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1.1 Introduction1

The word “Demography” is a combination of the ancient Greek words de-2

mos, meaning “the people”, and “graphy”, which refers to the “the writing or3

recording or study of”. One definition of demography is “the science of vital4

and social statistics, as of births, deaths, diseases, marriages, etc, of popu-5

lations” (McGraw-Hill, 2005). Our focus here is on ecology and ecological6

populations, and demography will be defined as the scientific study and char-7

acterization of biological populations’ structure and dynamics. The simplest8

structure is total abundance at arbitrary points in time, while more com-9

plex structure includes abundances for multiple partitions of a population,10

e.g., numbers by sex, age, and spatial location. Dynamics refers to changes in11

structure and abundances over time as well as processes, sometimes called vital12

rates, which include reproduction, growth, maturity, movement, and mortal-13

ity, that cause these changes.14

People are interested in demography for a variety of reasons. One is inher-15

ent curiosity about abundances and dynamics. Why do the numbers of wolves16

(Canis lupus) on Isle Royale (in Lake Superior) fluctuate the way that they17

do? What effect will decreased snowpack levels have on the geographic range18

of American pika (Ochotona princeps) in Yosemite National Park? Answers19

to such questions require not only estimates of abundances of the species but20

also understanding of the factors that affect the abundances and dynamics.21

For species harvested commercially, for sport, or for subsistence, e.g.,22

salmon (Oncorhynchus spp.), red deer (Cervus elaphus), morel mushrooms23

(Morchella spp.), and black duck (Anas rubripes), people want to know how24

harvest affects population abundances and dynamics. Comparison of alter-25

native harvest regulations is facilitated by predictions of the magnitude and26

sustainability of harvest levels. Predicting the effects of setting harvest reg-27

ulations, e.g., a bag limit of 10 black ducks for a one month hunting season,28

requires some understanding of how this mortality might interact with other29

sources of mortality and other processes, like reproduction or movement. Esti-30

mates of the degree to which harvest mortality will be compensatory (removes31

individuals that would have died anyway from other factors) and additive (the32

number of animals that will be removed over and above those that would have33

died from other factors) are useful.34

For species declared threatened or endangered by a government agency35

there are legal mandates for actions to be taken, or avoided, by managers of36

land or water resources inhabited by the species. Those actions can pertain37

directly to the population, such as to not take actions that could kill, harm, or38

harass the species, or indirectly to the species’s habitat. To recover the pop-39

ulation, interest is in identifying actions to increase the species abundance,40

e.g., by restoring habitat, and predicting the effects of actions. For example,41

the United States Fish and Wildlife Service (USFWS) has a mandate to de-42



4 Preprint: Chapter in Handbook of Environmental & Ecological Statistics

velop “Conservation Management Plans” for species listed as threatened or43

endangered under the US Endangered Species Act. Such plans must include44

(a) specification of management actions to conserve the species, (b) measur-45

able criteria which would lead to a determination that the species can be46

“delisted”, no longer declared threatened, and (c) estimates of the time and47

cost to carry out such actions. Demographic models are central to identifying48

such actions, to predicting the effects of actions, and to prioritizing multiple49

actions.50

Questions about demographics split into questions about abundances and51

about processes. How many individuals, or what volume or mass, are there,52

and were there previously, in the entire population and in subpopulations dis-53

tinguished by sex, location, age, or genotype? Answering this question is often54

quite challenging depending on the magnitude of the abundances, geographic55

location and range, physical size, mobility, degree of elusiveness, and ability56

to detect individuals. A variety of statistical sampling methods, e.g., mark-57

recapture, and technological tools and devices, e.g., radio tracking, have been58

developed to help provide answers to the how many question. A variety of59

methods of estimating population abundances are discussed in Williams et al.60

(2002), Borchers et al. (2002), Buckland et al. (2001) and Elzinga et al. (2009),61

with the latter focused on plant populations.62

Even if population abundances were known with certainty, questions about63

population processes remain. Why were the numbers what they were last64

year and why are they what they are now? What are the relative effects65

of each process on abundances at specific points in time? For example, how66

do adult female fecundity rates of salmon, egg hatching success rates, and67

larval to juvenile survival combine to affect the abundance of juveniles? How68

do environmental conditions, both natural and anthropogenic, affect these69

processes?70

The focus of this chapter is on mathematical and statistical approaches71

to answering such process questions. Answering these questions involves a72

population dynamics model (PDM), a quantification of the relationship be-73

tween past abundance and current abundances. PDMs can characterize how74

changes in environmental and anthropogenic factors influence population pro-75

cesses, and how changes in these processes translate into changes in popula-76

tion abundances. Measures of the degree of uncertainty as to the consequences77

are critical as well. For endangered species, PDMs are central to population78

viability analysis (PVA, Morris et al., 2002). PVAs use PDMs to make predic-79

tions about population trajectories, typically via computer simulation. PDMs80

are used to estimate extinction probabilities as a function of environmental81

conditions and anthropogenic factors, including accidents, like oil spills, and82

deliberate actions, like habitat restoration.83

Answers to these initial what, why, and how questions often lead to further84

what, why, and how questions. Answers at the end of sequence of questions85

can lead to ideas about management actions to take and implementation of86

a particular action may then be justified by reversing the direction to yield a87
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so-called results chain (Margoluis et al., 2013). For example, a proposed man-88

agement action is to plant riparian vegetation along a stream where juvenile89

salmon rear. The results chain is the vegetation grows and provides increas-90

ing shade along the stream, the shade reduces water temperatures, lowered91

temperatures increases juvenile survival, and population abundance increases.92

This conceptual understanding guides data collection and long term biological93

monitoring programs (Reynolds et al., 2016), and further model development.94

To assess the effects of planting riparian vegetation, a monitoring program95

collects a time series of measurements of vegetation biomass, hours of shade,96

stream temperatures, juvenile abundances before and after the month of May97

(to estimate survival) at both treatment sites and control sites where no plant-98

ing is done (Before-After-Control-Impact BACI designs, Smith, 2002).99

The organization of the remainder of this chapter is the following. Section100

1.2 is an overview of components of demography, including subpopulations and101

processes, while Section 1.3 is a progression of mathematical models more or102

less corresponding to these components. The next four sections discuss differ-103

ent approaches to modeling population dynamics. Section 1.4 discusses matrix104

population models (MPMs) which project the abundances of a finite and dis-105

crete set of sub-populations forward at discrete points in times. Section 1.5 is106

on integral projection models (IPMs), which can be viewed as extensions of107

MPMs where a continuous valued covariate, e.g., length, can be used to char-108

acterize sub-populations without arbitrary discretization of the covariate into109

disjoint intervals. Individual based models (IBMs), discussed in Section 1.6,110

are the ultimate partitioning of a population into multiple sub-populations111

where the life history of each individual member of the population is modeled112

separately. Section 1.7 is on state-space models (SSMs) which are statistical113

time series models that separate stochastic variation in processes from sta-114

tistical sampling error in estimates of population components, and can, in115

principle, contain MPMs, IPMs, and IBMs. Section 1.8 concludes the chapter116

with pointers to further literature on MPMs, IPMs, IBMs, and SSMs, com-117

ments on topics of demography that were minimally or not at all discussed,118

and thoughts about the future of biological demography.119

For convenience some of the more frequently used acronyms are shown in120

Table 1.1.121

1.2 Components of demography122

The basic components of demography are abundances and processes. Total123

abundances at evenly spaced points in time are denoted nt, t=1,2,. . .,T . The124

simplest process is the change in abundance from one time point to the next.125

Such changes can be expressed either in an absolute sense, nt − nt−1, or a126
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TABLE 1.1
Listing of frequently used acronyms and their meaning.

