias in the underlying 
GBIF data.

2.2.2  |  Adjusted data

Plant records available in GBIF suffer from extreme spatial and 
taxonomic biases (Figure  1). In particular, there is a concentration 
of higher recording effort in Western Europe, Eastern America and 
Australia, and recording is particularly low throughout the tropics, 
where there is the highest concentration of rare and endangered 
species. In order to control for such biases in the raw GBIF data, we 
performed several corrections to reduce bias in the corresponding 
plant species bioclimatic envelopes. The first was to recover the true 
abundance of plant species at different levels of climate variables. In 
order to do this, we weighted the binned species preference profiles 
by the ratio of global distribution of plant collections against a proxy 

Dataset
Temporal 
range

Temporal 
resolution

Spatial 
resolution 
(km) Reference

CERA-20C 1901–2010 Monthly 125 Laloyaux et al. (2018)

ERA-Interim 1979–2018 Monthly 80 Dee et al. (2011)

WorldClim 1970–2000 Monthly 20 Fick and Hijmans (2017)

Averagea

EVI 2001–2015 Averageb 80 and 20 Gibson and Weiss (2015)

aClimate normals, which are averaged over the entire time period for each month.
bSingle average over the entire dataset.

TA B L E  2  Details of the climate and 
vegetation datasets used, including 
the range of years used and the spatial 
resolution

F I G U R E  1  Natural log recording effort for historical plant observations in the Global Biodiversity Information Facility (GBIF) since 1901 
after controlling for plant density using the enhanced vegetation index (EVI). White indicates areas excluded from this analysis, namely 
islands from the Arctic circle and the Antarctic land mass. Grey lines above and to the right of the graph indicate summed values of recording 
effort at each longitude and latitude, respectively. The map is plotted in the Mollweide equal area projection.
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    |  2195HARRIS et al.

of plant abundance, the EVI, to reduce observation bias (hereafter 
“effort adjustment”; Supporting Information Figure S2b). The EVI has 
improved sensitivity to regions of high plant biomass in comparison 
to the more commonly used normalized difference vegetation index 
(NDVI) (Huete et al., 1999). The second correction was to recover 
species envelopes in an idealized landscape where all climates were 
equally available, by correcting for the observed biases in the global 
climate (hereafter “climate adjustment”; Supporting Information 
Figure S2c). This followed the observation that the climates experi-
enced by plant species were strongly bimodal in some parameters, 
particularly temperature, because there were excess land areas with 
low (around freezing) and high (around 26°C) average monthly tem-
peratures (Supporting Information Figure S3). Finally, to prepare the 
data for input into the phylogenetic models, we averaged across the 
climate bins, weighting by the number of records, to obtain an over-
all value per species for each climate variable and correction type. 
This resulted in three datasets: the raw averaged bioclimatic enve-
lope per species; the bioclimatic envelope adjusted for effort; and 
the bioclimatic envelope adjusted for both effort and climate.

There is large variation in the climate variables and levels of 
plant data collection between different parts of the world, with a 
particular bias towards Western Europe (Figure 1). Making adjust-
ments at the level of the individual grid square or as a spatial kernel 
is problematic, because there are large parts of the world for which 
there are no or very few plant records, which would need enormous 
corrections to achieve European sampling levels. We therefore 
also divided the data into six continental-scale areas [henceforth 
continents; South America, North America, Africa, Europe (exclud-
ing Russia), Asia (including Russia) and Australasia] and applied the 

adjustments separately to each. Thus, we have both a global and 
continental scale for each analysis.

2.3  |  Phylogeny and estimation of 
evolutionary signal

There is much debate in the literature over the prevalence of 
PNC (Muünkemüller et al.,  2015), whereby related species have 
more similar environmental niches. If we were able to detect 
a strong phylogenetic signal in the raw or adjusted bioclimatic 
variables that we extracted (and not with simulated data with no 
such relationship), then it would be a clear indication both that 
we were correctly identifying true traits for these species (see 
next paragraph) and that PNC is broadly present across the plant 
kingdom. To investigate this, we therefore tested for evidence 
of phylogenetic signals in the extracted bioclimatic parameters 
(Figure  2). Specifically, Qian et al.  (2016) revised a supertree of 
vascular plants that comprises 31,389 species and corrects many 
taxonomic issues with the previously published version (Zanne 
et al., 2014). Of these species, 26,466 species had at least one cor-
responding record in the GBIF database, c. 84% of species in the 
supertree; therefore, we tested for a signal in the parameters in 
that 26,466-tip subtree. In order to test for a phylogenetic signal 
in the climate variables, we used Pagel's λ, which has been shown 
to be more robust against incomplete phylogenies and inaccurate 
branch-length information than Blomberg's K (Molina-Venegas & 
Rodríguez, 2017). Values of Pagel's λ closer to zero indicate that 
traits show little phylogenetic signal, whereas values approaching 

