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Traditionally, cost-benefit analyses (CBAs) focus on the direct costs of animal disease,

including animal mortality, morbidity, and associated response costs. However, such

approaches often fail to capture the wider, dynamic market impacts that could arise.

The duration of these market dislocations could last well after an initial disease outbreak.

More generally, current approaches also muddle definitions of indirect costs, confusing

debate on the scope of the totalities of disease-induced economic impacts. The aim

of this work was to clarify definitions of indirect costs in the context of animal diseases

and to apply this definition to a time series methodological framework to estimate the

indirect costs of animal disease control strategies, using a foot and mouth disease

(FMD) outbreak in Scotland as a case study. Time series analysis is an econometric

method for analyzing statistical relationships between data series over time, thus allowing

insights into how market dynamics may change following a disease outbreak. First an

epidemiological model simulated FMD disease dynamics based on alternative control

strategies. Output from the epidemiological model was used to quantify direct costs and

applied in a multivariate vector error correction model to quantify the indirect costs of

alternative vaccine stock strategies as a result of FMD. Indirect costs were defined as

the economic losses incurred in markets after disease freedom is declared. As such,

our definition of indirect costs captures the knock-on price and quantity effects in six

agricultural markets after a disease outbreak. Our results suggest that controlling a

FMD epidemic with vaccination is less costly in direct and indirect costs relative to

a no vaccination (i.e., “cull only”) strategy, when considering large FMD outbreaks in

Scotland. Our research clarifies and provides a framework for estimating indirect costs,

which is applicable to both exotic and endemic diseases. Standard accounting CBAs

only capture activities in isolation, ignore linkages across sectors, and do not consider

price effects. However, our framework not only delineates when indirect costs start, but

also captures the wider knock-on price effects between sectors, which are often omitted

from CBAs but are necessary to support decision-making in animal disease prevention

and control strategies.

Keywords: indirect costs, animal disease, foot and mouth disease, time series modeling, vector error correction

model, market impact, disease control strategy
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INTRODUCTION

Animal diseases represent threats to the environment, animal
welfare, public health, and the economy. Livestock diseases
contribute to losses via increasedmortality, reduced productivity,
control costs, loss in trade, decreased market value, and food
insecurity (1). The economic and social impacts of livestock
disease have been recognized globally, in both developed and
developing countries (2). Quantifying the economic impact of an
animal disease outbreak is important in support of prevention
and control decisions for improved animal health.

The economic costs of animal disease can be categorized as
either direct or indirect losses.

Over the last decade, the direct cost of zoonotic diseases has
been estimated at more than $20 billion and indirect losses at
over $200 billion to affected economies as a whole (3). This
highlights that indirect costs are an important aspect of the
economic impact of an animal disease outbreak, and as these
estimates suggest, can be larger in magnitude than direct costs
(3–5). While direct disease costs are important, indirect costs
are also of concern (6) because the costs of disease do not
stop at the farm-gate, within the agricultural sector, or after
disease-freedom is declared. Disease can affect a wide range of
sectors of the economy including rural business and tourism
(7). However, few studies evaluate the full economic cost of
disease outbreaks (8). Often only farm costs are considered and
indirect impacts are not included (9, 10). There is a danger that
estimates of economic costs of animal disease fail to capture
indirect costs and may underestimate the true costs of an
outbreak. It is important to understand the full economic cost of
animal disease outbreaks, and to achieve this, economic disease
cost frameworks must include indirect costs. This is essential
to support holistic decision-making of disease prevention and
control strategies because producers and policymakers need to
be aware of the broader disease impacts to improve animal health
welfare strategies and policy. This will be particularly important
if alternative policy options lead to significantly different indirect
cost outcomes and hence different decision choices than would
otherwise be indicated.

At the same time, even where indirect costs are considered
in the analysis, the definitions of direct and indirect costs of
animal disease outbreaks vary in the literature (as described in
Table 1). Some studies do not categorize economic costs as either
direct or indirect, while others do not explicitly define direct and
indirect costs (17). This non-exhaustive summary table highlights
the inconsistency in the definition of direct and indirect costs
making it difficult to quantify and compare the economic impact
of livestock diseases. In particular, prevention and control costs
are allocated as either direct or indirect costs, depending on
the individual interpretation. The distinction between direct
and indirect economic losses of animal diseases is unclear and
subjective. Often there are a lack of data and an analytical
framework to capture indirect costs. Hence, there is a need for
a more systematic and unified framework on which to estimate
and assess the economic impact of animal diseases (18). It is
important to categorize direct and indirect costs more objectively

to help determine who the economic impact of alternative animal
disease scenarios likely fall upon.

A country’s animal disease status changes over time. For
this reason, we assume direct costs are the sum of losses from
the first confirmation of a notifiable disease outbreak until
disease freedom is declared (19). Accordingly, indirect costs are
defined as the economic loss incurred in affected commodity
markets (e.g., domestic and international trade) and in other
sectors (e.g., tourism) after disease freedom is declared. Applying
this definition, indirect costs are related to knock-on effects
(i.e., shocks) in markets as a result of changes in prices and
quantities for producers and/or consumers, which can also be
described as revenue foregone, after disease freedom. Using
disease status as a marker, our definition of indirect costs
objectively differentiates when direct costs end and indirect costs
begin to avoid double counting.

A range ofmodels are available for assessing the economic cost
of livestock diseases (20). Based on our definition, indirect effects
capture the substitution and displacement in markets as a result
of changes to price and output in agriculture and tourism sectors
(7). Capturing such dynamics is challenging and there is a need
for models that encapsulate the impacts of a disease outbreak in
multiple agricultural markets and linkages with non-agricultural
sectors (21). Traditional cost benefit analyses (CBAs) based on
farm accounts and partial budgets cannot capture such dynamics,
and as such partial equilibrium (PE) (4, 22–24) and computable
general equilibrium (CGE) (7, 25, 26) models are being used to

TABLE 1 | Non-exhaustive literature review summary of the definitions of direct

and indirect components of animal disease costs.

Direct costs Indirect costs Source

Visible production losses (e.g.,

death, lower yield, and reduced

growth) and invisible losses (e.g.,

reduced fertility and changes to

herd structure) losses

Disease control costs

Revenue foregone from

restricted market access

(11)

Disease control costs Export losses (12)

Disease detection, confirmation,

and control costs

Revenue foregone from

trade restrictions

Production losses beyond the

agricultural sector

Farmer losses taking into

account market value and

compensation received

(13)

Loss in profitability Disease control costs (14)

Disease losses that are

experienced at the herd level on

farm

Public expenditures and losses

that occur beyond the farmgate

(9)

Disease control and prevention

costs

Export losses (4)

Losses to agriculture, the food

industry, the public sector, and

consumers

Losses to other sectors in the

supply chain and tourism

(15)

Disease management and

carcass disposal costs

Net economic welfare of the

disease to producers,

processors, and consumers.

