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Abstract 

Background: Knowledge of Ixodes ricinus tick distribution is critical for surveillance and risk management of trans-
missible tick-borne diseases such as Lyme borreliosis. However, as the ecology of I. ricinus is complex, and robust long-
term geographically extensive distribution tick data are limited, mapping often relies on datasets collected for other 
purposes. We compared the modelled distributions derived from three datasets with information on I. ricinus distribu-
tion (quantitative I. ricinus count data from scientific surveys; I. ricinus presence-only data from public submissions; 
and a combined I. ricinus dataset from multiple sources) to assess which could be reliably used to inform Public Health 
strategy. The outputs also illustrate the strengths and limitations of these three types of data, which are commonly 
used in mapping tick distributions.

Methods: Using the Integrated Nested Laplace algorithm we predicted I. ricinus abundance and presence–absence 
in Scotland and tested the robustness of the predictions, accounting for errors and uncertainty.

Results: All models fitted the data well and the covariate predictors for I. ricinus distribution, i.e. deer presence, tem-
perature, habitat, index of vegetation, were as expected. Differences in the spatial trend of I. ricinus distribution were 
evident between the three predictive maps. Uncertainties in the spatial models resulted from inherent characteristics 
of the datasets, particularly the number of data points, and coverage over the covariate range used in making the 
predictions.

Conclusions: Quantitative I. ricinus data from scientific surveys are usually considered to be gold standard data and 
we recommend their use where high data coverage can be achieved. However in this study their value was limited by 
poor data coverage. Combined datasets with I. ricinus distribution data from multiple sources are valuable in address-
ing issues of low coverage and this dataset produced the most appropriate map for national scale decision-making in 
Scotland. When mapping vector distributions for public-health decision making, model uncertainties and limitations 
of extrapolation need to be considered; these are often not included in published vector distribution maps. Fur-
ther development of tools to better assess uncertainties in the models and predictions are necessary to allow more 
informed interpretation of distribution maps.
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Background
Tick-borne diseases affect the health of both humans and 
animals and impact on the economy [1]. Lyme borrelio-
sis, caused by the Borrelia burgdorferi (sensu lato) com-
plex of bacteria, is the most prevalent arthropod-borne 
disease of humans in the Northern Hemisphere [2]. Since 
the early 1990s, the number of reported cases of Lyme 
borreliosis is rising, and the geographical distribution of 
cases is expanding [3]. One of the reasons for these shifts 
is the expansion of the distribution of the main vector of 
B. burgdorferi in Europe, the tick Ixodes ricinus [4].

Ixodes ricinus is the most abundant and widespread 
tick species in western Europe. As well as Borrelia burg-
dorferi (s.l.) [5], it transmits other pathogens respon-
sible for causing diseases of humans and animals. This 
species is now found at higher northern latitudes and 
higher altitudes than previously reported [6, 7] and is 
more abundant in several areas [8, 9]. The expansion 
of I. ricinus could be partly due to changes in host ani-
mal availability such as an increase in deer abundance 
and distribution [10], since deer densities frequently 
correlate with tick abundance [11] and perhaps also 
partly due to abiotic environmental changes, such as cli-
mate warming, since higher temperatures can increase 
interstadial development rate, oviposition rate and egg 
development rates [12], and the proportion of active 
ticks [13, 14].

Understanding the drivers of the distribution and 
abundance of I. ricinus is one of the critical steps in 
assessing the risk of tick-borne diseases and informing 
policy on awareness and control strategies [15]. Reliable 
maps of I. ricinus distribution are essential to understand 
and identify changes in the pattern of I. ricinus and dis-
eases it transmits [16], and to identify hot-spots of vector 
occurrence that will inform policy makers in allocating 
resources to high risk areas, including targeting edu-
cation and preventive measures [3] or management of 
important tick population hosts as deer [11].

Several I. ricinus distribution models and maps have 
been published, aiming to predict current and future 
distribution of I. ricinus on different geographic scales, 
ranging from European to country or local levels [17–20]. 
The purpose of the study will determine the geographi-
cal scale of the map and the resolution will determine 
the degree of precision, realism and applicability of the 
models and maps [21]. Therefore, if the objective is to 
make decisions at country or regional levels, finer resolu-
tion maps can detect high variability in tick distribution 
patterns.

However, predicting I. ricinus distribution and abun-
dance is challenging due to the complex ecology of I. 
ricinus (with multiple tick stages and multiple hosts), 
the limited availability of detailed, long-term and 

geographically extensive tick distribution data, and a 
wide range of environmental variables that may influ-
ence tick distribution. Reliable data on I. ricinus pres-
ence and absence or abundance can be collected during 
field surveys which use standardized sampling methods, 
such as the blanket-dragging technique [22]. However, 
the resources required for field sampling (trained per-
sonnel, cost and time required) mean that data are often 
not available at meaningful spatial and seasonal scales 
[17]. Other sources of data that were not collected with 
the purpose of predictive mapping are therefore often 
used instead. Data submitted by the public can be used 
to improve the knowledge of I. ricinus distribution [23] 
but usually comprise presence-only data so are subject 
to biases. An alternative approach, often undertaken by 
large-scale projects such as VectorNet [22], is to combine 
available data sources into one composite dataset.