F I G U R E  2  Evolutionary tree of the 5,000 plant species with the most records in the Global Biodiversity Information Facility (GBIF), along 
with their reconstructed climate profiles: (a) minimum temperature (in degrees Celsius); (b) mean monthly rainfall (in millimetres); and (c) 
mean monthly solar radiation (in kilowatts).

(a) (b) (c)
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2196  |    HARRIS et al.

one indicate traits evolved along the phylogeny with a Brownian 
motion model, or random genetic drift (Harmon,  2019). We also 
simulated signal-free data by randomly permuting the tree tips to 
estimate what value of Pagel's λ would be inconsistent with the 
absence of a phylogenetic signal.

In addition to simply detecting the phylogenetic signal, we used 
Pagel's λ as a barometer for the success of both the parameter ex-
traction and the adjustments described above, because random 
(changes to the) data should produce weak(er) responses in λ. High 
values of λ (or increases in λ) were viewed as an indication that a 
parameter was captured correctly (or a correction had been effec-
tive). We also applied the λ models to the continentally adjusted 
datasets. In every case, we randomized the tips to confirm that λ ≈ 0 
when no phylogenetic signal was present. For the fitting, we used 
the PhyloNetworks package v.0.11.0 (Solś-Lemus et al., 2017) in Julia 
v.1.5.2 (Bezanson et al., 2017). The code for these analyses is avail-
able under an open source license on GitHub (see data availability 
statement).

2.3.1  |  Full tree and subtrees

Between the tree and bioclimatic envelopes, there was a cross-
over of >26,000 plant species. We ran analyses of Pagel's λ across 
all the climate variables for this full tree. We also performed the 
same analysis for individual taxonomic levels of the tree, includ-
ing runs for each genus, family, order and class, when there were 
≥50 species present. We excluded phyla from this analysis, how-
ever, because a single phylum encompasses essentially all species 
in the tree.

Given that there were not enough historical occurrence records 
to classify the bioclimatic envelopes of many of the species accu-
rately, we also took various subsets of the data to compare the sig-
nals found.

2.3.2  |  Subset tree

We fitted the λ models of Brownian motion to the 5,000 most com-
mon species ranked by number of occurrences, when we were con-
fident that there were enough GBIF records to build a bioclimatic 
envelope accurately (i.e., ≥1,000 records). The data from these 
5,000 species encompass c. 80% of the total GBIF data. To explore 
whether the signals were influenced by spatial autocorrelation be-
tween congenerics, we also calculated Pagel's λ on a subset of the 
data for species with occurrences on more than one continent and 
thus with the broadest range sizes (c. 4,000 species in total). In order 
to see how this signal varied across the phylogeny, we included a 
Moran's I phylogenetic correlogram and a plot of local Moran's I 
index for the climate variable with the strongest λ signal (minimum 
temperature) using the R package phylosignal (Keck et al.,  2016). 
Local Moran's I index was calculated at the genus level owing to the 
size of the tree and the resulting computational and visualization 

challenges. We also examined the correlation between variables 
using Pearson correlation.

Finally, we used the top 5,000 most common species again to test 
how well we could impute missing values. We carried out a 10-fold 
cross-validation to reconstruct each of the climate variables using 
ancestralStateReconstruction from the Julia package PhyloNetworks 
(10% of the data at a time). This method predicts the expected val-
ues and variances of traits (the bioclimatic envelopes) for plant spe-
cies with missing data by using known information for other species 
and estimating the evolutionary parameters of a Brownian motion 
model. We then explored the correlation of the resulting imputed 
climate profiles to the original data using Pearson correlation in 
order to quantify the performance of the reconstruction. We also 
compared the strength of the correlations against those from a tree 
with randomly shuffled tips. We were unable to perform this analy-
sis on the full tree owing to computational constraints.