(16)

Frontiers in Veterinary Science | www.frontiersin.org 2 June 2019 | Volume 6 | Article 190

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Barratt et al. Indirect Costs of Animal Disease

estimate the indirect knock-on effects of animal disease. A PE
model is based on supply and demand relationships to evaluate
the impact of a shock, such as a disease outbreak, on one sector
of the economy assuming the rest of the economy is fixed. This
approach is thus simplified and ignores any sector interactions.
On the other hand, CGE models simulate how a multi-sector
economy might respond to a shock until equilibrium is restored,
with linkages between different sectors. While CGE models link
multiple sectors and can represent the entire economy they
also rely on economic data and in some cases estimates of
elasticities1 to parameterize market responses. Hence, a weakness
of these models is a reliance on estimates of elasticities which
are often outdated or “guesstimated,” if available at all, which
might affect the model’s performance and estimation. Therefore,
in the absence of good data or if elasticities cannot be estimated,
demand and supply relationships are based on assumptions.

An alternative and complementary approach to PE and CGE
modeling is times series analysis. Time series modeling (27) is
an econometric method for identifying patterns and representing
statistical relationships between data series ordered over time,
and forecasting to predict using observed data. Time series
models have been cited extensively in the literature including
in the disciplines of economics, mathematics, epidemiology,
finance, meteorology, engineering, and natural sciences to name
just a few. However, their application in estimating the cost of
animal disease is somewhat limited (28, 29). In these examples,
time series models have estimated the impact that a disease
outbreak is likely to have on markets. The type of time series
model selected depends on the underlying statistical properties
of the data (30). Time series models assume data are stationary,
such that the mean, variance, and autocorrelation structure
do not change over time. Stationary properties of the data
define which time series model to use. Vector autoregressive
(VAR) models (31) are a multivariate generalization of a
univariate autoregressive model, in which each variable is a
linear function of past values of itself and other variables.
Alternatively, autoregressive distributed lag models (32) are
based on regression equations to predict using current and past
values of time series. When cointegration is detected, i.e., long-
run relationship between variables, a vector error correction
model (VECM) is the most appropriate model to represent the
data. A VECM estimates long-run equilibrium relationships and
short-run dynamics between data series over time (33). Impulse
response functions (IRFs) (34) are a useful tool for forecasting
and determining the relationship between variables over time
until a shock dissipates. An IRF describes the change in a variable
over a time after a shock in another variable. IRFs lend themselves
to modeling a disruption to supply chain shock, i.e., animals
culled following an outbreak, and simulating the response of such
a shock in other variables. Once obtained, IRF coefficients can
be interpreted as elasticities (35) on which to estimate price and
quantity changes for estimating indirect costs, i.e., the economic
losses incurred in markets after disease freedom is declared.

1Elasticity measures the extent to which a proportional change in one variable is

associated with a proportional change in another variable.

The culling of animals for disease control reduces their
supply, disrupting domestic meat production. Economic theory
assumes that the slaughter of animals will lead to a supply
shortage affecting producers and consumers by increasing the
prices consumers pay for commodities (36). During an exotic
disease outbreak, an export ban would be triggered which is
likely to put downward pressure on prices as meat destined
for export would remain within domestic markets. While this
might be the case during an outbreak, what will happen in
markets after disease freedom is declared and how much prices
and quantities will adjust by? Time series analysis can help with
this, using market data, to estimate such price and quantity
changes, i.e., market response, without relying on estimates
of elasticities from the literature. Hence, a more data-focused
time series model can capture the relationship between prices
and substitution effects between markets to compliment and
feed into more comprehensive yet computationally demanding
assumption-based models, such as CGE models, which rely on
good data from existing literature.

The overall aim of this work was to outline the steps necessary
to estimate indirect costs, i.e., the economic losses incurred in
markets after disease freedom is declared using a time series
model.We apply this in the context of amodeled Foot andMouth
Disease (FMD) in Scotland. FMD is considered one of the most
economically significant livestock diseases globally due to its
impact on production, as a barrier to international trade and high
control/stamping out costs (8). While the direct costs of FMD in
Scotland have been estimated, there is a need for indirect costs to
also be estimated (19). Therefore, our paper seeks to remedy this
by estimating the indirect costs of a hypothetical FMD outbreak
in six of Scotland’s important agricultural commodity markets,
(i.e., beef, pork, lamb, chicken, milk, and feed wheat), and, by
this provide a more objective definition of indirect costs using
a time series modeling framework. We considered agricultural
commodity markets that were thought to be most affected by an
FMD outbreak. The indirect economic impacts are likely to be
felt much more widely than this study attempts to quantify.

While FMD is likely to affect international trade and
tourism, the data to support such analysis are not available
at an appropriate resolution. Hence, our paper focusses on
the domestic supply side evaluating indirect costs incurred by
producers after a disease outbreak is over as an illustration of
the method. The distribution of indirect costs was compared to
direct costs on alternative FMD control strategies in Scotland.
We assess the potential impact of vaccine stock scenarios on
indirect costs on decision outcomes in a future outbreak and so
the suitability of time series for contribution to decision support.
Vaccine capacity is important (37, 38) and vaccination plays a key
role in large outbreaks of FMD in terms of the epidemiological
benefit (39) and direct economic costs (19). Hence, this paper
evaluates the indirect costs of alternative levels of vaccines stocks
to compliment previous work (19). Our indirect cost estimation
framework can be applied to other animal disease outbreaks
in Scotland, the UK or elsewhere. The paper provides insights
into an econometric method which quantifies broader knock-
on effects of notifiable animal disease that affect production and
trade after an outbreak is over which are often overlooked.
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FIGURE 1 | Economic cost modeling framework.

MATERIALS AND METHODS

Our indirect cost methodology was demonstrated in the context
of a FMD outbreak in Scotland. The indirect cost modeling
framework (Figure 1) for estimating indirect costs involved the
following four steps: (i) collection of input data; (ii) selection and
specification of a time series model to simulate market dynamics;
(iii) simulation of disease dynamics by way of an epidemiological
model; and (iv) estimation of indirect costs based on integrating
output from the time series model and epidemiological model
under alternative disease control strategies. This methodological
framework is described below.