Acronym Meaning
PDM Population Dynamics Model
MPM Matrix Projection Model
IPM Integral Projection Model
IBM Individual-Based Model
SSM State-Space Model
PVA Population Viability Analysis

relative sense, nt/nt−1, and in both cases we refer to the change as population127

growth.128

If population abundance can be enumerated, then a succinct and com-129

pletely accurate characterization of the population and its dynamics is trivial.130

For example, the numbers of fish in an aquarium on July 1, 2011, July 1, 2012,131

and July 1, 2013 were n2011 = 70, n2012 = 61, and n2013 = 82, respectively.132

The additive abundance changes were -9 and 21, and the relative changes were133

0.87 and 1.34.134

Exact enumeration is relatively rare and uninteresting in isolation. Com-135

plexity in demographic modeling arises in several ways: (1) multiple subpop-136

ulations, (2) multiple processes, (3) environmental and demographic stochas-137

ticity, (4) density dependence, (5) competition and predation, (6) human ma-138

nipulation of process dynamics, (7) uncertainty in abundances.139

1.2.1 Multiple subpopulations140

Multiple subpopulations are subsets of a populations that are distinguished by141

attributes, including sex, age, sexual maturity level, spatial location, genotype,142

and phenotype. Such partitioned populations are sometimes called structured143

population, e.g., age-structured or stage-structured populations, and, in the144

case of spatially distinct populations, metapopulations (Levins, 1969).145

Partitioning can be subjective and arbitrary, and depends on the available146

data. Arbitrariness occurs when the distinguishing attributes are continuous147

variables, such as measures of individual size like weight, height, length. For148

example, if the variable is weight, the number of partitions can vary as can149

the labeling of the partitions; e.g., small = < 10 kg, 10 ≤ medium < 20kg,150

and large ≥ 20kg. The partitioning of continuous attributes is an important151

distinction between MPMs (Section 1.4) and IPMs (Section 1.5).152

The finest partitioning of a population is at the individual entity level as153

the values of each individual’s characteristics throughout its entire existence154

are the most complete description possible. This may be conceptually possi-155
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ble, but usually not practically possible. As a mathematical exercise, however,156

the modeling of individuals in a population can be useful for elucidating pop-157

ulation level dynamics and will be discussed in Section 1.6 on IBMs.158

1.2.2 Multiple processes159

The process of population growth can be partitioned into multiple processes160

that include at least survival and reproduction, but can also include move-161

ment, individual growth, and maturation. Partitioning a population into mul-162

tiple subpopulations can lead to additional process partitioning, e.g., age class163

specific survival probabilities. Partitioning by sex and size affects handling164

of reproduction, while spatial partitioning requires a movement process and165

location-specific movement probabilities.166

Conversely, the temporal nature of processes, sequential, overlapping, or167

simultaneous, can lead to population partitioning. For example, a sequence of168

life cycle processes for salmon is egg fertilization in freshwater, egg hatching169

and larval emergence, survival to fry stage, smoltification, migration to the170

ocean, survival in the ocean, migration back to the freshwater, spawning, and171

death. Subpopulations of a cohort are then distinguished by life stage.172

If size is a distinguishing characteristic, defined ordinally (e.g., small,173

medium, and large) or continuously (e.g., length in cm), then individual174

growth is a process affecting dynamics. Individual growth dynamics are quan-175

tified in terms of the probability of moving from one size class to another (as176

in MPMs, section 1.4) or by a conditional probability density function for size177

z′t+1 given previous size zt (as in IPMs, section 1.5).178

1.2.3 Stochasticity179

Population dynamics are complicated by environmental and demographic180

stochasticity. Environmental stochasticity is between year (or any time period)181

variation in underlying vital rates, such as survival or reproduction, that is182

typically due to variation in environmental conditions such as air temperature183

or precipitation. Demographic stochasticity is between-individual variability184

conditional on a specific vital rate; e.g., if the survival probability for 100 fish is185

0.7, the number surviving will not be exactly 70 and variation in that number186

is due to demographic stochasticity. Unless population numbers are relatively187

low, as for a severely endangered species, demographic stochasticity has lit-188

tle effect on population dynamics compared to environmental stochasticity.189

A rule of thumb when doing PVA, (Morris et al., 2002) is that demographic190

variation can be ignored in the case of a single population with at least 100191

individuals, and in the case of multiple subpopulations, or life stages, there192

are at least 20 individuals in the most important subpopulations.193
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1.2.4 Density dependence194

As any population increases in abundance, resource limits necessarily reduce195

population growth; e.g., values of nt/nt−1 > 1 cannot be sustained. Resource196

limits directly affect survival and reproduction, and influence growth and197

movement processes, as well, in other words, these vital rates are abundance198

or density dependent. While decreasing abundance or density typically leads199

to increases in survival and reproduction, there are situations where decreases200

in abundance beyond a threshold lower vital rates; e.g., individuals have dif-201

ficulty finding mates and cannot reproduce, what is known as an Allee effect,202

a problem for critically endangered species.203

1.2.5 Competitors, predators, and prey204

Vital rate processes for a given species, say species A, can be affected by the205

abundance of other species in several ways. If another species, species B, uses206

the same resources, e.g., consumes the same prey items, the the species are207

in competition, and the increased abundance of the competitor B lowers the208

survival and reproduction of species A. If a third species, species C, preys upon209

species A, then the abundance of the predator C obviously affects survival210

of A. If a fourth species, species D, is a prey item, then its abundance can211

also affect the vital rates of A. An important consideration in mathematical212

modeling is whether abundances of competitors, predators, or prey are treated213

as covariates, i.e., input variables for vital rates of a given species, or the214

abundances of these other species are modeled simultaneously in a multi-215

species PDM.216

1.2.6 Human manipulation of dynamics217

Human activities affecting population dynamics include harvest and species218

protection. Survival probabilities in PDMs need to modified by harvest, and re-219

production and movement can also be affected. PDMs can be used to evaluate220

alternative harvest regulations including cases of selective harvest of subpop-221

ulations; e.g., only mature male red deer can be harvested during a summer222

time period. For endangered populations, dynamics are manipulated by reg-223

ulating human activities and carrying out actions to increase and improve224

habitat. Projections of the effects of such regulations and actions on popula-225

tion dynamics are central to PVA.226

1.2.7 Uncertainty in abundances227

Uncertainties about abundance, or vital rates, introduce uncertainty in PDMs228

over and above the environmental and demographic stochasticity, what229

(Nichols et al., 1995) label “partial observability”. The time at which samples230

are taken can also affect the ability to estimate various process parameters,231
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and can affect mathematical model formulation. Rees et al. (2014) give an ex-232

ample of a sequence of processes: reproduction, followed by mortality, and then233

growth. If abundance estimates are made just before reproduction, abundance234

change includes a term for the probability of the previous year’s reproduction235

(recruits) living an entire year. If abundance estimates are made just after236

reproduction, the annual abundance change does not reflect the survival of237

this year’s reproduction as the estimates were made before subsequent mor-238

tality, and the survival of the previous year’s reproduction is entangled with239

the survival of the previous year’s abundance of old entities (non-recruits).240

Inserting additional sampling or estimation points in the year is one means of241

disentangling the effects of multiple processes.242

1.3 General mathematical features of PDMs243

Here we present various mathematical and probabilistic formulations of demo-244

graphic models paralleling some of the features of Section 1.2. The simplest245

demographic model is for a single population with a single deterministic and246

density independent process. Such a model can be expressed in terms of abso-247

lute or relative changes in abundance. Absolute changes, nt − nt−1, translate248

into additive models,249

nt = nt−1 + ∆t, (1.1)

with ∆t < 0 and ∆t > 0 indicating decline and growth, respectively, while250

relative changes, nt/nt−1, translate into multiplicative models,251

nt = λtnt−1, (1.2)

with 0 ≤ λt < 1 or λt > 1 for decline or growth.252

1.3.1 Multiple subpopulations253

Partitioning a single population into two or more populations extends the254

scalar nt to a vector nt. For example, if a population of deer is distinguished255

by three life stages, young, immature, and mature, then the abundance vector256

at time t is257

nt =

 ny,t
ni,t
nm,t


The length of the abundance vector over time need not remain fixed. The ef-258

fects of a sequence of processes may cause the vector to expand, e.g., following259

reproduction, or to shrink, following an aggregation of age classes (Buckland260

et al., 2007).261
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1.3.2 Multiple processes262

Survival and reproduction.263

With the additive single population model (1.1), ∆t can be partitioned into264

survival and reproduction components,265

nt = nt−1 +Rt −Mt (1.3)

where Rt is the number of (surviving) young produced between t−1 and t and266

Mt is the number of mortalities from the nt−1. Rt and Mt may or may not be267

functions of nt−1. In contrast, multiplicative models make explicit the depen-268

dence of change on previous abundance. Assume that in the interval (t− 1, t)269

mortality occurs first (the fraction surviving begin φt), followed by reproduc-270

tion (with rate ρt), and there is no additional mortality before time t. Then271

the growth rate, λt (1.2), is simply the product of survival and reproduction:272

nt = (1 + ρt)φtnt−1. (1.4)

The order of processes, mortality and reproduction, relative to the time of273

measurement (t) does not affect λt in this case but the following cases demon-274

strate when order does matter.275

A more complex model with subpopulations of young and mature indi-276

viduals has different survival fractions for just born young and the mature277

individuals, φy,t and φm,t, and the time t at which abundances are counted278

relative to the reproductive process affects model formulation. For one sce-279

nario, t occurs immediately after reproduction, the young subpopulation are280

those just born (denoted n0,t in Scenario 1 below). Under a second scenario, t281

occurs just before reproduction, and, assuming the time interval is one year,282

the young will be nearly age 1 at the time of counting (denoted n1,t in Scenario283