3  |  RESULTS

Starting with examination of the raw ECMWF data, which was uncor-
rected for any type of sampling bias, we observed strong correlations 
between the climate variables. Temperature-related variables and 
water-related variables showed positive correlations within groups 
(.01–.99) and negative correlations between groups (−.09 to −.86). 
There was also a strong relationship between the raw climate vari-
ables calculated from ECMWF and those from WorldClim (.83–.97), 
approaching one in the case of mean and minimum temperatures.

3.1  |  Phylogenetic signal in climate variables

The phylogenetic signal, Pagel's λ, was strong across the range of 
climate variables tested (Figure 3; Table 3). Randomizing the tips 
for this tree showed λ < 0.01, demonstrating that zero was a valid 
null. For the full tree, we found strong signals of >0.8 for most 
variables (Figure 3a). For the following results, we considered the 
subset tree only (Figure 3b), because the signal strength was very 
similar. Temperature, particularly minimum temperature and the 
soil temperature levels, had a signal of >0.9, and rainfall showed a 
similarly strong signal. Soil water volume, in contrast, performed 
relatively poorly, but still showed a signal of 0.7. However, this is 
still ordinarily considered to be a sign of a strong phylogenetic sig-
nal. The effort-adjusted data performed better than the raw data 
values, indicating that this effort adjustment was a valuable cor-
rection, except for a very low signal for soil water volume in the 
full tree. The subsequent climate correction reduced the signal at 
both the global and continental levels, suggesting that this cor-
rection was not functioning as intended. We excluded it from our 
further results, but we noted that it did improve the signals for soil 
water volume and precipitation when performed at the continen-
tal level (Supporting Information Figure S4; Table S2). The results 
for species with occurrences in more than one continent were 
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also very similar to the original analyses (Table S3). The Moran's I 
correlogram showed significant positive autocorrelation between 
minimum temperature and phylogenetic distance throughout the 
most recent 500 Ma (Supporting Information Figure S5). This sig-
nal weakened and became negative towards the root of the tree 
(>600 Ma). At the genus level, we found significant hotspots 
of phylogenetic signal amongst many of the genera, in addition 
to significant heterogeneity across the phylogeny (Supporting 
Information Figure S6). We also saw a great deal of variation in 
Pagel's λ across individual taxonomic levels of the tree (Supporting 

Information Figure S7), although average λ value tended to in-
crease as we included more of the tree.

There was a strong positive correlation between the equiva-
lent parameters extracted from WorldClim and ECMWF, hence it 
was unsurprising that there was a similar phylogenetic signal seen 
in these parameters despite the 30-year temporal averaging of the 
WorldClim dataset (Figure 3; Table 3). Again, temperature showed 
a strong signal, indicating that it is an evolutionary driver, and over-
all, the values for λ were slightly higher than for the corresponding 
ECMWF variables. Solar radiation and total precipitation showed 

F I G U R E  3  Phylogenetic signal, Pagel's λ, for each of the climate variables and levels of correction: Raw climate variables (Raw) and 
adjusted by effort (Effort). The colour scheme in the key is scaled to be centred on the mean λ value. The analyses used: (a) the full 26,466 
species tree; and (b) a subset of the top 5,000 most common species.

(a)

(b)

Climate 
variable

Full ECMWF Subset ECMWF WorldClim

Raw Effort Raw Effort Raw Effort

tmin 0.945 0.953a 0.939 0.951a 0.940 0.958a,b

tmax 0.929 0.947a 0.930 0.954a 0.935+ 0.952a,b

tmean 0.938 0.935 0.931 0.920 0.926 0.945a,b

stl1 0.938 0.94a 0.930 0.936a – –

stl2 0.938 0.94a 0.932 0.935a – –

stl3 0.939 0.94a 0.933 0.934a – –

stl4 0.939 0.939 0.933 0.933 – –

swvl1 0.865 0.1 0.734 0.596 – –

swvl2 0.862 0.1 0.730 0.599 – –

swvl3 0.86 0.1 0.723 0.650 – –

swvl4 0.868 0.1 0.738 0.645 – –

Ssr 0.908 0.909a 0.871 0.892a 0.867 0.883a

Tp 0.932 0.913 0.956 0.975a 0.941 0.955a

Note: Corresponding numerical values of the phylogenetic signal from Figure 3.
aValues that are higher than for the raw data.
bPositive increases on the ECMWF analysis.