Overview of Foot and Mouth Disease
FMD is a highly contagious viral disease affecting ruminants,
including cows, sheep and pigs. Globally, FMD is estimated to
cost endemic countries between $6.5 and $21 billion annually,
due to visible production losses and vaccination costs in endemic

countries (8). In addition, previously disease-free countries
incurred outbreak costs of between $0.5 billion and $10 billion
following an outbreak, i.e., between 0.2 and 0.6% of GDP (8).
These losses make FMD one of the most economically important
livestock diseases. In the UK, FMD is a notifiable exotic disease,
with the last outbreak in 2007 estimated to have cost the British
livestock sector over £100 million and the government £47
million (40). However, a larger, costlier outbreak occurred in
2001 generating losses of over £8 billion (41). During the 2001
outbreak, the first case of FMD was confirmed on 20 February
and the disease was eradicated by the end of September 2001, by
which time more than 6 million animals were slaughtered (41).

Animal health and welfare is a devolved issue in the UK,
meaning the Scottish Parliament and Scottish Government have
responsibility for the health and welfare of animals in Scotland.
FMD is a notifiable disease and control mechanisms include
movement bans and restrictions of the marketing of milk and
meat products during an outbreak. The principal control method
to eradicate FMD, as required under EU and national law, is the
slaughter of affected animals (i.e., infected animals and dangerous
contacts) to prevent any further spread of the virus. Vaccination
is also an important tool in controlling FMD during an outbreak.
However, preventative vaccination is banned under EU law,
but the Scottish Government considers emergency vaccination a
disease control strategy during an outbreak (42). The presence
of a notifiable exotic disease, such as FMD, will result in the UK
losing its FMD disease freedom status and trigger an export ban
until disease freedom is declared. The loss of export trade may
persist beyond disease freedom should importing countries adopt
a precautionary approach.

Data Collection
Monthly agriculture commodity price and quantity data between
January 2004 and December 2016 (n = 156 observations) were
gathered from various sources for this study (see Table 2).
Producer prices were adjusted for inflation using the producer
price index (47) to reflect real prices in 2011, the year in which
the modeled hypothetical FMD outbreak occurred. Some data
series were only available at either the UK or Great Britain level,
consequently these data were adjusted to reflect Scottish prices
or Scotland’s share of the UK’s or Great Britain’s volume of
production. The prices of UK pork, lamb, chicken, milk, and feed
wheat were adjusted by 0.99 to reflect prices in Scotland relative
to UK levels (48). Wholesale milk production was adjusted
to reflect Scotland’s share of the UK’s milk production (49).
Scotland’s production of feed wheat was also adjusted to reflect
Scotland’s share of Great Britain’s production (50). Scottish cattle,
pig and lamb slaughtered in Scotland was adjusted to reflect
Scottish livestock slaughtered in the rest of the UK (i.e., beef: 5%,
pig; 55%, lamb: 15%) (51).

Scotland was assumed to be a closed economy in terms of
economic impacts on domestic supply because trade (i.e., exports
and import) data were not available at an appropriate monthly
resolution to determine the indirect cost after disease freedom
is declared. Consumer demand was assumed not to be affected
because FMD is not a zoonosis and there was not sufficient model
power to include retail market data series.
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TABLE 2 | Description of monthly price and quantity data series.

Data series

(Acronym)

Description of data Units References

Price of beef

(PBeef )

Average monthly farmgate price of Scottish steers

(deadweight price)

£ Per ton (QMS 2017, personal communication, 20

October)

Price of pork

(PPork)

Average monthly farmgate price of pork in the UK

(deadweight price)

£ Per ton (QMS 2017, personal communication, 20

October)

Price of lamb

(PLamb)

Average monthly farmgate price of lamb in the UK

(deadweight price)

£ Per ton (QMS 2017, personal communication, 20

October)

Price of chicken

(PChicken)

Average monthly wholesale price of chicken in the UK

(roasters 2050g and under 2450g)

£ Per ton (Defra 2017, personal communication, 1

September)

Price of milk

(PMilk)

Average monthly farmgate price of milk in UK £ Per liter (43)

Price of feed wheat

(PWheat)

Average monthly farmgate price of feed wheat in the UK £ Per ton (44)

Quantity of cattle

(QCattle)

Quantity of cattle (including finished and culled cattle) of

Scottish origin slaughtered (carcase weight)

Ton (Scottish Government 2017, personal

communication, 3 October)

Quantity of pig

(QPig)

Quantity of pigs (including sows and boars) of Scottish origin

slaughtered (carcase weight)

Ton (Scottish Government 2017, personal

communication, 3 October)

Quantity of sheep

(QSheep)

Quantity of sheep (including lambs and ewes) of Scottish

origin slaughtered (carcase weight)

Ton (Scottish Government 2017, personal

communication, 3 October)

Quantity of chicken

(QChicken)

Quantity of poultry of Scottish origin slaughtered (carcase

weight)

Ton (Scottish Government 2017, personal

communication, 3 October)

Quantity of milk

(QMilk)

Quantity of wholesale milk produced in the UK Liters (45)

Quantity of feed wheat

(QWheat)

Quantity of Scottish feed wheat (animal feeding stuff)

production in Great Britain

Ton (46)

Time Series Model Selection
A time series model was used to quantify the indirect costs, i.e.,
the economic losses incurred in markets after disease freedom
is declared, in domestic commodity markets associated with an
FMD outbreak in Scotland. The steps for selecting the most
appropriate time series model are presented in Figure 2 [Adapted
from Wooldridge (52), Johnston and DiNardo (53)]. Following
data gathering and transformation, the order to which data series
are integrated and the presence of cointegration determines the
times series model selected. In our case, a VECMwas selected and
an IRF evaluated market dynamics resulting from a hypothetical
outbreak for the estimation of indirect costs.

Data Exploration and Processing
Descriptive statistics and plotting were used to summarize
and visualize the characteristics and patterns in the data
series, including the presence of seasonal variation. Seasonal
adjustments were performed by estimating and removing
seasonality from the data to understand underlying trends and
movement in the data over time, masked by seasonal variation
(54–57). Data were expressed in natural logarithms to ensure the
series were on a consistent scale.

Following the methodological framework (Figure 1), data
series were decomposed into seasonal, trend, and residual
components (Figure S1). The seasonally decomposed data series
suggest that the pattern of seasonality is similar across months
for each variable. Therefore, seasonality was removed additively
before modeling the data. Following removal of seasonality, data

were expressed in natural logs to ensure the series were on a
consistent scale.