2).284

Scenario 1: t just after reproduction

[
nm,t = φm,tnt−1 + φy,tn0,t−1

n0,t = ρt(φm,tnt−1 + φy,tn0,t−1)

]
Scenario 2: t just before reproduction

[
nm,t = φm,tnt−1

n1,t = φy,tρtnt−1

]
Immigration and emigration.285

The scalar additive model with reproduction and survival (1.3) can be ex-286

tended to include immigration and emigration,287

nt = nt−1 +Rt −Mt + It − Et

where It is the number immigrating into the population and Et is the number288

emigrating from the population. The scalar multiplicative model (1.4) can289

be extended but does not necessarily remain multiplicative. The ordering of290
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processes is again important. Assuming that immigrants arrive, and emigrants291

leave after mortality occurs, but prior to reproduction, the model is292

nt = (1 + ρt)(ζtφtnt−1 + It)

where ζt is the fraction of the survivors from nt−1 that stay and It is again the293

number of immigrants. If the order of processes change, the model changes. For294

example, suppose that immigrants arrive and emigrants leave after mortality295

and reproduction, then296

nt = ζtρtφtnt−1 + It.

Movement.297

For spatially-defined subpopulations, the process of movement is relevant.298

Immigration and emigration is of course a movement process but where the299

individuals are coming from or going to are not distinguished. A multiplicative300

formulation is more natural than an additive model, and a movement tran-301

sition matrix can be inserted into the dynamics equation, say nt = Mtnt−1302

where survival and reproduction are ignored. For example with three regions303

labeled A, B, and C, a time invariant transition matrix has the following304

structure.305

M =

 µA→A µA→B µA→C
µB→A µB→B µB→C
µC→A µC→B µC→C


where µi→j is the probability of moving from area i to area j in one time step,306

and the rows sum to 1.307

Individual animal growth.308

For subpopulations distinguished by size classes, transition between classes can309

be modeled as the fractions moving from one class to another. The process310

is analogous to that for movement between spatial regions. For populations311

partitioned to the individual entity level, growth from the size, e.g., length or312

weight, at time t, zt, to another size at time t + 1, zt+1, can be modeled by313

the addition of an individual growth increment, xt+1,314

zt+1|zt = zt + xt+1

xt+1 could be a function of the size at time t, zt. Such fine scale handling of315

growth is central to IPMs (Section 1.5) and can be a part of IBMs (Section316

1.6).317

1.3.3 Stochasticity318

The mathematical distinction between demographic and environmental319

stochasticity is demonstrated using the scalar multiplicative model (1.2). De-320
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mographic stochasticity arises when, for a given year t, there is constant un-321

derlying annual population growth rate, denoted λ, but there is between-322

individual variation in the growth rate contribution. Environmental stochas-323

ticity reflects between year variation in that underlying rate λt. Environmental324

and demographic variation typically coincide, and a hierarchical model makes325

clear the relationships:326

Environmental stochasticity λt ∼ Gamma(α, β)

Demographic stochasticity nt|nt−1, λt ∼ Poisson(nt−1λt)

Asymptotic results for environmentally stochastic growth rates.327

The long term, or asymptotic, behavior of a single population trajectory with328

environmentally stochastic annual growth rates is tractable and has similar-329

ities with deterministic exponential growth models. Consider the following330

single population model with environmental stochasticity only (ignoring the331

issue of abundances necessarily being discrete values):332

nt = λtnt−1, where λt
iid∼ Distribution(µ, σ2) (1.5)

where E[λt]=µ and V [λt]=σ
2. Given an initial abundance n0 > 0, nt can be333

rewritten as334

nt = n0

t∏
i=1

λi

Taking the natural logarithm of both sides of the equation,335

ln(nt) = ln(n0) +

t∑
i=1

ln(λi),

which can be re-expressed as336

ln(nt)− ln(n0)

t
=

1

t

t∑
i=1

ln(λi) (1.6)

The righthand side of (1.6) is the mean of a sequence of independent random337

variables, ln(λi), i = 1, . . . , t. Adding the assumption that the E(ln(λt)
2) <∞,338

the strong law of large numbers says that the average converges to E[ln(λ)].339

Further, by the Central Limit Theorem, the asymptotic distribution the mean340

of the log of the “annual” growth rates is normal. Denoting the sample average341

log growth rate by ln(λ))342

ln(λ)) =
1

t

t∑
i=1

ln(λi) ∼ Asymptotic Normal (E[ln(λ)], V (ln(λ)))
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Another way to express this result, using the lefthand side of (1.6),343

ln(nt) ∼ Asymptotic Normal (ln(n0) + tE[ln(λ)], tV (ln(λ)))

or344

nt ∼ Asymptotic Lognormal (n0 exp(tE[ln(λ)]), tV (ln(λ))) (1.7)

Thus, the median population abundance at t is identical to a deterministic345

exponential growth model.346

Stochasticity in individual processes.347

Survival, reproduction, movement, individual animal growth, and other pro-348

cesses can be made stochastic. An example is a survival process for a scalar349

population with a logit-normal model for environmental stochasticity and a bi-350

nomial distribution for demographic stochasticity. Letting φc,t be the survival351

probability for subpopulation c at time t,352

logit(φc,t) ∼ Normal
(
β0,φ,c, σ

2
φ,c

)
nc,t ∼ Binomial (nc,t−1, φc)

where logit(x) = ln(x/(1− x)).353

1.3.4 Density dependence354

In the ecological literature, there are several well-known single population,355

deterministic and discrete time-indexed models with density dependent pop-356

ulation growth rates including the Gompertz (Dennis et al., 2006), Ricker,357

Beverton-Holt, and logistic models (Gurney and Nisbet, 1998). Here we just358

present a deterministic Ricker model formulation (taken from Gurney and359

Nisbet, 1998). The Ricker model originated with fish populations, but is now360

applied many other kinds of populations.361

Ricker model : nt = (φa + φyb exp(−cnt−1))nt−1, b > 0, c > 0, (1.8)

where nt can be viewed as the sum of surviving adults from the previous year362

(φant−1) and surviving progeny, with φy the survival fraction for offspring363

produced at rate b exp(−cnt−1). The parameter b is the maximum number of364

offspring per adult, theoretically possible in the absence of any resource limita-365

tions, while exp(−cnt−1) is a density dependent dampening of that maximum.366

In the case of multiple subpopulations, if the vital rates and abundances367

for one subpopulation do not affect another subpopulation, then the above368

univariate density dependent models can be applied on a per subpopulation369

basis. If subpopulations occupy the same geographic area and compete for370

resources, then density dependent formulations will include the abundances of371

other subpopulations. Density dependent dynamics also arise for populations372
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of different species that are either in predator-prey relationships or competing373

for an in-common resource.374

In the case of multiple processes, e.g., survival, reproduction, movement,375

and individual animal growth, process-specific density dependence relation-376

ships can arise. In the Ricker model, for example, reproduction is density377

dependent while survival is density independent. Density dependence in move-378

ment processes for spatially distinct subpopulations (metapopulations) is379

likely as the probability of movement from one region to another could be380

a function of the relative densities of individuals in each region, e.g., the prob-381

ability of moving from a high density region to a low density region increases382

as the difference in densities increases. Of course, stochasticity can be incor-383

porated into density dependent formulations for different processes.384

Density dependence both within a single population and for populations385

of two or more different species, e.g., predator and prey populations, can lead386

to relatively complex population dynamics. The Lotka-Volterra predator-prey387

model (Gurney and Nisbet, 1998) can with certain parameter combinations388

lead to periodic oscillations in the abundances of each population. Within a389

single population, discrete time single population models like the Ricker and390

discrete logistic model can lead to damped or expanding oscillations, different391

periodicities, or chaos (no periodicity and apparently random fluctuations;392

(see, for example, Figure 2.6 in Gurney and Nisbet, 1998).393

1.3.5 Inclusion of covariates394

Mathematical formulations of population processes often include covariates,395

one of the earliest examples being the modeling of survival as a function of396

weather data (North and Morgan, 1979). The effects of deliberate human ma-397

nipulations or incidental anthropogenic consequences, e.g., the erection of a398

wind turbine and subsequent bird mortality, can be translated into covari-399

ates for process models. Abundances of predators, competitors, or prey can400

also be used as covariates in models for survival and reproduction of a single401