TA B L E  3  Phylogenetic signal, Pagel's 
λ, for each of the climate variables 
in the European Centre for Medium-
Range Weather Forecasting (ECMWF) 
bioclimatic envelopes for both full and 
subset trees (for full parameter names, 
see Table 1), and for each of the levels 
of correction: Raw climate variables; and 
adjusted by effort
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much the same response as in the previous analysis, but were slightly 
weaker than with ECMWF data.

3.2  |  Imputation of bioclimatic envelopes

Given that there were strong phylogenetic signals in the parame-
ters tested, we investigated how well we might be able to impute 
bioclimatic envelope data on rarer or less-observed species in GBIF. 
We ran cross-validations using data available from the 5,000 spe-
cies for which the most data were available. Correlations and root 
mean square errors (RMSEs) between imputed and raw data were 
strong for most variables, particularly those that showed a strong 
phylogenetic signal in the previous analysis (Figure 4, imputed data). 
For instance, minimum temperature, the variable with the strongest 
λ value, showed a correlation between the imputed values and real 
data of .79, and an RMSE of 4.69°C (for a plot of real against im-
puted results for minimum temperature, see Supporting Information 
Figure S8). We randomized the tips of the tree in order to ground-
truth the data and found a correspondingly low correlation between 
imputed and raw values (Figure 4, randomized imputed data).

4  |  DISCUSSION

The extraction of climate tolerance profiles for >200,000 species 
is the largest so far. The few previous studies that extracted this 
type of information from climate datasets have been limited in taxo-
nomic or geographical scope (Curtis & Bradley, 2016; Feeley, 2015; 
Harbert & Nixon, 2015; Sparrius et al., 2018). This is a natural con-
sequence of most studies focusing on certain regions or families of 

plants. Although ground-truthing the data for a project of this size is 
extremely challenging, the strong phylogenetic signal seen in almost 
all traits suggests that the extracted data are indeed a comprehen-
sive picture of global species bioclimatic envelopes, at least for the 
more common species. In particular, controlling for effort in plant 
sampling improves the phylogenetic signals in both ECMWF and 
WorldClim data. We have also tested the possibility that we could 
infer traits for missing or rarer species in the tree using phylogenetic 
relationships, finding a good correlation between imputed and real 
values.

Most phylogenetic analyses of plant functional traits or hab-
itat preferences focus on phenological variables (e.g., Basnett 
et al.,  2019; Davies et al.,  2013) or characteristics of the environ-
ment such as soil pH or nitrogen levels (e.g., Schreeg et al., 2010). 
Of the few studies that incorporate climate parameters, some re-
port evidence of phylogenetic signal in climatic variables, such 
as temperature and precipitation, at the genus or family level 
(Steinbauer et al., 2016; Xu et al., 2019), whereas others report little 
or non-significant signals (Koski & Ashman, 2016; Li et al., 2017; Liu 
et al., 2015) at that level. Here, however, we see a very strong phy-
logenetic signal in almost all the climate variables considered, even 
sometimes in soil water volume, but at the level of the whole plant 
kingdom. This unusually strong result could simply reflect the lack 
of studies at such a geographical and taxonomic scale, reflecting in 
turn the lack of supertrees until recently. Indeed, running the analy-
sis at the genus level showed that many genera have low or very low 
phylogenetic signal (Supporting Information Figure S7). For instance, 
for the large genus Solanum, we observed phylogenetic signal re-
duced to levels comparable to the studies cited above (Supporting 
Information Figure S9), which indicates that, for some genera, this 
scale is too restricted to detect such signals. We also see a great deal 

F I G U R E  4  Pearson correlation between imputed and real data for each of the climate variables (for full parameter names, see Table 1).
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of variation in phylogenetic signal when we look at individual genera, 
families, orders and classes, compared with the full tree. Some phy-
logenetic signals can be related to spatial autocorrelation between 
congenerics (Freckleton & Jetz, 2009), which would be of particular 
concern for rare and range-limited species. In this analysis, however, 
we consider the 5,000 most common species in GBIF occurrence 
records, for which >80% have ranges that span more than one con-
tinent, and supplementary analyses restricted to only those species 
with the broadest ranges yielded very similar results (Table S3).