Testing of Stationarity and Cointegration
Stationarity is an underlying statistical property of data required
for time series analysis. A stationary process is such that the
mean, variation, and autocorrelation in the structure of the data
do not change over time. A trend in the mean due to the presence
of a unit root or deterministic trends are causes that violate the
underlying assumption of stationarity.

The data series were tested for stationarity (i.e., the presence
of unit roots) using the augmented Dickey-Fuller [ADF; (58)] test
to detect the order of integration, a metric describing a unit root
process in time series analysis. A time series, Yt , is integrated of
order 0, or at the level, if Yt ∼ I (0) is stationary. Yt is integrated
of order 1, denoted by I[1), if it is not stationary but the first
difference (i.e., Yt − Yt−1) of the series is stationary. If Yt is non-
stationary, but Yt ∼ I

(

d
)

such that d > 0 is stationary, then
the data series is integrated of order d. Agricultural commodity
market data are assumed to be stationary but typically such data
exhibit non-stationary behavior (59).

Examining the stationary process of the data and
cointegration between the time series will determine with which
model to analyse the data [Figure 2: Adapted from Wooldridge
(52) and Johnston and DiNardo (53)]. Cointegration is a
statistical property that identifies long-run relationships between
data series. Data series are cointegrated if all the series are
integrated of order 1, (i.e., I(1)) and a linear combination of
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FIGURE 2 | Summary of steps in time series model selection. Source: Adapted from Wooldridge (52) and Johnston and DiNardo (53).

these series are integrated of order 0 (i.e., I(0)). If cointegration
is present, this suggests there is an equilibrium relationship
in the long-run, although the series may diverge from that
equilibrium in the short-run. Johansen’s trace test (33) is a
statistical procedure to determine whether two or more I(1)
time series are cointegrated. The Johannsen’s trace test was used
because it is robust to skewness and excess kurtosis. In the case
that cointegration is present a vector error correction model is
selected, which models both short and long-run relationships
jointly in multiple data series. In cases where no cointegration
is detected alternative models, such as autoregressive and
autoregressive distributed lag models, are appropriate [Figure 2:
Adapted fromWooldridge (52) and Johnston and DiNardo (53)].

Model Selection
Statistical testing for stationarity and cointegration described
above and outlined in Figure 2 [Adapted from Wooldridge (52)
and Johnston and DiNardo (53)] identified that a VECM model
was appropriate. The Results section describes the outcome of
the statistical testing. A VAR model of order p (where p is the
number of lags), or a VAR(p), combined with an error correction
model can be modeled as a VECMwith p−1 lags, i.e., VECM(p−
1) (33). According to the Granger theorem (60–62), a general
multivariate VECM(p − 1) with K endogenous variables, an
intercept, u, and time trend, δt, takes the form:

1Yt = µ+ δt +
∑p−1

l=1
Ŵl1Yt−l +

∏

Y
t−1

+ εt (1)

where, Yt is a K × 1 vector of K I (1) endogenous variables such
that the first difference is Yt = Yt − Yt−1. The number of lags is

denoted by l (where, l = 1, . . . , p − 1) and t is the time period.
u is a K × 1 parameter vector associated with the intercept and
δ is a K × 1 parameter vector associated with a time trend, t.
The deterministic regressors, u and δ contribute to both the short
and long-run components of Yt . Ŵl is a K × K matrix of short-
run dynamic adjustment coefficients at lag p − 1 of Yt−l.

∏

is
a K × K error correction matrix and the long-run equilibrium
relationship among Yt is determined by the rank, r. The matrix
∏

contains long-run relationships assuming there is a reduced

rank of 0 ≤ r ≤ K it follows that
∏

= −αβ
′
. The strength of

cointegrating relationships is determined by α and β
′
. Where, α

is aK×rmatrix of speed of adjustment to equilibrium coefficients
of which K variables adjust to error correction terms at varying

speeds and β
′
is a r × K matrix of long-run cointegration

coefficients. εt is a K × 1 vector of independently and identically
distributed errors over time with a mean of 0 and covariance
matrix,6ε . Following this, a VECM(p−1) in (1) can be written as:

1Yt = µ+ δt + Ŵ11Yt−1 + Ŵ21Yt−2 + . . .

+Ŵp−11Yt−(p−1) + αβ
′

Y
t−1

+ εt (2)

where, Ŵj = −
∑p

j=l+1

∏

j. Based on the VECM(p − 1) (2),

an IRF was estimated to evaluate how 12 endogenous variables
(i.e., PBeef, PPork, PLamb, PChicken, PMilk, PWheat, QCattle,
QPig, QSheep, QChicken, QMilk, and QWheat) responded to
3 impulses, or shocks, (i.e., QCattle, QPig and QSheep) at a
particular point in time and subsequent periods. An IRF gives
the response of the kth variable when a system is shocked by one
standard-deviation in the jth variable, and the matrix ψ allows
for alternative responses in different variables. When data are
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expressed in natural logarithms, the IRF coefficients represent the
percentage change in the kth variable when the system is shocked
by a 1% change in the jth variable. As such, the values of IRF
coefficients are interpreted as elasticities, namely IRF elasticities.
The IRF estimates the response of endogenous variable k, Yk,t+n,

to a one-time impulse, or shock, in variable j, Yj, t , from time
t to time t + n. Where, n = 0,. . . , N is the number of time
periods specified over which the endogenous response variable
evolves with all other endogenous variables at time t or earlier
held constant. The IRF is expressed as:

Yk, t+n =
∑∞

i=0
ψiεt+n−i (3)

{ψn}k, j =
δYk,t+n

δεj,t
(4)

where, Yk, t+n is a function of current and lagged impulses,
or shocks, and accordingly an IRF represents the adjustment
process and impacts of a shock over time. The coefficients in
ψkj are the impulse response functions, where ψ is a n x k
matrix of j matrices depending on the number of response
variables, Yk, t , impulses, Yj, t , and n, the number of specified
time periods over which the response variables evolve and time
periods after which the impulse dissipates, i. A generalized IRF
assumes that a shock occurs at a single point in time such that
shocks in different variables are independent and invariant to
the ordering of variables (34). If correlation between the error
terms is detected it suggests that a shock in one variable is
likely to be accompanied by a shock in another variable and an
orthogonalized IRF is used to model structural shocks.