Although Lyme borreliosis is an important public 
health concern in Scotland [24], published predictive 
maps of I. ricinus distribution in Scotland are limited, 
particularly at an appropriate scale for national and local 
decision-making. Although some (as yet unpublished) 
predictive maps have been made [25, 26], the only peer 
reviewed publication is a mechanistic model predict-
ing the distribution of infected I. ricinus nymphs now 
and under climate warming [17]. Large-scale presence–
absence maps at the European level [27] do not have suf-
ficient resolution for targeting public health resources 
within Scotland, where I. ricinus is endemic.

The main aim of this study was to compare the per-
formance of three datasets to predict I. ricinus distribu-
tion in Scotland, in order to produce predictive maps for 
use by decision-makers. We generated model, map and 
uncertainty outputs of predicted tick abundance and dis-
tribution over Scotland from three datasets: (i) quantita-
tive (abundance) I. ricinus data from scientific surveys; 
(ii) I. ricinus presence-only data resulted from public 
submissions plus absence points; and (iii) a composite 
dataset that combines presence data from public sub-
missions, presence and absence from scientific tick sur-
veys, literature reviews and expert opinion and, absence 
from a habitat suitability mask for I. ricinus. These data-
sets, which comprise the only data available on tick dis-
tributions at a national scale for Scotland, also represent 
three data types commonly used in mapping tick dis-
tributions (i.e. surveyed abundance; surveyed presence 
and absence; and public submission). We assessed the 
outputs derived from these different inputs to highlight 
the strengths and limitations of each data type, and com-
pared the performance of these different types of data 
in predicting tick distribution, in order to make recom-
mendations for future tick mapping for use in a Public 
Health context.
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Methods
Tick data
We used three datasets with information on I. ricinus 
occurrence or abundance in Scotland. As is often the case 
with predictive mapping exercises, none of these datasets 
were collected with the main objective of predicting tick 
distribution at the national level, but they represent the 
most extensive datasets currently available for mainland 
Scotland.

Dataset 1: “quantitative I. ricinus survey data”
Dataset 1 (Fig. 1a) is quantitative tick data, and consists of 
counts of questing I. ricinus ticks (nymphs and adults) in 
sampled environments in mainland Scotland between 2006 
and 2017. Questing ticks were sampled using the standard 
technique of dragging a white blanket of 1  m2 across the 
ground vegetation area of 10 × 10 m, with an average of 
approximately 15 drags per site [28–30]. During this 11-year 
period, 687 sites were visited, with varying frequency (1–4 
visits), and a total of 10,611 drags were performed.

Dataset 2: “I. ricinus public tick submissions”
Dataset 2 (Fig. 1b) comprised tick submissions by the pub-
lic to Public Heath England (PHE) made through the Tick 
Surveillance Scheme between 1998 and 2016 in main-
land Scotland. The scheme focuses on tick surveillance in 
England and Wales; ticks are also submitted from Scot-
land, but in relatively small numbers. The number of ticks 
(adults and nymphs) submitted per geographical location 

were transformed to presence-only data originating 198 
data points. Due to inherent limitations of modelling pres-
ence-only data, we added a similar number of data points 
on absence. We therefore randomly selected 200 absence 
and pseudo-absence points from Dataset 3 to include 
in Dataset 2. We recognize that other methods could be 
applied in the selection of the pseudo-absence points as 
described by [31]. However, we used the sample of absence 
points for Scotland that was validated by a group of ento-
mologists and public health experts within VectorNet pro-
ject [32] and offered with Dataset 3 (details below).

Dataset 3: “I. ricinus combined dataset”
Dataset 3 (Fig.  1c) consists of presence and absence 
records of I. ricinus (adult and nymphs) in Scotland 
and is part of a large dataset with I. ricinus records for 
all Europe, produced for VectorNet project [22] by a 
team of tick experts (a network of entomologists and 
public health professionals supported by the European 
Centre for Disease Control and Prevention, ECDC). 
The full methodology is described in an ECDC internal 
document (manuscript in preparation) [32]. In Vector-
Net project tick records were assembled from different 
sources, from public submissions (including presence-
only data from Dataset 2 for Scotland) and from scien-
tific tick surveys (including Dataset 1 for Scotland) and 
then validated. Due to the small amount of absence data 
in comparison with presence data, absence points were 
assigned using a mask of suitable habitats for I. ricinus. 