species population dynamics model in contrast to jointly modeling the pop-402

ulation dynamics of several species. The legitimacy of such handling of these403

other populations may depend upon the degree to which other populations404

are affected by the abundance of the population of interest.405

1.3.6 Remarks: Estimability and Data Collection.406

It is easy to formulate a population dynamics model where the parameters407

cannot be estimated given the available data. For example, annual surveys408

alone do not allow separate estimation of the survival probability, φt, and409

reproductive rate, γt, in the simple univariate model (1.4). Intuitively given410

estimates of nt and nt−1 one can just estimate the combination (1 + γt)φt.411

One way to disentangle such combinations of parameters, in the case of se-412

quential processes, is to have abundance estimates at time points immediately413
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after the end each process. For example, in the model (1.4) abundance should414

be measured twice a year, once immediately following the survival process, and415

once after reproduction. The reality of the processes is typically more com-416

plicated, with such sharp demarcations unlikely, but formulating such models417

can provide guidance for data collection.418

1.4 Matrix Projection Models, MPMs419

One of the oldest and most popular types of population dynamics models are420

matrix projection models (MPMs). Lewis (1942) and Leslie (1945) indepen-421

dently proposed MPMs as a means of modeling the population dynamics of422

age-structured populations (age-specific subpopulations). Let n0,t denote the423

number of young at time t and na,t be the abundance for ages 1 to A − 1,424

and nA+,t be the abundance of age A and older individuals. A deterministic425

formulation for the dynamics can be written as426 

n0,t

n1,t

n2,t

...
nA,t
nA+,t


=


γ0 γ1 γ2 . . . γA−1 γA
φ1 0 0 . . . 0 0
0 φ2 0 . . . 0 0
... 0 0 . . . φA φA+





n0,t−1

n1,t−1

n2,t−1

...
nA,t−1

nA+,t−1


(1.9)

or more compactly as nt = Lnt−1, where L is referred to as a Leslie matrix,427

and is analogous to the scalar multiplicative model (1.2). Lefkovitch (1965)428

proposed MPMs where subpopulations are distinguished by life stage, e.g.,429

young, immature, and mature, thus a stage-structured model in contrast to an430

age-structured model. Of course, partitioning by gender, genotype, and many431

other subpopulation identifiers is possible. This simple structure, nt = Lnt−1,432

has been extended in many ways including time varying L, the use of covariates433

to model the components of L, adding stochasticity and density dependence.434

1.4.1 Analysis of MPMs435

Apparently simple MPMs, such as (1.9), can yield complex dynamics depend-436

ing upon the components of L, and the many extensions of MPMs have added437

to this complexity. To gain deeper understanding of the dynamics of MPMS,438

Caswell (2001, p. 18) developed four sets of questions, which have been para-439

phrased below.440

1. What is the asymptotic behavior of the MPM? As time increases,441

does the total population grow or decline exponentially? Do the rel-442

ative proportions of each subpopulation become constant? Does the443
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population approach an upper bound (carrying capacity)? Do the444

total population and individual subpopulation abundances oscillate445

(in a damped or undamped manner)? Do the abundances display446

periodicity? Do the abundances become chaotic?447

2. Is the MPM ergodic? In other words, are the asymptotic dynamics448

independent of the initial conditions, e.g., independent of the actual449

values of n0?450

3. What are the transient dynamics? What are the dynamics like in451

the short term as opposed to the asymptotic or limiting results?452

4. How sensitive are the results to the values of the elements of L?453

The survival probabilities and fecundity rates, for example, are es-454

timates, and will have some degree of estimation error. How much455

would the population dynamics, including asymptotic and tran-456

sient dynamics, change if some elements of the matrix were changed457

“slightly”?458

We will not address all these questions further here and refer the inter-459

ested reader to Caswell (2001). However we will briefly discuss one type of460

asymptotic behavior, for both deterministic and stochastic MPMs, which is461

analogous to single population exponential growth models.462

1.4.2 Limiting behavior of density independent, time invari-463

ate MPMs464

Results from matrix algebra can be used to describe the asymptotic behavior465

of a time invariant projection matrix (see Caswell, 2001, chap 4.5). If the466

matrix is (a) nonnegative (all elements are ≥ 0), (b) irreducible (e.g., every467

age class can contribute to every other age class at some point in time), (c)468

primitive (there is some positive integer k such that every element in the469

matrix raised to the power k, Lk, is a positive number), then in the limit470

the population dynamics are either exponential growth or decay, i.e., ATnt =471

λnt, where λ is a scalar value that is multiplied against each component of472

the vector nt. Further, the relative proportions of each component of nt will473

remain constant.474

For example, consider an MPM with three age classes (Young, Adult,475

Adult) and an initial abundance n
′

0 = (100,50,10) and the following Leslie476

matrix477

L =

 γY oung γAdult γOld
φY oung 0 0
0 φAdult φOld

 =

 0.0 1.2 1.4
0.3 0.0 0.0
0.0 0.5 0.9

 (1.10)

The population abundances over 9 iterations are:478
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Stage 1 2 3 4 5 6 7 8 9 10
Young 100 74 84 90 103 116 131 148 167 189
Adult 50 30 22 25 27 31 35 39 44 50
Old 10 34 46 52 59 67 76 86 97 109

479

The population growth rates, per stage, over time:480

Stage 2 3 4 5 6 7 8 9 10
Young 0.74 1.13 1.08 1.14 1.12 1.13 1.13 1.13 1.13
Adult 0.60 0.74 1.13 1.08 1.14 1.12 1.13 1.13 1.13
Old 3.40 1.34 1.14 1.14 1.13 1.13 1.13 1.13 1.13

481

Thus after six generations the annual growth rate reaches 13% and stays there.482

The fraction of the population in each stage class stabilizes as well:483

Stage 1 2 3 4 5 6 7 8 9 10
Young 0.62 0.54 0.55 0.54 0.54 0.54 0.54 0.54 0.54 0.54
Adult 0.31 0.22 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14
Old 0.06 0.25 0.30 0.31 0.31 0.31 0.31 0.31 0.31 0.31

484

Thus, after six generations the fractions in the Young, Adult, and Old stages485

remain 0.54, 0.14, and 0.31.486

The limiting population growth rate and proportions of each category can487

be determined analytically using matrix algebra, in particular, by carrying488

out an eigen analysis of L. For a p by p matrix L, the eigen analysis yields489

p eigenvalues, λ1, . . ., λp, and p corresponding right eigenvectors, v1, . . ., vp.490

An eigenvalue and its corresponding eigenvector have the relationship, Lvi491

= λivi. Denote the largest eigenvalue λ1 and its corresponding eigenvector492

v1. Then λ1 is equal to limiting population growth rate, in the example 1.13493

(more precisely, 1.12938), and dividing each element of v1 by its total yields494

the limiting fractions, here (0.54, 0.14, 0.31).495

1.4.3 Stochasticity496

One way to add stochasticity to MPMs is to randomly draw elements of the497

matrix from probability distributions, e.g., randomly draw survival probabil-498

ities for age a individuals, thereby introducing environmental stochasticity.499

Under some conditions, in the absence of density dependence for example,500

the introduction of environmental, or demographic, stochasticity will not ap-501

preciably alter the asymptotic dynamics from that of a deterministic MPM.502

In other words, the above eigen analysis results more or less hold: in the503

limit there is an average growth rate and stable population structure. Caswell504

(2001, Chap. 14) provides details of these results (with some of earliest work505
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from Cohen, 1976; Tuljapurkar and Orzack, 1980). Below we closely follow506

(Caswell, 2001, p. 393) and somewhat mimic the derivation of the asymp-507

totic distribution of the stochastic univariate model shown in (1.5 - 1.7). We508

start with a stochastic process of matrices, L1, L2,. . ., which satisfy certain509

regularity conditions, including being stationary (the joint distribution for510

(Lt1 ,Lt2 , . . . ,Ltn) is the same as that for (Lt1+h,Lt2+h, . . . ,Ltn+h) for any fi-511

nite n > 0, t1, t2, . . . , tn, and h > 0), and ergodic (roughly put, the initial value512

of L1 does not affect the eventual behavior of the sequence). Further assume513

an upper bound on the magnitude of the initial matrix, E(ln+||L||1) < ∞,514

where ||L|| = supn6=0
||Ln||
||n|| and ln+(x) = max(0, ln(x)). The total population515

size at time t, denoted N(t), is the vector norm of nt (||nt|| =
∑
i |nt,i|). Given516

an initial vector n0:517

N(t) = ||nt|| =

∥∥∥∥∥
t∏
i=1

Lin0

∥∥∥∥∥ (1.11)