Epidemiological Model
Weused theWarwick FMDmodel to simulate the spread of FMD
following a hypothetical introduction in Scotland in June 2011
and simulate various scenarios of vaccination (19). This model is
a fully stochastic, spatial, farm-based model that was developed
and used during the FMD epidemic in 2001 in Great Britain (63–
67) and was later modified to represent the Scottish livestock
industry (39). Although transmission of FMD is restricted to
all farms with cattle, sheep or both, disease control activities
implemented in themodel will involve farms showing at least one
animal susceptible (including pigs and deer). The model further
assumes FMD individuals will pass through four epidemiological
states: susceptible; infected, but not infectious; infectious; or
reported infected and thereby culled. Following the introduction
of the virus in a given jth premises, the model assumes that each
ith premises is infected with a daily probability Mi depending
on its own susceptibility Si and on the transmissibility Tj of the
surrounding j premises such that:

Mi = 1− exp



−Si
∑

i6=j

TjK
(

dij
)





where Si and Ti depend on the species (i.e., cattle and sheep) and
on the related herd size on premises (63–67). The component
K

(

dij
)

is the so-called “transmission kernel function” and
determines the scaling factor on the rate at which infected

premises may infect susceptible ones as a function of inter-farm
distance dij.

A baseline scenario of a “cull only” (i.e., no vaccination) vs.
alternative scenarios of “cull plus vaccinate to live” policy was
simulated. The availability of vaccine stocks at the start of an
outbreak was considered assuming only cattle were vaccinated
and that vaccinated animals would become immune to infection
after 4 days (42). As in previous work (19, 39), we made
the conservative assumption that during this 4-day delay, all
cattle are completely susceptible and if infected, the disease
progresses in the same way as for non-vaccinated cattle. We also
considered that not all cattle present on vaccinated farms would
become totally immune, with 10% of the cattle remaining totally
susceptible to infection and able to transmit the virus to farms
that were not vaccinated (65). In line with current regulations
in place in Scotland, we assumed that the vaccination campaign
would start 14 days after the disease is first detected, allowing
the decision to vaccinate to be taken, the doses of vaccine to
be received from the appropriate vaccine bank and vaccination
teams to be mobilized and actively deployed in the field. Once
the decision to vaccinate has been made, vaccination would be
implemented within a 10-km-radius buffer around each IP and
carried out within the recommended 24 h (42).

The model simulated the effects of the Scottish Government’s
FMD contingency plan under alternative vaccine stock scenarios
(i.e., initial vaccine stocks ranged from 100,000 to 5 million
doses as in Porphyre et al. (19). Briefly, we considered that, for
each vaccine stock scenario, 10,000 epidemics were simulated
assuming that FMD is introduced in a single susceptible herd and
spread silently to four additional herds due to delays in detecting
new incursion events. Although we arbitrarily considered that
outbreaks will be initiated with five infectious premises, this was
based on the fact that: (1) it is unlikely for cattle farms to remain
undetected for long period of time given the high awareness of
farmers to the disease in the UK due to the traumatic experience
during the 2001 outbreak; (2) the noticeable symptoms of FMD
infection in cattle (68) and; (3) the implementation of the
standstill regulations which would limit the spread of FMDdue to
animal movement (69). As such, the spread of FMD is likely to be
mostly driven by local spread and affect a relatively small number
of farms within a short period. Over all simulations, we used the
same set of all initially infected herds. These were located in the
county of Ayrshire, which has a high density of premises and
animals, and has been previously identified as an area where there
is potential for extensive initial spread (39), and hence represent
the worst case scenario for FMD spread in Scotland.

Output data from the epidemiological model included the
number of animals (i.e., cattle, pigs, and sheep) culled for disease
control purposes, which informed the estimation of indirect
costs. Direct economic costs, i.e., the economic losses incurred in
markets before disease freedom is declared, were estimated from
the epidemiological model data and are published (19).

Indirect Cost Estimation
The indirect costs, i.e., the economic losses incurred in markets
after disease freedom is declared, associated with a FMDoutbreak
in Scotland were estimated by integrating output from the time
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TABLE 3 | Summary statistics of monthly agriculture commodity price and quantity data between January 2014 and December 2016 (n = 156 observations).

Data series

(units)

Minimum Maximum Median Mean Standard

deviation

Coefficient of

variation

Price of beef

(£ per ton)

2,446 3,870 3,132 3,126 400.32 0.128

Price of pork

(£ per ton)

1,096 1,667 1,401 1,400 114.34 0.082

Price of lamb

(£ per ton)

2,317 5,476 3,711 3,694 566.18 0.153

Price of chicken

(£ per ton)

928 1,681 1,347 1,341 140.27 0.105

Price of milk

(£ per liter)

0.20 0.32 0.26 0.26 0.03 0.109

Price of feed wheat

(£ per ton)

78 207 117 129 36.18 0.281

Quantity of cattle

(ton)

12,034 19,226 14,996 15,353 1,746.00 0.114

Quantity of pig

(ton)

1,679 7,246 4,580 4,230 1,502.50 0.355

Quantity of sheep

(ton)

2,073 9,048 5,376 5,319 1,429.50 0.269

Quantity of chicken

(ton)

1,841 11,337 6,868 6,892 2,017.50 0.293

Quantity of milk

(ton)

92,533,221 131,099,341 106,746,572 107,461,126 7,978,941.54 0.074

Quantity of feedwheat

(ton)

4,282 41,042 16,139 16,510 7,560.56 0.458

series model (i.e., IRF elasticities) and epidemiological model
(i.e., number of animals culled inputs into the indirect costs time
series model).

The IRF elasticities capture the changes in the levels of
prices and quantities in six commodity markets (i.e., beef,
pork, lamb, chicken, milk, and feed wheat) following the
culling of 1% of animals (i.e., cattle, pig, and sheep). The IRF
elasticities capture the adjustment of prices and quantities to
a long-run equilibrium until the effect of the shock dissipates
over time. We identified the period in which the impact of
the shock dissipated, i.e., the change in the IRF elasticities
tended to zero. This determines up to what period to sum the
IRF elasticities to quantify the total economic impact of the
animals culled.

To estimate the total impact of the supply shock, the IRF
elasticities were multiplied by the epidemiological shock (i.e.,
number of animals culled as output from the epidemiological
model) as a proportion of the national production herd
[1,803,937 cattle; 389,995 pigs; and 6,801,134 sheep in June 2011;
(70)]. As a result, the IRF elasticities reflect the total economic
impact of a supply shock taking into account the size of the
outbreak in terms of animals culled.