The finding that minimum temperature produces the strongest 
signal is unsurprising, because numerous studies have suggested 
that responses to cold temperature extremes are an indicator of 
plant distributions and exhibit strong evolutionary conservatism 
(Currie et al., 2004; Qian et al., 2016; Woodward & Williams, 1987). 
This theory is often referred to as the tropical conservatism hypoth-
esis (TCH) (Donoghue, 2008; Kerkhoff et al., 2014; Qian et al., 2016). 
In particular, freezing is thought to act as a strong selective force 
because it is often lethal, and mechanisms to withstand freezing 
are difficult to evolve (Qian et al., 2016). A Brownian motion model 
seems to capture this phylogenetic signal well, although we might 
expect this trait to respond better to discrete models of freezing tol-
erance. We also expected that solar radiation would show a strong 
phylogenetic signal because light is a limiting factor in plant growth, 
and we observed this, although there is little evidence in the litera-
ture of this being tested before. Minimum temperature also showed 
the strongest correlation with phylogenetic distance closest to the 
tips, although it remained significantly positive throughout the tree 
until c. 500 Ma. Using local Moran's I, we see that there is hetero-
geneity in autocorrelation for minimum temperature across genera, 
but there are still large clades showing strong signals across the tree, 
and from the autocorrelogram we expect that this index would show 
even stronger correlation across the plant kingdom at species level. 
We also observe strong heterogeneities in phylogenetic signal for 
minimum temperature, particularly at the genus and family levels 
(Supporting Information Figure S7).

In contrast, soil water volume produced a lower, but still strong, 
phylogenetic signal in most cases. There is evidence that water avail-
ability is as great a driver of species and phylogenetic diversity as 
temperature (Qian et al., 2016; Silvertown et al., 2015), and it is ex-
pected to act as a selective pressure on plant communities. It has 
been hypothesized that water-related traits in plants undergo rapid 
local evolution and are therefore much more labile than temperature 
adaptations (Arène et al., 2017). Indeed, Arène et al. (2017) have re-
ported that the base temperature at which development takes place 
in plants has a strong phylogenetic signal, whereas the base water 
potential, a measure of water moisture, does not. Although there 
seems to be little explanation of this phenomenon in the literature, 
the strong evidence of a phylogenetic signal in average precipita-
tion and the small positive correlation between these two variables 
suggests that water does play a role as a selective force in plant 
evolution (Brodribb et al., 2013, 2014; McAdam & Brodribb, 2012). 
Therefore, the reduced signal in soil water volume could instead 
indicate that the scale at which we extracted the data (80 km for 

ERA-Interim) is simply too coarse, particularly in areas such as Africa 
with high effort correction, because this correction weakened the 
signal uniquely for soil water volume in Table 3. However, perhaps 
more pertinently, ECMWF raise questions about the quality of soil 
moisture data in ERA-Interim [Copernicus Climate Change Service 
(C3S), 2021], stating that soil moisture values are only intended to 
“provide a qualitative picture of major anomalies”, with plans to 
improve their estimates in ERA-5. Failure to identify strong and/
or consistent phylogenetic signals in soil moisture variables might 
therefore simply reflect poor data quality.

The phylogenetic analyses we performed here were necessarily 
limited by the size of the tree (c.  26,000 species) and the quality 
of records available (either restricted to the top 5,000 species with 
≥1,000 records or including species with very few records). However, 
the final dataset of bioclimatic envelopes includes >200,000 species 
with GBIF records in the past century, and we make this available as 
a resource for further exploration of the effect of climate change on 
plant species world-wide. We have already made use of such infor-
mation to parameterize dynamic models of plant biodiversity across 
the continent of Africa for the past century (C. L. Harris, 2019). We 
expect that these bioclimatic envelopes could be used to drive other 
types of vegetation model, including dynamic global vegetation mod-
els (Scheiter et al., 2013) and forest gap models (Shugart et al., 2018), 
and could be used as a comparison to the output of species distribu-
tion models, which typically use WorldClim data. Information on the 
climates that plants can tolerate is important for understanding how 
different species might respond to future change, how well mitiga-
tion strategies might work, and the interaction between climate and 
other threats to biodiversity, such as invasive species and habitat 
loss. Although these bioclimatic envelopes are only a subsection of 
the fundamental niche that these plant species could occupy, we ex-
pect that their global scope and long temporal scales mean that their 
realized niches approach the fundamental in many cases (Araújo & 
Peterson, 2012).