Fig. 1 a Distribution of sites of tick quantitative field surveys in mainland Scotland (Dataset 1). b Distribution of sites of presence-only reports (black 
dots) and absences of I. ricinus (red dots) (Dataset 2). c Distribution of combined presence of I. ricinus from field surveys and public submissions 
(black) and absences (red dots) (Dataset 3)
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The habitat suitability mask was defined by the same tick 
experts from VectorNet project as primary, secondary 
and unsuitable habitat types (land classes where a spe-
cies is unlikely to be found except in exceptional circum-
stances such as continuous and discontinuous urban 
fabric, industrial or commercial units, port areas, post-
flooding or irrigated croplands (or aquatic) or closed to 
open (> 15%) broadleaved forest regularly flooded) from 
two land cover maps: CORINE 2006 and GLOBCOVER 
2009 [33, 34] and by adding additional information about 
I. ricinus environmental limits (e.g. the fact that I. ricinus 
is only present in areas with less than 150 days of snow 
cover per year and where the vegetation period is greater 
than 145 days). Inferred absences were then extracted 
from unsuitable areas defined by the habitat [27, 32]. 
The dataset used in this study, after data management, 
included 1102 presence points and 1058 absence points.

For consistency between datasets, only mainland Scot-
land was considered. The extraction of points in main-
land Scotland and the random selection of 200 absence 
points were conducted using ArcGIS version 10.2.2 [35].

Georeferenced environmental data and variable selection
Ecologically relevant climatic, topographic, land cover 
and host-related variables for I. ricinus occurrence and 
abundance were selected. These variables were collated as 
GIS-based raster maps. The variables used were: (i) Mod-
erate Resolution Imaging Spectroradiometer (MODIS) 
variables (monthly averages, 2001–2013): Normalized 
Difference Vegetation Index (NDVI, 1 km resolution), 
land surface temperature (LST, 1 km resolution), cumu-
lative land surface temperature (end of May 2010–2012, 
MODIS derived data, 0.01 degree resolution (~1.1 km)) 
and length of vegetation growth period (2008–2014, 0.01 
degree resolution); (ii) topographic variables: elevation 
above sea level (90 m resolution); (iii) long-term aver-
age climate data from UK Met Office (from 1981–2010, 5 
km resolution): monthly maximum, mean and minimum 
temperature, number of consecutive dry days (annual 
average), extreme temperature range (annual average), 
rainfall (monthly total precipitation), days of air and 
ground frost (monthly average), mean relative humidity 
(monthly average); (iv) host-related variables: an index 
of presence of roe [36] and red deer [37] [both at resolu-
tion of 0.008333 degree (~ 1 km)], and red deer density 
for 2016 (head per square km, based on a 10 km radius 
smoothing of the Deer Management Unit density figures 
[38]); and (v) Land Cover 2006 (0.008333 degree resolu-
tion). Monthly derived variables were extracted from 
each month.

For data extraction compatibility and modelling pur-
poses, all variables were converted to a standardised 
extent (mainland Scotland), format (tif ), resolution (1 

km) and projection (British National Grid). Environmen-
tal data were extracted for each of the sites of tick col-
lection and reporting [687 sites with counts of I. ricinus 
(Dataset 1); 398 presence–absence points (Dataset 2); 
and 2160 presence–absence points (Dataset 3)] using the 
tool extract multiple values to points from ArcGIS ver-
sion 10.2.2 [35].

Before model implementation, a correlation analysis 
and a univariate regression analysis were performed with 
each response variables. If a variable was strongly corre-
lated with another variable (correlation coefficient higher 
than 0.6), one of them was dropped (variables with cor-
relation coefficient between 0.5 and 0.6 were kept for 
analysis but under observation for possible interactions). 
Following with univariate analysis, biologically relevant 
variables with a P-value less than 0.10 were considered as 
model candidates.

In general, due to issues of autocorrelation and collin-
earity, satellite-derived covariates were preferred when 
compared with similar interpolated climatic variables 
[39].

Statistical model, model validation and predictive map
Models were fitted using the Integrated Nested Laplace 
Approximation (INLA) R package. This Bayesian 
approach was selected due to its ability to account for 
irregular sampling intensity, spatial dependency and to 
quantify uncertainty in data and variables, attributing to 
each variable a distribution of values [40]. We recognize 
that other methods could be used but our objective was 
not to compare different modelling techniques for spe-
cies distribution models, but instead compare dataset 
types using the same modelling technique.

The response variables were the count of I. ricinus ticks 
(nymphs and adults) per drag, site of collection and visit 
and I. ricinus (nymphs and adults) presence and absence. 
A model for predicting tick relative abundance was first 
created considering just the counts of nymphs per drag, 
site and visit because nymphs of I. ricinus pose the great-
est risk of tick bites of humans [17]. However, for consist-
ency with Datasets 2 and 3 which include higher reports 
of adult ticks, it was decided to model I. ricinus rela-
tive abundance considering the total count of adult and 
nymphs per drag, site and visit. This model did not differ 
significantly from the model using nymphs only.