The indirect costs, ICs, of alternative vaccination strategies,
S, and six domestic commodity markets (i.e., beef, pork, lamb,
chicken, milk, and feed wheat), i, were estimated. The indirect
costs are associated with price and quantity changes, i.e., change
in revenue or revenue foregone, in each market, i, as a result
of a supply shock of animals culled, j, after disease freedom

is declared:

ICs =
∑3

j=1

∑6

i=1
( Pi,d∗Qi,d)−(Pi,t∗Qi,t) (5)

where i denotes commodity markets for beef, pork, lamb,
chicken, milk, and feed wheat, and j represents cattle, pig and
sheep culled. Pi and Qi are the price and quantity in the ith
commodity market, respectively. t denotes the period before the
outbreak and d is the period after disease freedom is declared
until the supply shock dissipates. To quantify the total indirect
costs across the six markets, the change in revenue is summed
across the commodity markets for animals culled for alternative
scenarios, S.

ICs =
∑3

j=1

∑6

i=1
(Pi,t∗(1+

(

ElPi,j
)

))∗(Qi,t∗(1+
(

ElQi,j
)

))−(Pi,t∗Qi,t) (6)

where ElPi,j is the IRF elasticity of price of the ith market,
Pi, with respect to the jth species culled, and the ElQi,j is the
IRF elasticity of quantity of the ith market, Qi, with respect
to jth species culled. The IRF elasticities, estimated from the
time series model, capture proportional changes in the levels
of price and quantity changes as a result of animals culled.
Finally, the total economic cost is the sum of indirect and
direct costs.
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FIGURE 3 | Times series of real producer prices of (A) beef, (B) pork, (C) lamb, (D) chicken, (E) milk, and (F) feed wheat between January 2004 and December

2016, inclusively.

RESULTS

The objective of this paper was to demonstrate a method
for estimating the indirect costs, i.e., the economic losses
incurred in markets after disease freedom is declared,
under alternative disease control strategies using time
series analysis.

Data Exploration and Processing
Table 3 presents descriptive statistics for the data series.
The lowest and highest variation, according to the
coefficient of variation (i.e., ratio of standard deviation to

the mean) is quantity of milk produced and quantity of
feed wheat produced, respectively. On average, there is
a higher variation in the quantity of commodities rather
than the price of commodities. Figures 3, 4 show the
data series of prices and quantities, respectively, plotted
over time.

Test of Stationarity and Cointegration
The ADF unit root test (58, 71) was conducted on each data
series to determine to what degree data series are integrated. The
ADF test indicated that 11 of the 12 data series contained were
stationary at I(1)), except QSheep (i.e., quantity of sheep) which
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FIGURE 4 | Time series of quantities of (A) cattle (B) pig (C) sheep (D) chicken (E) milk produced and (F) feed wheat produced between January 2004 and

December 2016, inclusively.

is stationary at the level, i.e., I(0), at the 5% level of significance.
While a VECM requires all variables to be stationary at I(1),
in systems with three or more series a VECM is appropriate
providing at least two of the variables are stationary at I(1) (72).
Therefore, QSheep does not impact the validity of our VECM.

The next step was to test for cointegrating relationships
between the variables. The Trace statistics (Table 4) tests the null
hypothesis that there are no cointegrating relationships (i.e., r =
0) against the alternative that there is at least one cointegrating
relationship (i.e., r ≥ 1).

The trace statistic (Table 4) indicates at least two cointegrating
relationships among our data series at the 5% level of

significance. Since cointegration is detected, it was incorporated
into our model because otherwise its omission contributes to
misspecification error.

Vector Error Correction Model
In this paper, a VECM is estimated because of the presence of
stationarity in the data series at I(1) and cointegration. Long-
run relationships were estimated using maximum likelihood
for a VECM(1) with 12 endogenous data series (i.e., K =12),
one lag (i.e., p − 1 =1), two cointegrating relationships (i.e.,
r =2), and a constant deterministic regressor as shown in
Allan et al. (7).
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TABLE 4 | Johansen cointegration trace test for determining the number of

cointegrating relationships, r.

Null hypothesis Alternative hypothesis Trace statistic p-value

r = 0 r ≥ 1 373.15 <0.001

r ≤ 1 r ≥ 2 292.26 0.02

r ≤ 2 r ≥ 3 237.76 0.06

r ≤ 3 r ≥ 4 185.55 0.16

r ≤ 4 r ≥ 5 141.05 0.32

r ≤ 5 r ≥ 6 103.10 0.51

r ≤ 6 r ≥ 7 75.88 0.51

r ≤ 7 r ≥ 8 54.05 0.46

r ≤ 8 r ≥ 9 32.71 0.58

r ≤ 9 r ≥ 10 18.65 0.53

r ≤ 10 r ≥ 11 8.78 0.39

r ≤ 11 r = 12 3.20 0.07

Maximum-likelihood test of the cointegrating rank.

Trend assumption: Constant.

Lag selection (lag=1) based on Akaike information criterion (AIC) and Bayesian information

criterion (BIC).
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(7)

The estimated coefficientmatrices for the VECM (7) are reported
in Tables S1–S5.

Impulse Response Function
Once a VECMwas identified an impulse response function (IRF)
was estimated to evaluate short-run dynamics. The correlation of
the variance covariance matrix suggests there is little correlation
between the coefficients (Table S6). In which case, a generalized
IRF is the most appropriate IRF, which is invariant to the order
of endogenous variables. A generalized IRF was estimated with
1,000 bootstrapped replications. The supply shocks dissipate in
the market variables at different time horizons, from 2 to 13
months. The IRF elasticities capture the response of variables to
a 1% shock decrease in the production of cattle (Figure 5A), pig
(Figure 5B), and sheep (Figure 5C) due to animals culled until
the supply shock dissipates. As described in the Materials and
Methods, these IRF elasticities represent a 1% change because
the data are expressed in natural logarithms. The IRF elasticities
were multiplied by the hypothetical epidemiological shock as
a proportion of the national production herd [1,803,937 cattle;
389,995 pigs; and 6,801,134 sheep in June 2011; (70)] to estimate
the total impact of the supply shock.

Indirect Costs
The magnitude of indirect, direct, and total costs conducive to
large outbreaks is presented in Figure 6. These results suggest
that economic costs vary with size of the initial vaccine stock.
Total economic costs range from £400 to 950 million, with
median direct costs between 10 and 24 times larger in magnitude
than indirect costs. Indirect costs constitute 9% of total costs
under a baseline scenario of no vaccination (i.e., “cull only”)
and between 4 and 8% of total costs under alternative scenario
of “cull plus vaccinate to live” as the size of the initial vaccine
bank decreases from 5 to 0.1 million doses. Losses in revenue in
some commodity markets (e.g., beef, pork, lamb, and chicken)
are partially offset by gains made in other commodity markets
(e.g., milk and feed wheat). Hence, the net effect on indirect
costs is likely to be lower compared to the presumption that all
commodity markets lose revenue during an outbreak.