⇒
1

t
ln (N(t)) =

1

t
ln

∥∥∥∥∥
t∏
i=1

Lin0

∥∥∥∥∥ . (1.12)

Furstenberg and Kesten (1960) proved that, with probability 1, the limit of518

(1.12) exists:519

lim
t→∞

1

t
ln (N(t)) = lim

t→∞

1

t
ln

∥∥∥∥∥
t∏
i=1

Lin0

∥∥∥∥∥ = ln(λs), (1.13)

where λs is called the stochastic growth rate. Lower and upper bounds on λs520

can be calculated from the average minimum row sums and average maximum521

row sums of the matrices, namely,522 ∑
i

πiR
(i)
min ≤ ln(λs) ≤

∑
i

πiR
(i)
max (1.14)

where πi is the asymptotic probability of environment i occurring (correspond-523

ing to matrix Li) and R
(i)
min and R

(i)
max are the minimum and maximum row524

sums of Li (Caswell, 2001, p. 395).525

With further conditions on the matrices, Li, including nonnegativity, the526

asymptotic distribution of the population total is lognormal:527

N(t) ∼ Asymptotic Lognormal
(
exp(t ln(λs)), tσ

2
)

(1.15)

where σ2 is some constant. Thus, similar to (1.7), the asymptotic median of the528

population total is the same as for a univariate exponential population growth529

model, and λs is analogous to the largest eigenvalue, λ1, of a deterministic530

MPM.531
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1.4.4 Building block approach to matrix construction532

Deterministic skeletons for relatively complex MPMs can be constructed using533

a building block approach (Buckland et al. (2007); Newman et al. (2014)).534

A crucial assumption is the approach is that there is a particular sequence535

to processes which operate on a vector of population abundances, such as536

survival, then movement, then reproduction. An example from Newman et al.537

(2014, eq. 2.11, p. 18) has two size-class subpopulations, small and large, and538

a sequence of three processes: survival, followed by growth (from small to539

large), and then reproduction. The survival probabilities are size specific (φS540

and φL), the probability that a small individual becomes large is π, and only541

large individuals can reproduce and they do so with rate ρ.542 [
nS,t
nL,t

]
=

[
1 ρ
0 1

] [
1− π 0
π 1

] [
φS 0
0 φL

] [
nS,t−1

nL,t−1

]
=

[
(1− π + ρπ)φS ρφL

πφL φL

] [
nS,t−1

nL,t−1

]
= Lnt−1 (1.16)

The matrix in (1.16) is an example of a Lefkovitch matrix which is arguably543

more simply constructed by using such a building block approach than by544

trying to construct the final matrix in a single operation.545

1.4.5 Determining the elements of projection matrices546

The most common way to use MPMs has been to plug in estimates of ma-547

trix components from various, and often independent, studies, and then make548

population projections using those point estimates. Caswell (2001, p. 22), for549

example, states that, to fill the elements of the matrix, life tables are used.550

Life tables contain mortality probabilities, the probability that an individual551

of age a will die before reaching age a + 1, and maternity functions, the ex-552

pected number of offspring that an age a individual will produce in the next553

year, from which survival probabilities φ and reproductive rates γ (1.9) can554

be calculated. However, how mortality probabilities and maternity functions555

are constructed in the first place may be no trivial task. With wildlife pop-556

ulations, mark-recapture studies where animals are aged at time of marking557

can provide estimates of age-specific survival, and, in some situations, esti-558

mates of reproductive success. Of course, the addition of more subpopulations559

and processes increases the “data requirements and mathematical complex-560

ities [which] can quickly overwhelm an investigation of these parameter-rich561

models” (Williams et al., 2002, p161).562

An alternative to the above approach of estimating matrix elements sep-563

arately from inference about population abundances is to combine stochas-564

tic population dynamics with statistical sampling error, or estimation uncer-565

tainty, in matrix elements and population abundances. The SSM framework566

provides a structure for doing this and is discussed in Section 1.7.567
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1.4.6 Density dependent MPMs568

Density dependence can be introduced into MPMs by simply making some569

of the elements of the projection matrix density dependent. For example,570

referring to (1.10), the fecundity of the old group could be expressed as571

a function of the total abundance of adult and old individuals, γOld,t =572

(nAdult,t + nOld,t) exp(−c(nAdult,t + nOld,t)), a variant of the Ricker model.573

The linearity aspect of the MPM is subsequently altered and the analyses574

carried out for density independent MPMs do not directly apply, e.g., the575

eigen analysis is no longer directly applicable. See Caswell (2001, Chap. 16)576

for detailed discussion of a variety of density dependent models, subsequent577

dynamics, and analytical approaches.578

1.5 Integral Projection Models, IPMs579

The partitioning of a population into discrete subpopulations, namely for-580

mulating a structured population, may be arbitrary when natural divisions581

are lacking. For example, suppose individual weight (in kg) is the feature582

used to subdivide the population for an MPM. The specified weight classes,583

small, medium, and large, necessarily have arbitrary boundaries, say, (0,5),584

[5,10), [10+]. An animal weighing 4.99 kg is labeled small and one weighing585

5.0 kg is medium. Those two individuals will be treated differently in terms586

of population processes, e.g., the survival probability is 0.5 for small individ-587

uals and 0.8 for medium individuals, while the actual survival probabilities588

for both individuals may be much more similar. Integral Projection Models589

(IPMS; Easterling et al., 2000), sometimes called integrodifference equation590

models (see Caswell, 2001, for historical references), are a modeling approach591

that maintains the continuous nature of a factor that distinguishes population592

members, while (generally) maintaining the discrete time step characteristic593

of MPMs.594

1.5.1 Kernel structure of IPMs.595

The core of an IPM is the kernel, denoted K(z′t+1|zt), which is analogous to596

an element in the transition matrix of an MPM. The kernel can be viewed597

as a conditional probability density function for the “probability” that an598

animal of size z at time t, denoted zt, is size z′ at time t+ 1, denoted z′t+1.599

The word probability is put in quotation marks as this is a density not a600

probability. More accurately K(z′t+1|zt)∆ is an approximate probability for601

such a movement from size zt to a size in an interval of width ∆ containing602

z′t+1, e.g., z′t+1 ± 0.5∆. The number of individuals in a given size class at603

time t+ 1 is then the sum of all individuals of any size class at time t, n(z∗t ),604
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that survive, grow, and/or contribute to individuals of size class zt+1 at time605

t+ 1 where z∗t ∈ Ω and Ω is a suitably large range of sizes, so606

n(z′t+1) =

∫
zt∈Ω

K(z′t+1|zt)n(zt)dzt (1.17)

A simpler version of the kernel is time invariant, F (z′|z), where the conditional607

density for the contribution to size class z′ at time t + 1 from size class zt is608

the same for all times t.609

The population growth process is the result of multiple processes, including610

survival and reproduction. So the kernel K can be decomposed into survival611

of the current population and reproduction entering the population. Here,612

however, individual size is also a factor and survival and reproduction is into613

a specific size class, zt+1. Thus growth from size class zt to zt+1 is a third614

process to account for. The resulting partitioning of the kernel is615

K(z′t+1|zt) = P (z′t+1|zt) + F (z′t+1|zt) (1.18)

where P is the survival/growth kernel, the combined conditional density for616

surviving to time t+ 1 and changing to size class zt+1, and F is the fecundity617

kernel, the conditional density for recruits at time t + 1 of size zt+1 (Merow618

et al., 2014).619

There are a wide variety of formulations for the survival/growth kernel.620

One formulation is to treat the two processes as independent, the result be-621

ing the product of the conditional probability of surviving, φ(zt), and the622

conditional density of moving to size class z′, g(z′t+1|zt):623

P (z′t+1|zt) = φ(zt)g(z′t+1|zt) (1.19)

In principle, a joint density for survival and growth could be used; e.g., move-624

ment to a much larger size class is linked with lowered survival probability.625

The survival probability could be a more complicated function of competing or626

sequential mortality factors; e.g., there are two mortality processes occurring627

in sequence, φ(zt)= φ1,ztφ2,zt .628

The fecundity kernel can be made complex as well. For example, it could be629

a function of four processes: a size dependent probability distribution for the630

number of eggs produced, f(E|zt), a probability that the eggs are fertilized,631

pE , a probability that the fertilized eggs will hatch, ph, and a density function632

for the size of hatched larvae, h(z′). Then633

F (z′t+1|zt) = f(E|zt)pEphh(z′) (1.20)