The fixed effects were the previously selected set of 
most suitable environmental variables, including the spa-
tial location of the data (as an interaction term between 
latitude and longitude). A zero-inflated Poisson distribu-
tion was chosen to model I. ricinus abundance (Model 1) 
due to a high number of survey drags with 0 counts. Pres-
ence and absence of I. ricinus (Model 2 and Model 3) was 
modelled as a binomial distribution.
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The selected model for predicting I. ricinus relative 
abundance (Model 1) had two random effects: the effect 
of the site to capture the unstructured heterogeneity in 
the distribution of tick abundance among sites, and the 
effect of each data point (each drag) in order to account 
for overdispersion not captured by the zero-inflated Pois-
son and also to account for possible serial correlation in 
the data arising due to repeated sampling or drags in each 
site. Tick presence and absence (Model 2 and Model 3) 
was modelled without random effects because the inclu-
sion of random effects did not improve model fit and pre-
dictive power.

The models were evaluated using the Deviance Infor-
mation Criteria (DIC) as a measure for goodness-of-fit 
and a parameter from the cross-validation leave-one-out, 
namely the negative of the sum of the log-conditional 
predictive ordinance (log-CPO score) as a measure for 
the predictive quality of the model [41]. A backward step-
wise procedure was used to select the most parsimonious 
model. For all three datasets, the most suitable models 
were selected based on the lowest values of DIC and log-
CPO, amongst competing models with various covariate 
combinations.

The model posterior means were used to produce the 
predictive maps of I. ricinus abundance (Model 1/Dataset 
1) and presence–absence (Model 2/Dataset 2 and Model 
3/Dataset 3). The difference between the 97.5% and 2.5% 
quartiles of the predicted values were used to create 
uncertainty maps. The resolution of all maps was 1  km2 
each pixel.

A matrix of boxplots, comparing the interquartile 
range of the models’ covariates over mainland Scotland 
with the interquartile range of the same covariates cov-
ered by the data points in each model, was developed.

Descriptive analyses, plots, models and maps were 
made using R software version 3.4.4 [42].

Results
Figure  1 presents the spatial distribution of the three 
datasets of I. ricinus counts per drag (Dataset 1, Fig. 1a) 
and presence and absence (Datasets 2 and 3, respectively, 
Fig. 1b, c). Figure 1a shows an uneven distribution of tick 
collection sites over mainland Scotland, with aggregation 
of collection sites in the east, particularly Aberdeenshire 
and in opposite, lack of sampling points in the west coast. 
The distribution of data points in Dataset 2 (Fig.  1b) is 
sparse compared to Dataset 3 (Fig. 1c).

Model 1 (tick relative abundance, using Dataset 1: 
quantitative survey data)
A spatial model of the count of ticks (adult and nymphs) 
per drag, visit and site was run initially (DIC of the most 
suitable spatial model is 29786.66, log-CPO is 20427.23). 
Subsequently, month was added in the model as a cate-
gorical variable, improving model predictive power (DIC 
29774.49; log-CPO 19686.78). The model fitted the data 
well (goodness-of-fit plot in Additional file 1: Figure S1). 
The results of Model 1 are presented in Table 1. A map 
for the month with highest predicted tick abundance 
(April) was created (Fig. 2a).

Land surface temperature in July, presence of roe deer 
and deciduous and coniferous forest were associated 
with an increase in I. ricinus questing tick abundance, 
whilst a higher number of frost days in September lead 
to a decrease in tick abundance. April had the high-
est questing tick abundance (Table  1). The interaction 
term between latitude and longitude was included in the 
model because, although not significant, it decreased 

Table 1 Model 1: posterior mean, standard deviation, 2.5% and 97.5% quartiles and estimates of fixed and random effects for the 
seasonal model of tick abundance, Dataset 1

Abbreviation: SD, standard deviation

Fixed effects Mean SD 2.5% quartile 97.5% quartile

Intercept − 150.7016 32.7201 − 214.9447 − 86.5187

April 2.3606 0.3390 1.7198 3.0520

May 1.9424 0.3174 1.3467 2.5944

June 1.8192 0.3178 1.2227 2.4718

July 1.2388 0.3149 0.6485 1.8863

August 1.3438 0.3151 0.7530 1.9916

September 1.4308 0.3186 0.8325 2.0850

Land surface temperature in July 0.0103 0.0022 0.0059 0.0147

No. days of frost in September − 0.4035 0.0954 − 0.5910 − 0.2167

Roe deer 0.0096 0.0034 0.0030 0.0163

% cover of deciduous woodland 2.5341 0.7380 1.0837 3.9806

% cover of coniferous woodland 0.9053 0.2138 0.4848 1.3240

Interaction between latitude and longitude 0.0010 0.0018 − 0.0026 0.0045
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model residual variance and can help take into account 
spatial effects in questing tick abundance, such as spatial 
autocorrelation (Table 1).