The distribution of indirect costs, i.e., the economic losses
incurred in markets after disease freedom is declared, in the
baseline and alternative vaccine stock scenarios is presented in
Figure 7. Controlling an FMD epidemic with vaccination has
a lower median indirect cost than the baseline scenario of no
vaccination (i.e., “cull only”). Overall, there is less uncertainty,
i.e., spread, in indirect costs associated with vaccination
compared to the baseline strategy of no vaccination. Varying the
size of the vaccine stock impacts on the variability of indirect
costs associated with an outbreak. There is wider variation in
indirect costs associated with alternative scenario of between
0.1 and 0.3 million compared to 0.5 to 5 million doses in the
vaccine bank. These results suggest that vaccination is relatively
more beneficial than a strategy of no vaccination. However, more
uncertainty is associated with fewer doses of vaccines (i.e., 0.1 to
0.3 million) compared to more doses of vaccines (i.e., 0.5 to 5
million) in the bank, when considering indirect costs.
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FIGURE 5 | Impulse response elasticities associated with a 1% increase in the quantity of (A) cattle (B) pig and (C) sheep culled for disease control purposes.

DISCUSSION

Our study confirms controlling an FMD epidemic using
vaccination costs less, on average, than under a no vaccination
strategy (4). In our study, indirect costs constitute only between
4 and 9% of total costs. In other studies indirect costs exceed
direct costs, i.e., between 79 and 97% (4) or 29% of total costs
(5). Over the last decade the indirect costs of zoonotic disease

have contributed 91% of total costs (3). To a certain extent, the
ratio of indirect to direct costs may depend on the definition
of direct and indirect costs used. Our definition of indirect
costs considers indirect costs as the losses after disease freedom
is declared and is comprised of change in revenue in various
agricultural commodity markets. Economic losses experienced
during an outbreak are defined as direct costs. In our study, the
loss in revenue in some commodity markets (e.g. beef, pork,
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FIGURE 6 | Median direct, indirect, and total costs (£ million) associated with

the baseline (no vaccination) and alternative (vaccination) vaccine stock

scenarios (i.e., 0.1, 0.2, 0.3, 0.5, 1, and 5 million doses) at the start of the

epidemic. Green and orange lines represent median direct and indirect

economic costs, respectively.

lamb, and chicken) are partially offset by gains made in other
markets (e.g. milk and feed wheat). Therefore, the overall net
effect suggests the magnitude of indirect costs is lower than
had all the commodity markets suffered a reduction in revenue.
Furthermore, the loss in revenue in exports was not considered
because export trade data were not available. The loss of export
trade may persist beyond disease freedom should importing
countries adopt a precautionary approach. Other examples of
offsetting could include: decrease in employment in a particular
sector and increase in employment to an economy overall;
costs to one farm offset by gains to other farms; and reduced
tourism expenditure vs. an expansion in household expenditure
(7). Furthermore, an exotic disease, such as FMD, is likely to
have indirect consequences that were felt over a larger number
of sectors than this study attempts to quantify, e.g. tourism,
and retail (7). Lower than expected indirect costs may also be
explained by the vaccine bank scenarios considered in this paper
because only the worst case scenario for direct costs was evaluated
(39). In addition, we have not considered the costs of farm
management practices such as restocking livestock, following
disease freedom, that could have disease implications but such
costs could be included as additional component of indirect costs.
In the future, it would be interesting to consider other scenarios
and how the trade-off between direct and indirect costs varies
under alternative prevention and control strategies.

Economic cost frameworks that classify costs as either
direct or indirect are often subjective and there lacks a

consistent framework to evaluate them, making it difficult
to assess the costs of alternative animal disease relative to
one another. An economic cost framework should “(1) Be
consistent with economic principles; (2) Be derived from and
consistent with veterinary control measures; and (3) Include
an explicit definition of the economic perspective and the
stakeholders included” (18). Our framework meets these three
criteria because; (1) it distinguishes objectively between direct
and indirect economic costs using disease status to avoid double
counting costs; (2) the estimation of costs is derived from
veterinary control measures adopted by the Scottish Government
in an epidemic scenario; and (3) direct costs incurred during
an outbreak are broken down by economic perspective of
government and industry (19) while indirect costs come from
the economic perspective of markets considered, in our case
the producers of agricultural commodities. This indirect cost
framework can be extended to other economic perspectives,
e.g., tourism and retail, explicitly taking the perspective of
stakeholders beyond the farmgate that are impacted after an
outbreak, which is often not considered in other studies. This
aspect is important for policy makers responsible for disease
outbreak prevention and mitigation decisions who may be
required to make important and difficult choices at regional,
national or international level. Failure to account for impacts
beyond the farming sector has been a criticism of decision
making in previous UK FMD epidemics (73, 74). Besides the
direct costs associated with production, economic models may
be called upon to inform producers and policy-makers of the
broader knock-on effects associated with indirect costs after
disease freedom is declared because such costs might affect
various markets and also have implications for trade.

This paper presents a framework that outlines the necessary
steps to estimate indirect costs, i.e., the economic losses incurred
in markets after disease freedom is declared, using time series
analysis. Using agricultural commodity data, time series models
can capture market dynamics and the knock-on price and
quantity effects between markets, which are often omitted from
traditional farm account-based CBAs and other methods. PE and
CGE models have been used to explore the indirect costs of
animal disease outbreaks. A drawback of these models is that that
they are sometimes based on strong assumptions in the absence
of good data, e.g., elasticities, defining the demand and supply
relationships in multiple sectors to anticipate the likely economic
impact of a supply shock. Often elasticities are taken from the
literature or assumed unless estimations are developed directly
for the model. By contrast, our econometric approach estimates
elasticities directly from data to capture production and price
dynamics and equilibrium levels, without the need for relying
on the literature or making key assumptions and as such can
complement PE or CGE models.

PE models can examine a single sector or multiple markets
capturing changes in production and prices. An advantage of
CGEs over time series models is that they can represent an entire
economy. However, a drawback to CGEs is the use of more
complex modeling techniques and results that can be difficult
to interpret (21). Our time series model can incorporate further
markets and sectors, providing such data are available, without
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FIGURE 7 | Kernel probability density function of the distribution of indirect economic costs (£ million) associated with the baseline (no vaccination) and alternative

(vaccination) vaccine stock scenarios at the start of the epidemic associated with (A) 0.1, (B) 0.2, (C) 0.3, (D) 0.5, (E) 1, and (F) 5 million doses. Dashed vertical red

and blue lines represent the median indirect economic costs for the baseline and alternative scenarios, respectively.

the modeling complexity of a CGE. A review of economic models
found that CGEs do not explicitly link to an epidemiological
model because this requires further development (21). Multi-
market models have also been used to model the impact of
changing access to export markets on breeding and investment
decisions (24). Such integration does not feature in our time
series model. Nevertheless, our time series model is linked
with the epidemiological model because the indirect costs are
derived from the number of animals culled. Although the models
are not integrated fully, a development which requires further
interdisciplinary research. Despite this, our paper illustrates
the usefulness of time series analysis in modeling the indirect
economic costs of an animal disease outbreak.