Merow et al. (2014) note that a common feature of the survival/growth634

and fecundity kernel formulations is an individual component, e.g., φ(zt) in635

(1.19) and (f(E|zt)pEph) in (1.20), and a size redistribution component, e.g.,636

g(z′t+1|zt) in (1.19) and h(z′) in (1.20).637
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1.5.2 Implementation of an IPM638

Equation (1.17) is analogous to the generation of a single component in the639

state vector of an MPM. With an MPM, the entire state vector at time t+ 1640

is nt+1 = Lnt, where the ith entry in nt+1, denoted ni,t+1, is the following641

sum:642

ni,t+1 =

p∑
j=1

Li,jnj,t (1.21)

where L has p columns. Each Li,j in the summation is akin to a kernel function643

as it is the per individual contribution from “size” class i at time t to “size”644

class j from time t + 1. If the vector nt is further partitioned into a relative645

large number of size classes, the summation operation in (1.21) approaches an646

integration operation.647

Implementation of an IPM is in practice the reverse operation. Referring648

to the integral in (1.17), the interval Ω, which contains the range of size classes649

that can contribute to size class z′, is partitioned into m size classes. A finite650

sum approximation to integration, e.g., the midpoint rule, the trapezoid rule,651

or Simpson’s rule, is used calculate the number of individuals in size class652

z′. An example of the midpoint rule: suppose Ω is an interval [L,U ] which653

is partitioned into m intervals of equal length (U − L)/h, and let zi be the654

midpoint of the ith size class, also known as mesh points (Rees et al., 2014),655

where656

zi = L+ (i− 0.5) ∗ j, i = 1, 2, . . . ,m

The integral (1.17) can be approximated by657

n(z′t+1) ≈
m∑
i=1

K(z′|zi)hn(zi,t) (1.22)

1.5.3 Estimation of kernel components658

The problem of specifying kernel components parallels the problem of de-659

termining components of the transition matrices in MPMs. Assuming that660

relevant data on size, survival, reproduction success, etc, are available, there661

are many standard statistical model fitting procedures, linear regression, non-662

linear regression, generalized linear models including logistic regression, and663

generalized additive models, that can be used to construct the components of664

K(z′t+1|zt). Likewise, many of the associated model fit diagnostic procedures665

could, and should be, used to assess the quality of the estimated components666

of the kernel (Rees et al., 2014).667

A number of probability and density functions are needed to calculate the668

transition densities of the survival/growth kernel (e.g., (1.19), and the fecun-669

dity kernel (e.g., (1.20)). For individual components that are probabilities,670
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e.g., the conditional probability of survival, sample data on size conditional671

outcomes can be used to calculate estimates. For example, a mark-recovery672

study of banded ducks could provide size-specific annual survival probabilities673

based on a smooth fitted survival function, e.g., log (φ/(1− φ)) |z = β0 +β1z.674

Whether or not time-specific functions could be fit may depend upon the num-675

ber of years of data available. Survival probabilities can be a function of size676

and environmental covariates, e.g., winter temperatures. For size redistribu-677

tion components, such as the conditional density for moving from size class z678

to z∗ in (1.19), size measurements made over time on multiple individuals are679

required.680

Inference methods for IPMs are continually developing. For example,681

Ghosh et al. (2012) use Bayesian hierarchical models where the size distribu-682

tion is a point pattern on some interval and carry out an integrated analysis683

that combines the parameter estimation/model fitting stage and the projec-684

tion stage.685

1.5.4 Application, use and analysis of IPMs686

Plant species were the most common organisms in early applications of IPMs,687

e.g., Northern Monkhood (Easterling et al., 2000), with growth transitions688

between different plant sizes, e.g., stem diameter, and processes like flower-689

ing strategies. The scope of applications has since expanded to include birds690

(Great tits, Childs et al., 2016), arachnids (soil mites, Brooks et al., 2015),691

mammals (Soay sheep), diseases (hosts and parasites, Metcalf et al., 2016).692

The questions asked of MPMs in Section 1.4.1 can be asked of IPMs.693

Is there a limiting population growth rate, a dominant eigenvalue λ1 and694

corresponding stable “size” class distribution? Ellner and Rees (2006) gives695

examples of sensitivity analyses of IPMs. Software for IPMs includes the R696

package IPMpack.697

In addition to analysis of population dynamics, ecological inference us-698

ing IPMs includes analysis of evolutionary strategies (Ellner and Rees, 2006).699

Brooks et al. (2015) separated out the effects of individual body size on devel-700

opmental rates from the effects of environmental conditions on reproductive701

rates. Metcalf et al. (2016) examined the feedback between host and parasite702

in an epidemiological analysis.703

1.6 Individual Based Models, IBMs704

Individual based models in ecology (IBMs; DeAngelis and Grimm, 2013) are705

computer simulation procedures that can track the entire life history of mul-706

tiple individuals simultaneously. Variables tracked include emergence into the707

population (date of birth, germination, hatch date), size at birth, sex, size708
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over time, time and duration of sexual maturity and reproduction, spatial709

location and movement, senescence, and death. A central feature is the mod-710

eling of interactions of individuals with each other, including individuals of711

the same species, e.g., reflecting competition for resources and density de-712

pendence, and individuals of different species, e.g., reflecting predator-prey713

dynamics or, more broadly, ecological community interactions. Another key714

feature is the simulation of interactions of individuals with their abiotic envi-715

ronment, e.g., air temperature and precipitation, and their biotic environment716

excluding like individuals, e.g., vegetative browse and zooplankton.717

The opportunity to insert complexity into dynamic processes underlying718

demographics is relatively unlimited, constrained primarily by computer stor-719

age and processing speed. Population level properties can be examined at720

any time in the simulation process by aggregating the states of individuals721

in arbitrary ways. For example, a simulation starts at time t0 with a vector722

of 1000 individuals where each individual has an associated vector of initial723

conditions such as age, weight, sex, spatial location, and maturity. Survival,724

growth, movement, and reproduction processes are then applied to each in-725

dividual and, at time t1, numbers of individuals in different spatial regions726

further distinguished by sex and age class, say, are tallied to yield abundances727

of multiple subpopulations. Repeating the simulation and aggregation K times728

yields a multivariate time series of subpopulation abundances, nt1 , nt2 , . . .,729

ntK . Analysis of population level dynamics can then be conducted, studying730

such things as the effects of region-specific harvest regulations on different731

sub-populations of deer, for example. If the effects of environmental and an-732

thropogenic factors on the population dynamics cannot be readily examined733

analytically, IBM output can provide some experiential, albeit simulated, in-734

sight.735

1.6.1 Statistical designs for and analysis of IBMs736

The simulation nature of IBMs with multiple attributes and multiple levels737

to attributes lends itself to using methods from the statistical design of ex-738

periments to construct a time series of any length with an arbitrary number739

of sub-populations. For example, if the attributes of interest are sex, spatial740

location, and age class with corresponding levels of (female, male), (I, II, III,741

IV) regions, and ages (0,1,2,3+), then a factorial design with 2×4×4 = 32742

“treatment” combinations can be conducted with r replications of each com-743

bination. Statistical methods such as analysis of variance or response surface744

modeling can then be used to examine the effects of the factors and treat-745

ment combinations. Aggregated data can be used to construct simple MPMs,746

like year-specific Leslie matrices, and methods for assessing MPMs, such as747

calculating annual finite population growth rates for multiple years can be748

employed (for such an example, see Rose et al., 2013).749

The computational burden of IBMs can grow in a number of ways. First,750

as the number of attributes of interest and the levels of each attribute in-751
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creases, the number of treatment combinations can grow rapidly. Second, as752

the level of environmental stochasticity (or demographic) increases, the num-753

ber of replicates required to provide a desired level of precision for estimates754

of average population level responses increases as well. Third, questions about755

the effects of the distribution of initial attribute values at time t0 as well as756

questions about the nature of the processes, e.g., density dependent or density757

independent recruitment success or the chosen value, or distribution of values,758

for juvenile survival probabilities, can lead to extensive sensitivity analyses.759