The predictive map of tick abundance (Fig.  2a) shows 
that tick abundance increases from the north and west to 
the south and east of Scotland with highest predicted tick 
abundance in Aberdeenshire and the central belt. Areas 
of average to high uncertainty are present over all of the 
east, centre and south of Scotland whereas all the west 
shows a lower level of uncertainty in predicted values 
(Fig. 2b).

Model 2 (tick presence–absence, using Dataset 2: tick 
public submissions)
Model 2 (DIC of 388.61, log-CPO of 195.81) fitted the 
data well (plot of model goodness-of-fit in Additional 
file  2: Figure S2). Presence of I. ricinus was correlated 
with an increase in NDVI and some measure of habitat 
composition. An increased number of days with air frost 
in November and increased precipitation in April were 

associated with tick absence. The site location of tick 
submission was important (Table 2). The predicted map 
for Model 2 (Fig. 2c) does not capture well areas of lower 
probability of tick presence and shows very high levels of 
uncertainty for most of Scotland (Fig. 2d).

Model 3 (tick presence–absence, using Dataset 3: 
combined dataset)
The adopted model (Model 3) gave the lowest values of 
DIC of 2614.61 and a log-CPO of 1307.74 (plot of model 
goodness-of-fit in Additional file  3: Figure S3). Model 3 
presented very similar covariates as Model 2 but decidu-
ous forest and deer density became significant predic-
tors, likely due to the increased number of points used to 
model tick presence–absence (Table 2). Figure 2e shows 
a similar pattern of I. ricinus probability of presence as 
Fig. 2c, but the predictive map using Model 3 has more 
detailed definition. The uncertainty is lower for the east 
of Scotland and in the north and centre of the Highlands 
(Fig. 2f ).

Fig. 2 Predictive map of I. ricinus questing tick abundance in April in mainland Scotland (a) and uncertainty map (Dataset 1) (b); predictive map 
of probability of presence of I. ricinus using presence-only data from public submissions and absence points (c) and uncertainty map (Dataset 2) 
(d); predictive map of probability of presence of I. ricinus using the combined presence data from public submissions and tick quantitative surveys 
(e) and respective uncertainty map (Dataset 3) (f). The uncertainty maps were calculated from the range of 95% confidence intervals of predicted 
values and rescaled to a 0–1 scale. Darker areas of blue have higher uncertainty
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We assessed how well the three datasets cover the 
range of the covariates used in the models to explore 
the validity of the predictions. The interquartile range of 
each covariate in mainland Scotland was compared to the 
interquartile range of each covariate in the models for the 
data points included (Fig. 3). Although the models fitted 
the data well, the predictions of the three models were 
associated with uncertainty that was not captured in the 
uncertainty measures in Fig. 2, because the tick data did 
not cover all the range of the covariates used. Dataset 3 
covered the covariate range used in the predictions bet-
ter than Dataset 1 or 2. Dataset 1 was mainly collected in 
predominantly forest areas. The covariate index of pres-
ence of roe deer was found important for I. ricinus pres-
ence in Dataset 2 and it was included in the first selected 
Model 2 (see Additional file  4: Table  S1, first model). 
However as can be seen in Fig. 3, the range of the covari-
ate index of roe deer presence is not well covered by 
Dataset 2, contributing to higher uncertainty in the pre-
dictions (see Additional file 5: Figure S4a, b). The covari-
ate roe deer was therefore removed from the final model 
(Table  2). Using all the covariates of Model 3 for fitting 
a model with Dataset 2 helped to corroborate how the 
covariates (type and range) are important in predictive 
mapping and can be a source of error for model predic-
tions (also shown in Additional file 4: Table S1 and Addi-
tional file 5: Figure S4c, d).

Discussion
Predictive maps of tick distribution are essential for 
understanding human disease risk and allocating 
resources for prevention and control. However, they 
require extensive data on tick distribution, and robust 
long-term and geographically extensive datasets are often 
difficult to obtain. Therefore datasets are often used that 
were not collected for this purpose, or do not cover the 
entire extent of the required predicted distribution. The 
main aim of this study was to compare the performance 
of three different types of data to predict I. ricinus dis-
tribution in Scotland. We critically assessed modelled 
distributions to conclude how useful each dataset may be 
to inform policy, future data collection and risk mapping, 
both for Scotland and more widely.