FMD is not a zoonotic disease i.e., it has no human health or
food safety risk. For this reason, the retail response of consumer
demand was not considered. However, the FMD outbreak
of 2001 had psychological impacts on members of the rural
community (75). Indirect costs arising from tourism were also
not considered. It is suggested that economic losses arising from

the tourism industry are similar in magnitude to that of losses
to agriculture and the food supply chain (15). Our framework
demonstrates how indirect costs can be estimated, but this study
does not quantify all potential indirect costs. The scope of indirect
costs can be broadened with our methodology provided that
appropriate data, such as tourism revenue and retail market,
are available. Our IRF was fit with 12 response variables, each
with 156 observations (i.e., 13 years of monthly data), and three
shocks but did not have enough forecasting power to include
additional variables. To investigate the relationship between the
supply shock of animals culled and tourism or consumer demand
would require an extension of the data series or fewer impulse
or response variables, which was not possible for this study.
Alternatively, a separate time series model to represent consumer
demand and tourism could be considered.

Data availability can also restrict the scope of indirect costs
estimated when considering time series modeling. UK market
data are available but often such data are not disaggregated
into UK administrations, such that regionalization cannot be
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accurately considered. For this reason, access to publically
available data at a disaggregation required, i.e., monthly
observations for Scotland, at the farmgate can be problematic.
Where possible we have used Scottish-specific data in our
model, otherwise UK-level farmgate price and quantity data were
adjusted to reflect a regionalisation for Scotland. Likewise, net
export trade data were only available quarterly for the UK-level,
however such an aggregation did not allow for sufficient variation
in the data. Hence, indirect costs do not capture the impact of
animal disease outbreak on trade flows. If a country affected by a
disease outbreak is a large exporter of livestock, a shock in the
domestic market will have knock-on effects into international
markets, and consequently international prices if there is an
export ban (76).

If animal health is considered a public good (77), better
estimates of indirect costs are necessary to support decision-
making for animal disease prevention and control strategies.

The Scottish Government’s animal health and welfare strategy
is to prioritize limited resources and to consider cost sharing
responsibilities for preventing and controlling disease. Therefore,
indirect costs are a concern for policy makers to understand
the cost of alternative prevention and control strategies in
context of one another given the allocation of limited resources.
Governments need to appropriately balance the costs of disease
control between industry and the tax payer, ensuring financial
support for farmers and value for money for taxpayers. During
the 2001 UK FMD outbreak, farmers were compensated £1.4
billion for the slaughter of animals and disposal and clean-up
costs. In addition, the epidemic costed £1.3 billion to eradicate
and other public sector costs amounted to £0.3 billion. The
private sector was not compensated but also experienced losses;
agriculture, food supply chain and supporting services lost
£0.6 billion, while the outbreak costed tourism and supporting
industries between £4.5–5.4 billion (41). The moral hazard
problem arises when not all stakeholders are compensated (78,
79). When compensation is expected it may create incentives
for individuals to act in ways that incur costs that they know
they will not have to bear. Compensation must be large enough
to ensure reporting of disease but not so large to discourage
preventative biosecurity (78). Partial compensation helps spread
some of the risk responsibility to farmers. Nevertheless, all those
that incur losses of an epidemic are not compensated. Therefore,
determining how indirect costs are distributed helps address
this by informing government of stakeholders, besides farmers
and the farming industry, that are impacted by an outbreak
and should potentially be considered for compensation after an
outbreak is over.

The indirect cost methodology presented in this study is
applicable not only to FMD but also other exotic animal diseases.
Furthermore, the method is particularly pertinent in light of
Brexit, which can be thought of as a “shock” that may alter
the UK’s livestock disease risk and disrupt markets. It will be
important to evaluate the knock-on-indirect effects of alternative
Brexit scenarios that are likely to arise from changes to trade
rules and access to pharmaceuticals. New trading arrangements
may affect the import and export of livestock products and also
the movement of animals which may alter the UK’s disease
risk and interrupt the supply chain. In the context of changing

trade relationships with global trading partners under Brexit,
understanding indirect costs will become even more important.
The UK is a net importer of agri-food production from the EU,
which could have implications for EU farming and food sectors
(80). The anticipated price and production changes will vary
depending on trade agreement considered and whether the UK
is a net importer or export of individual commodities concerned
(81). There are also concerns as to the supply and access of
vaccines post-Brexit (82). In an emergency epidemic, this could
pose a risk to the UK’s disease status, food security and could
have knock-on effects for trade relationships. For example, the
UK may no longer have access to the European Union’s FMD
vaccine bank. The UK has a reference laboratory for FMD but
in the face of an outbreak would the UK’s national vaccine bank
have sufficient stock? Hence, as much uncertainty remains, it
is important that alternative Brexit scenarios are considered to
anticipate the perceived impact of leaving the EU on various
agricultural markets and rural sectors of the economy and the
implications for disease risk and the associated economic costs.

CONCLUSION

In conclusion, this paper has presented a framework for defining
and estimating the indirect costs, i.e., the economic losses
incurred in markets after disease freedom is declared, of an
animal disease outbreak. The time series model identified was a
VECM, a useful tool for capturing knock-on market dynamics
following a disease freedom/outbreak. Overall, in terms of
indirect costs it is more beneficial to vaccinate compared to a
“cull only” FMD control strategy. Our findings suggest indirect
costs vary with the size of the initial vaccine stock and are
less variable when vaccination is used instead of culling. The
estimation of indirect costs contributes to the overall economic
assessment of the costs of an animal disease outbreak, which
is often overlooked but is necessary in support of decision-
making. In future, constraints on data and analytical frameworks
that otherwise limit the estimation of indirect costs should be
addressed. The framework presented can be applied to other
animal disease scenarios to more consistently evaluate indirect
costs. It is important that indirect costs are not overlooked
because their estimation is necessary for a more complete picture
of the costs of animal disease outbreaks across case studies to
better prioritize limited resources and inform cost sharing. Our
indirect cost modeling framework can be adapted to model how
changes in the political economy, such as Brexit, might impact
the cost of animal disease outbreaks in the future.
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