1.6.2 Comparison with population models760

In contrast to population models, such as the Ricker model (1.8), for which761

long term population dynamics such as exponential growth, an asymptotic762

upper bound, or periodicity can sometimes be determined analytically or by763

elementary computer simulation, population-level behavior for IBMs is an764

emergent property. The dynamics are the result of potentially complex in-765

teractions of individuals with each other and with their abiotic environment766

(DeAngelis and Grimm, 2013), and can demonstrate “the importance of local767

interactions between individuals in ecological systems” (Judson, 1994).768

A succinct way to contrast population-level models and IBMs is top-down769

versus bottom-up. Population-level models are top-down in that they predict770

what happens to individuals as function of population level characteristics,771

e.g., fecundity of the individual decreases as the total population abundance772

increases (density dependence exists). Conversely, IBMs are bottom-up in that773

modeling begins with the characteristics of multiple individuals and mani-774

fests characteristics of the population as a whole. An interesting example of775

the latter is with Anolis lizards in the Caribbean (discussed in Roughgarden,776

2012) where an IBM simulated energy gained per unit time after a lizard con-777

sumed a prey item as a function of distance from the prey and the optimal778

foraging distance could then be determined. From that model for the “energy779

capture” the daily growth rate of the lizard was predicted, with distinction780

made between growth prior to reproductive stage and during the reproductive781

stage. Using these results an optimal growth rate, as a function of age, was782

calculated, which was then used with information on survival probabilities783

and maternity rates to determine that optimal female body size was 45mm.784

As Roughgarden (2012) said “[t]his example illustrates a complete and suc-785

cessful modeling protocol that begins with the properties of an individual and786

culminates in the an evolutionary prediction of the adult body size for lizards787

on an island in the absence of congeneric competitors”.788

1.6.3 Applications of IBMs789

The earliest applications of IBMs in ecology were mostly in forestry, and such790

applications remain common. In the IBM JABOWA (Botkin et al., 1972),791

individual trees were the fundamental entities and the central measure on each792
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tree was its stem diameter (at some height on the tree). Other tree measures793

such as volume and crown biomass can be functions of diameter. Emergence,794

growth, and death of a tree are functions of interactions with neighboring trees,795

their size and proximity and the degree to which they compete for resources796

like light and water, for example, and functions of interactions with the abiotic797

environment, e.g., soil type and chemistry, precipitation, temperature, and798

light. Forestry IBMs have been used for management purposes, e.g., to predict799

growth and yield of commercially harvested species, as well as purely scientific800

reasons, i.e., to “explore ecological mechanisms and patterns of structure and801

functional dynamics in natural forest ecosystem” (Liu and Ashton, 1995).802

Applications to fish populations are common as well, where IBMs “track803

the attributes of individual fish through time and aggregate them to generate804

insights into population function” (Van Winkle et al., 1993). IBMs simulate805

how fish of different phenotypes interact with their biotic and abiotic environ-806

ment. Differences in phenotype can refer to differences in length, weight, sex,807

and age, the biotic environment can include prey items, such as zooplankton or808

vegetation, and the abiotic environment can include water temperature, salin-809

ity, water clarity. An IBM for a small estuarine fish, delta smelt (Hypomesus810

transpacificus, Rose et al., 2013) also included bioenergetics considerations,811

namely the transformation of consumed prey into fish growth.812

IBMs in ecology can be broadly divided into applications for (individual)813

populations, communities and ecosystems. Single population-level IBMs have814

been mentioned above, e.g., Anolis lizards and Delta Smelt, but IBMs have815

used to model predator-prey dynamics (Cuddington and Yodzis, 2002). A816

community-level application by Weiss et al. (2014) used an IBM to simulate817

how the dynamics of a community assembly of 90 hypothetical plant types818

were affected by soil attributes and grazing intensities. The results were then819

compared to field-based observations of species richness and diversity. Least820

common are ecosystems level applications; a hypothetical food web system821

used an IBM to model interactions between three trophic levels, plant, herbi-822

vore and carnivore (Schmitz and Booth, 1997).823

1.6.4 Data needs and structure824

IBMs have at least three levels of data needs. One is an initial individual825

attribute vector (Van Winkle et al., 1993), and initial values for components826

of the biotic and abiotic environment. When proximity to other individuals827

is a factor in the dynamics, an initial spatial distribution is needed and loca-828

tions might be randomly placed as in a Poisson process, systematically placed,829

clustered, or placed with probabilities proportional to particular habitat con-830

ditions. Other individual attributes, e.g., size, sex, age, need to be assigned. To831

achieve greater realism, the actual multivariate distribution of such attributes832

should be mimicked. Initial biotic attributes can include type, abundance, and833

spatial location of competitors, predators, and food items. Initial abiotic fea-834
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tures may be relatively static, e.g., soil types, water sources, or dynamic, e.g.,835

air temperature and precipitation.836

A second data need is for information about how the individuals interact837

with each other and with their environment. For example, how is the prob-838

ability of survival affected by the availability and proximity to food items?839

How is movement affected by population density, biotic and abiotic features?840

A third data need is field-based observations to verify that IBM output,841

and apparent emergent population level properties, e.g., collective survival,842

reproduction, and movement rates, are reasonable.843

Given these data needs, IBMs, particularly those designed for specific ap-844

plied problems have been criticized as being too “data hungry” (Grimm and845

Railsback, 2013). Available data may thus constrain and guide IBM formu-846

lation, affecting things like the time step resolution, spatial scope, number of847

attributes followed, and number of interactive processes simulated.848

1.6.5 Relationship with IPMs849

Longitudinal data on individuals are central to both IPMs and IBMs. IPMs850

use such data to model population, or sub-population, level probabilities of851

transitions from one attribute value to another. In contrast, IBMs, starting852

at time t = 0 with a vector of n0 individuals each with an associated at-853

tribute vector, generate longitudinal data per individual. Such data generated854

by IBMs can be used to evaluate fitting procedures for IPMs and the subse-855

quent performance of IPMs can be evaluated by comparing IPM predictions856

to the “true” values generated by simulated IBM output (Rees et al., 2014).857

1.7 State-Space Models, SSMs858

State-space models (SSMs) are models for two parallel time series, a state pro-859

cess and an observation time series. The state process time series describes the860

temporal evolution of the true, but generally unknown, state of nature; it is861

here denoted nt, t=0, 1, 2, . . ., T , where nt can be a vector of varying length.862

The state n0 is referred to as the initial state. The observation time series,863

denoted yt with t=1,2,. . ., T , is a sequence of imperfect or inexact measure-864

ments of the state process time series. The integer valued subscripting of both865

time series is used here, t1, t2, . . . , tT , but arbitrary time points are possible.866

The time series indexing for both time series do not necessarily coincide, e.g.,867

there could be half the observations if the state is only observed every other868

time point, although statistical estimation limitations might occur. Also, the869

dimensions of nt and yt need not be the same, although situations where the870

dimensions differ can affect estimability. For an ecological example: nt is a871
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vector of true abundances of subpopulations at time t and the components of872

yt are estimates of one or more components of nt.873

The probabilistic structure of a SSM is a paired sequence of probability874

distributions (probability mass functions for integer valued components or875

probability density functions for continuous valued components) that charac-876

terize the evolution of nt and the relationship between yt and nt. The the877

probability distribution for nt is typically first order Markov, i.e., nt given878

nt−1 is conditionally independent of all other states, and yt given nt is inde-879

pendent of all other state vectors and all other observation vectors.880

1.7.1 Normal dynamic linear models881

A classic SSM, originating from Kalman (1960), is the normal dynamic linear882

model (NDLM); for example,883

n0 ∼ D(θ)

nt|nt−1 ∼ MVN (Lnt−1,Σ) , t = 1, 2, . . . , T

yt|nt ∼ MVN (Bnt,Ω) , t = 1, 2, . . . , T

where D(θ) denotes an arbitrary probability distribution with parameter θ884

which may be degenerate, i.e., n0 is a fixed value, MVN is multivariate nor-885

mal, L and B are matrices, and Σ and Ω are variance-covariance matrices.886

As denoted here all the matrices are time invariant, but that is not necessary.887

Given yt, t=1,2,. . ., T , and the values of n0, L, B, Σ, and Ω, the conditional888

distribution of nt, which is multivariate normal, can be determined using an889

algorithm known as the Kalman filter. The Kalman filter also yields the calcu-890

lated value of the likelihood (the joint marginal distribution of yt, t=1,2,. . .,T ),891

which can then, in principle, be used to estimate unknown parameters of the892

transition and variance-covariance matrices. However, in practice there are893

considerable restrictions on the estimability of the parameters, and poten-894

tially high correlations between estimates of Σ and Ω (Dennis et al., 2006).895

The notation L for the state transition matrix was selected to suggest the no-896

tion of a Leslie matrix (1.9) as SSM extensions of MPMs are not uncommon897

(Sullivan (1992); Newman (1998), and see the gray whale example in section898

6.4.2.2 of Newman et al. (2014)).899

1.7.2 Non-normal, nonlinear SSMs900

The NDLM structure is often too constricting and unrealistic for popula-901

tion dynamics modeling. More realistic state-space models can on occasion be902

“shoe-horned” into the NDLM framework by a mathematical transformation903

of states or observations, e.g., a log transformation, and thus allow usage of the904