Predictors for I. ricinus relative abundance and presence–
absence
The predictors identified in the models are consistent 
with the current knowledge on I. ricinus ecology. Ixodes 
ricinus activity is seasonal, and in Scotland peaks in April 
and then generally declines over the season as ticks die 
or find a host (Model 1). It is not surprising that roe 
deer presence and red deer density are correlated with 
both tick abundance and presence as deer are impor-
tant hosts maintaining I. ricinus populations [11]. Many 
other studies have found deer abundance as a predictor 
of tick presence and/or abundance [11, 29, 43]. Tempera-
ture affects tick behaviour, interstadial development rate, 

Table 2 Posterior mean, standard deviation, 2.5% and 97.5% quartiles for the binomial models of tick presence–absence with the data 
from public submissions (Dataset 2) and the combined dataset (Dataset 3)

a The posterior mean of NDVI was divided by 100

Abbreviation: SD, standard deviation

Model Fixed effects Mean SD 2.5% quartile 97.5% quartile

Model 2: Presence–absence model with presence 
points from public submissions plus absence points

Intercept − 6.2657 1.0232 − 8.3326 − 4.3135

NDVI  Augusta 0.1373 0.0176 0.1040 0.1732

No. days of air frost November − 0.1729 0.0521 0.2784 − 0.0738

Rain April − 0.0148 0.0053 − 0.0255 − 0.0045

% cover of coniferous woodland 5.1989 1.2015 3.0921 7.8095

% cover of moorland 2.2180 0.5656 1.1499 3.3725

Interaction between latitude and longitude 0.0053 0.0036 − 0.0017 0.0123

Model 3: Presence–absence model with composite 
dataset

Intercept − 3.4700 0.4771 − 4.4160 − 2.5424

NDVI August 0.0005 0.0001 0.0004 0.0006

Deer density 0.0336 0.0100 0.0139 0.0533

No. days of air frost November − 0.0527 0.0207 − 0.0936 − 0.0122

Rain April − 0.0123 0.0020 − 0.0163 − 0.0085

% cover of moorland 1.3920 0.1640 1.0726 1.7161

% cover of deciduous woodland 3.1762 0.6757 1.9203 4.5770

% cover of coniferous woodland 2.1861 0.2128 1.7753 2.6100

Interaction between latitude and longitude − 0.0029 0.0013 − 0.0054 − 0.0004
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fertility, survival and the proportion of active ticks [12–
14]. Warmer climates are frequently associated with tick 
presence and abundance (e.g. [28]). Land surface temper-
ature was also used in other studies to estimate I. ricinus 
presence–absence and abundance [39, 44]. In accordance, 
in this study we found that areas with warmer climates 
and lower number of frost days (minimum temperature 
below 0 °C) were associated with higher tick abundance, 
consistent with previous studies [25, 45].

Forested areas, particularly mixed and deciduous for-
est, as well as other habitats that provide a sheltered can-
opy over the ground, such as bracken and deep heather 
in moorland that are characterized by thick ground 
vegetation or shrub and deep leaf litter layers, provide 
moist and mild microclimates which aid tick survival and 
activity. Forests are also a source of food and shelter for 
many species of tick hosts [46]. NDVI, which quantifies 
the level of photosynthetic activity of the vegetation, has 
been previously identified as being an important physi-
cal parameter that correlates with I. ricinus presence and 
abundance [39]. More questing I. ricinus are predicted in 
areas with warmer climate and higher rainfall or higher 
humidity [47]. However, the negative effect of annual 
precipitation that we found in this study, was also found 
by James et al. [29] in Scotland and Schulz et al. [48] in 
Germany. These findings suggest that the wettest con-
ditions in Scotland are probably too wet for I. ricinus to 
quest, while drier areas of Scotland are still wet enough 
for good survival rates.

For all three datasets plausible predictors were iden-
tified and predictive maps were created. Although the 
models fitted the data well, the three predictive maps 
do not present a consistent pattern of I. ricinus distri-
bution and the predictions are associated with a large 
amount of uncertainty, particularly for Model 2 and to 
a lesser degree for Model 1. The uncertainty presented 
in Fig. 2 (b, d, f; difference between 2.5% and 97.5% val-
ues), provides a measure of the predicted uncertainty at 
each pixel. However, the predicted uncertainty is corre-
lated with the model posterior mean for each covariate. 
In addition, this measure does not include uncertainty 
associated with extrapolation outside the covariate range. 
We therefore explored factors that could influence the 
validity of the predictions for each dataset, and identified 
when each dataset might be most appropriately used.