GBIF plant occurrence records span hundreds of years and at 
least half of the estimated 400,000 species world-wide. They also 
suffer from numerous taxonomic, geographical and temporal biases 
(Meyer et al., 2016). Although there are now automatic algorithms to 
correct for obvious simple errors in georeferencing (CODATA, 2020), 
such as swapped coordinate signs, further corrections are needed to 
account for more complex biases, such as global collection effort. 
We made several corrections to the data used in the present study, 
including the use of proxies for plant density to adjust the weight of 
different records, which resulted in a corresponding increase in phy-
logenetic signal. Given that there is no reason why phylogenetic sig-
nal should be boosted randomly by such corrections, as is evidenced 
when we randomize the tips, this approach is a candidate for se-
lecting other, future analyses. There are limitations to this approach, 
especially for species with few or no georeferenced coordinates, for 
which data imputation will be necessary. We also explored correc-
tion for biases in both world-wide and continent-level climates, but 
our simple approaches failed to improve the phylogenetic signal. In 
light of this, we suggest that any climate correction should be applied 
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to species individually to account for their specific available climate. 
This would require detailed information on dispersal and other bar-
riers to availability of climate, such as geographical boundaries, and 
as such, is beyond the scope of the present study. However, when 
trying to account for spatial autocorrelation between species in the 
dataset, we did find similarly strong phylogenetic signals when we 
filtered for the most widespread species (those found on more than 
one continent). Information on processes such as dispersal and the 
physiological limits of species would help further to disentangle the 
factors contributing to the strong phylogenetic signal we see here 
and the potential for PNC amongst global plant species.

Given the strong correlation between the ECWMF data and 
WorldClim, it is unsurprising that there is a similarly strong phyloge-
netic signal in temperature and precipitation in the WorldClim data. 
However, given that ECMWF has a much broader range of climate 
parameters, it remains the obvious choice for this type of analysis. 
The ideal next step for such research would be to incorporate all 
data points for all species, rather than using averages of climate bins 
for subsets of species in the dataset. Using phylogenetic mixed mod-
els for this would both facilitate the extraction of climate profiles 
directly from estimated distributions and account better for more of 
the heterogeneity in the data (de Villemereuil & Nakagawa, 2014). 
Importantly, the simplest versions of these models are equivalent 
to Pagel's λ, allowing comparison with this work (de Villemereuil & 
Nakagawa, 2014; Freckleton et al., 2002; Housworth et al., 2004). 
As yet, these analyses are far too computationally intensive for the 
c. 26,000 species in the dataset, never mind for the 200,000 spe-
cies that could be added to a partially resolved supertree. Further 
investigation of the feasibility of data imputation is also necessary 
for using these phylogenetic signals to impute data for missing or 
rare species, although we find that there is no systematic under- or 
over-estimation of minimum temperature as tested in the present 
study (Supporting Information Figure S8).

5  |  CONCLUSION

Global plant species will face many coming threats this cen-
tury, the most devastating of which is likely to be climate change. 
Understanding the relationship between plants and their climate 
is fundamental both to prediction of their future ranges and to the 
implementation of effective conservation strategies. Here, we have 
demonstrated that information on plant bioclimatic envelopes could 
be extracted reliably using historical records and climate reconstruc-
tions, which could then be used in further analyses, and we provide 
these variables for all 200,000 species as a public resource alongside 
this publication. We found a very strong phylogenetic signal in many 
climatic parameters, including temperature, soil temperature, solar 
radiation and precipitation. This evolutionary signal was improved 
by the implementation of a correction for the bias in collection effort 
world-wide and can also be used to impute data for related miss-
ing species. Future analyses could explore further the evidence for 
niche conservatism for climatic parameters at the supertree level.
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