Use of quantitative I. ricinus survey data (Dataset 1)
The relative abundance of questing I. ricinus ticks is 
generally measured by dragging a blanket over the veg-
etation. This technique does not measure the absolute 
density of the whole tick population in an area because it 
does not count ticks that are moulting, resting, feeding or 
in diapause [44]. It is also worth noting that the blanket 

drag method’s efficiency is affected by ground vegeta-
tion height and density [43]. Ground vegetation height 
and density should be included in statistical models and 
repeated sampling of a site is recommended due to the 
impact of weather conditions on tick activity on the day 
of sampling. Another limitation from this technique is 
that tick absence data cannot be considered completely 
free of error because some of the zeros could in reality 
indicate very low tick densities rather than true absolute 
absence, due to the finite number of blanket drag tran-
sects per site and conditions on the day of surveying [44]. 
However, this is a standard scientific technique which 
provides a useful comparable index of abundance of 
questing nymphs between sites [22].

Conducting blanket drags is time-consuming which 
makes it resource-intensive to perform large-scale, long-
term field studies using this technique. However, esti-
mating questing I. ricinus relative abundance gives more 
information about this species distribution when com-
pared with presence-only and presence–absence data. 
Abundance data are necessary to calculate the density of 
infected ticks, which is important in estimating disease 
risk [44], as well as providing more information on I. rici-
nus dynamics. Abundance data also improve model accu-
racy, predictive performance and ability to discriminate 
trends at finer scales, compared to presence–absence 
data. This improvement is particularly important for spe-
cies of high abundance compared to “rare” species [49]. 
When the objective is to create a predictive map for 
a country such as Scotland where I. ricinus is endemic, 
abundance models will provide more meaningful distri-
bution maps.

The predictive map of questing I. ricinus relative abun-
dance enables us to clearly identify areas with high and 
low tick abundance, and shows an increasing trend of 
tick abundance from the west to the east coast of Scot-
land. However, although the predictions of relative abun-
dance of questing ticks had lower uncertainty compared 
to both of our predictive maps of I. ricinus probability 
of presence, it is clear that the sample sites are clustered 
and do not cover all of mainland Scotland, and that the 
covariate range covered by mainland Scotland is not fully 
represented in the data. Since there is an ecological gra-
dient from the west (higher temperatures, higher rainfall) 
to the east, it is concerning that there may be insuffi-
cient data for accurate predictions in the west. Dataset 
1 was collected mainly (although not exclusively) in for-
est areas, reflecting the data collection, which was aimed 
at specific ecological studies [29, 30]. Hence the dataset 
does not have good coverage for some areas of mainland 
Scotland and therefore the reliability of the predictions 
is like to be lower outside the core survey areas. These 
issues of low coverage are common to these type of data, 
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due to the resources needed to collect quantitative sur-
vey data over a wide scale. Quantitative survey data are 
often considered the “gold standard”, but this is only true 
for models that make predictions in the same geographi-
cal area and covariate range from which the surveys were 
conducted.

Use of I. ricinus presence data obtained through public 
submissions plus absence points (Dataset 2)
Presence-only data, generated from submissions by the 
public and often obtained from citizen science studies, are 
frequently used to map species distribution. These data 
usually require fewer resources to collect than scientific 
surveys [50] but include random error associated with 
uncertainty in the location of ticks were collected, varia-
bility in sampling (e.g. variability between different people 
reporting) and in effort (e.g. some people contribute more 
data than others and effort can also change over time) 
[50]. Bias is also associated with the fact that people report 
from places that are visited frequently or are more acces-
sible [51]. This type of data lacks information on where the 
species is absent, which limits the predictive power of the 
inference and also restricts the type of questions that can 
be asked [52]. In this study, information of where the tick 
was absent (true absences from the scientific surveys from 
Dataset 1 and pseudo-absence points from habitat unsuit-
ability mask from Dataset 3) was added to the presence-
only records from submissions to improve the predictive 
power of the model. This process is not free of error since 
I. ricinus is not confirmed to be absent at all the points 
used as absence [52]. A general disadvantage of this type of 
distribution data is that all presences are treated as equal, 
regardless of the abundance of I. ricinus ticks that the habi-
tat supports, which may not provide enough information 
to enable the model to differentiate a scarce habitat classi-
fied as having the species present from a habitat where the 
species is in fact established [49].

The predictive map resulting from Model 2 presents 
lower spatial detail compared to the other two maps, indi-
cates high probability of I. ricinus presence over much of 
mainland Scotland and does not reflect the known vec-
tor habitat preferences, as presence is predicted in some 
unsuitable areas. This does not provide particularly use-
ful information for targeting public health interventions 
and illustrates the challenges of using sparse presence–
absence data in areas where ticks are endemic. The pre-
dictive map presents high uncertainty demonstrating low 
confidence in the predictions, likely due to the small sam-
ple size. In addition, there is uncertainty relating to the 
predictions as Dataset 2 does not cover all the covariate 
range (Fig. 3).

Although the potential biases of submission data are 
common to similar studies, they can often be minimised 

if sufficient sample sizes are obtained. The dataset used 
in this survey was not collected for the purpose of map-
ping tick distribution, so the sample size was low (~ 200). 
In England and Wales where the submission scheme has 
been promoted, over 4000 data points were collected 
for the same period, giving more capacity for predictive 
mapping.

These results should not rule out the use of data from 
public submissions that can be used to infer range limits 
of I. ricinus after careful analysis to account for adventi-
tious ticks dispersed by hosts [32].

Use of I. ricinus combined datasets (Dataset 3)
The predictive model based on a dataset that combined 
data from scientific studies, public submissions data and 
absences of I. ricinus increased the spatial coverage of the 
data in mainland Scotland (Fig. 1c) and produced a more 
detailed predictive map. In addition this dataset had the 
best coverage for the covariate range used in predictions 
(Fig.  3). It is not surprising that the spatial trend of the 
predictions from both presence–absence models were 
comparable. However, the model developed using the 
combined data (Model 3) provides a better description of 
the presence and absence of I. ricinus not only because of 
the higher number of points but also because it includes 
presence and absence data from quantitative tick surveys 
(Dataset 1). This method of adding information from dif-
ferent datasets can be more easily applied at country and 
continental levels to obtain distribution maps. However, 
because composite datasets combine different types of 
data, it is more challenging to understand how the dif-
ferent errors, bias and limitations of each dataset might 
affect the model outputs and the predicted uncertainty.

Predictive I. ricinus maps for Scotland
The three datasets used in this study are the only I. rici-
nus datasets that are available at a national scale in Scot-
land (as far as the authors are aware). As discussed above, 
although quantitative survey data are usually regarded 
as a gold standard, the data used in this study did not 
have good coverage, both geographically and over the 
covariate range, for the whole of Scotland. This dataset 
is appropriate for making decisions that require detailed 
distribution data only in areas where the coverage is 
good. Outputs from Dataset 2, comprising public sub-
mission data, were limited by the small sample sizes in 
this dataset, which gave high model uncertainty. There-
fore, Dataset 3, which uses data from multiple sources, 
provides the most convincing predictive map and is rec-
ommended for decision-making at national scale.

It is conceivable that any of these maps could be used 
alone for decision-making, without further considera-
tion of the limitations of the data inputs. The differences 
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between the three maps highlight the importance of 
exploring sources of uncertainty in models and in pre-
dictions and presenting this alongside predictive maps. 
Although there are a high number of published papers on 
I. ricinus predicted distribution, uncertainty is rarely pre-
sented (a rare example is [18]). For other vectors, when 
uncertainty is considered, the uncertainty metric used 
in this study is commonly reported (such as [53]), but 
its value is limited because the uncertainty values cor-
relate with the posterior mean. In addition, this measure 
does not include uncertainty associated with extrapola-
tion outside the covariate range. Further development of 
methodological approaches to quantify this uncertainty, 
such as statistical tools for the diagnosis of model pre-
diction reliability or to limit predictions to the range and 
covariates encountered during surveys would be benefi-
cial [54].

Although we conducted this exercise with the aim of 
improving tick distribution and Lyme borreliosis man-
agement, the findings are relevant to other vector-borne 
disease systems for animal and human health.

Conclusions
The choice of the most suitable model and map of I. 
ricinus distribution in Scotland depends on the objec-
tive. For local-level decision-making, Model 1 and 
map 1 (using quantitative I. ricinus survey data, Data-
set 1) are more appropriate, with a good coverage for 
the east coast of Scotland. For decision-making at 
national level, Model 3 and map  3 (using combined 
Dataset 3) provide a better coverage of the country 
and the range of the covariates. Although tick surveys 
provide detailed data on questing tick relative abun-
dance, the resources required often limit the number of 
areas that can be sampled, which makes it challenging 
to make predictions for extensive areas. If available at 
larger spatial and temporal resolution, relative abun-
dance data will result in finer scale maps that are more 
effective for risk management and communication at 
national and regional levels. The analysis in this study 
highlights the need for additional surveying in areas 
with poor previous coverage. Future maps of I. ricinus 
abundance could be improved by adding a priori infor-
mation of habitat preferences into the model structure 
[54]. For large-scale mapping at lower resolution, or if 
there are few tick data from quantitative surveys, data 
on I. ricinus presence-only should be combined with 
data from field surveys and absence data for modelling 
presence–absence. To overcome the problems inher-
ent in the use of presence-only data from public sub-
missions, it is necessary to decrease associated errors 
and bias by accounting for observer effort and expertise 
[55] or to find approaches by which absence data are 

also reported [44]. When predictive maps are needed 
for public health decision making, such as allocation 
of resources for awareness campaigns, information on 
uncertainty should be included with vector distribution 
maps. However, because map uncertainty reflects a sin-
gle source of uncertainty (the spatial model), improved 
statistical techniques are required to quantify uncer-
tainties relating to predictions.
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