Kalman filter. For example, Dennis et al. (2006) used a stochastic Gompertz905

model for the state process distribution.906

nt|nt−1 = λn1+α
t−1 exp εt
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where α ≤ 0 and εt ∼ Normal(0,σ2
ε ). A natural log transform yields a linear907

normal state distribution.908

ln(nt)| ln(nt−1) ∼ Normal
(
ln(λ) + (1 + α) ln(nt−1), σ2

ε

)
Another way to modify an otherwise non-normal, and perhaps nonlinear SSM,909

into a NDLM approximation is to work with just the first two moments of the910

state process distribution and then use the mean and covariance structure as911

the normal mean vector and covariance matrix. Newman (1998) and Newman912

et al. (2014) give examples of such substitutions. A simplistic univariate ex-913

ample is to suppose that a scalar valued state nt is Binomial(nt−1, φt), where914

φt is the survival probability, perhaps a function of covariates. The conditional915

expected value of nt is of course φtnt−1 ≡ Ltnt−1, and the conditional variance916

is nt−1φt(1− φt) ≡ Qt. Other, perhaps somewhat slight, departures from the917

NDLM formulation can be accommodated by Taylor series transformations918

of the process, using the Extended Kalman Filter (EKF; Einicke and White,919

1999). A more recent alternative to the EKF, which has been shown to have at920

least equal and often far superior performance (Durbin and Koopman, 2012,921

p. 236) is the Unscented Kalman Filter (Julier and Uhlmann, 2004).922

Computer intensive Monte Carlo methods such as Markov chain Monte923

Carlo (MCMC, Gilks et al., 1996) and Sequential Monte Carlo (SMC Doucet924

and Gordon, 2001) offer the ultimate flexibility for fitting nonlinear, non-925

normal SSMs. With the MC procedures applied to such SSMs, Bayesian infer-926

ence has been the dominant approach, but not always (see De Valpine, 2003;927

Ionides et al., 2006, for exceptions). One of the first ecological applications928

using MC methods was by Meyer and Millar (1999), who used the program929

BUGS (Bayesian inference Using Gibbs Sampling) to fit an SSM with scalar930

states and observations. The state was scaled biomass (pt= Bt/K), rather931

than abundance, where biomass (Bt) was divided by carrying capacity, K,932

thus 0 < pt ≤ 1), and the observation was a biased measure of scaled biomass,933

an index (yt):934

pt|pt−1 ∼ Lognormal
(

ln
(
pt−1 + rpt−1(1− pt)−

ct−1

K

)
, σ2
p

)
yt|pt ∼ Lognormal

(
ln (qKpt) , σ

2
o

)
Thus the SSM was intrinsically nonlinear (no transformation of the state would935

linearize the mean structure) and non-normal.936
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1.7.3 Hierarchical and continuous time SSMs937

An extension of SSMs is a hierarchical state-space model (HSSM). A general938

formulation for an HSSM in a Bayesian framework is the following939

Prior distribution : π(η, ω) (1.23)

Stochastic variation in parameter : h(Θt, η) (1.24)

State process model : gt(nt|nt−1,Θt) (1.25)

Observation model : ft(yt|nt,Ω) (1.26)

where π, h, gt, and ft denote probability distribution functions. Newman and940

Lindley (2006) used Sequential Monte Carlo to fit a Bayesian HSSM to salmon941

data which included both environmental and demographic stochasticity. The942

environmental stochasticity was modeled as above with separate distributions943

for year-specific survival and maturation probabilities. Demographic stochas-944

ticity was incorporated in the state process equations using multinomial dis-945

tributions to reflect between individual variation in survival and maturation946

(although given the population size, the influence of demographic stochasticity947

on the results was likely minimal).948

Durbin and Koopman (2012) discuss continuous time SSMs for a couple949

cases including what is called a continuous time local level SSM. Here n(t)950

= n(0) + σε ω(t), where ωt arises from a Brownian motion process, which951

means ω(0)=0, ω(t) ∼ Normal(0,t) for 0 < t <∞, and “jumps” or increments952

without common endpoints are independent, e.g., ω(2)−ω(1) is independent of953

ω(4)−ω(3). For an ecological application of continuous time SSMs see Johnson954

et al. (2008) who model the location of marine mammals using telemetry data.955

1.8 Concluding Remarks956

1.8.1 Omissions and sparse coverage957

Continuous time demographic models have been largely ignored here, except-958

ing the Lotka-Volterra predator-prey model. Williams et al. (2002) provides an959

introduction to continuous Markov processes, including birth and death pro-960

cesses, and Brownian motion in the context of models for animal populations.961

Differences in the ecological dynamics of discrete time and continuous time962

models are examined by Gurney and Nisbet (1998). Durbin and Koopman963

(2012) and Johnson et al. (2008) are references for continuous time SSMs.964

Some aspects of ecological theory which have demographic implications965

that were omitted include fitness, adaptation, and mutation. Effective popu-966

lation size, Ne, of an existing population, here defined as the minimum num-967

ber of individuals necessary in a hypothetical population that would represent968

existing populations ability to retain the genetic diversity present, is an im-969
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portant concept for endangered species, and methods for calculating Ne were970

not addressed. Coverage of the demography of multiple populations, commu-971

nities, and ecosystems was scanty, and measures of community structure such972

as species richness and models for changes in such measures were not men-973

tioned at all. Demographic modeling of ecosystems has been popular in fish-974

eries (Christensen and Pauly, 1992; Walters et al., 1997, 1999) with Ecopath975

with Ecosim and Ecospace the leading software.976

1.8.2 Recommended literature977

For MPMs, Caswell (2001) remains an outstanding reference with near ency-978

clopedic coverage of material to 2001. For stochastic MPMs, the Tuljapurkar979

(1990) book is a classic.980

For IPMs, there are two “How To” papers, Rees et al. (2014) and Merow981

et al. (2014) which provide the basic components of IPMs, ways of estimating982

the kernel components, and ways of making the projections (using numerical983

integration methods). The original paper (Easterling et al., 2000) includes984

detailed discussion of the advantages of IPMs over MPMs, while Ellner and985

Rees (2006) include detailed examples of stable population analyses often done986

with MPMs. More sophisticated and integrated IPM fitting and projection987

approaches are described by Ghosh et al. (2012).988

For IBMs, Grimm and Railsback (2013) provide a book length treatment,989

with DeAngelis and Grimm (2013) a more recent overview paper. Roughgar-990

den (2012) gives an alternative perspective on the definition of and uses of991

IBMs, viewing agent-based models as a special case, for example.992

For SSMs, Durbin and Koopman (2012) is an extremely thorough book993

length treatment of SSMs. Two thirds of the book covers linear SSMs, in-994

cluding classical treatment with the Kalman algorithms and extensions. The995

remainder discusses nonlinear, non-normal SSMs including special cases and996

quite general formulations that are typically fit by Monte Carlo procedures.997

Specific focus on the use of SSMs for population dynamics modeling is given998

by Newman et al. (2014).999

1.8.3 Speculations on future developments1000

Data.1001

The volume and complexity of data on individual organisms continues to grow1002

as the life spans of biological monitoring programs extend, as new monitoring1003

programs are established, and as data collection technology advances. Elec-1004

tronic monitoring devices, e.g., radio tag collars, acoustic tags, tags that record1005

the diving depths of marine animals, provide increasingly fine temporal and1006

spatial resolution information on individual animal movement. Chemical anal-1007

yses of organisms yield more information about individual life histories, e.g.,1008

chemical analyses of bony structures in fish, such as otoliths, can pinpoint1009
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birth place and migration paths (Secor et al., 1995). Environmental DNA1010

(eDNA) is an emerging tool for indirectly detecting species presence (Thom-1011

sen and Willerslev, 2015). Remote sensing is adding increasingly detailed data1012

abiotic environments. In short, “attribute vectors” (Van Winkle et al., 1993)1013

for individuals, populations, and abiotic and biotic environments are getting1014

longer and longer.1015

Model formulations.1016

Appreciation of the need to separately model process variation (environmental1017

and demographic stochasticity) and observation noise (e.g., sampling errors)1018

will increase. Consequently, formulation of SSMs, and, more generally, hierar-1019

chical models (Kery and Royle, 2016; King et al., 2009), for demographic data1020

will increase. Extensions of MPMs, IPMs, and IBMs that explicitly distinguish1021

both types of variation will likely become more common, too.1022

Hierarchical extensions of MPMs within the normal dynamic linear model1023

framework of SSMs date back to the 1990s, e.g., Sullivan (1992) and Newman1024

(1998). More recently, Newman et al. (2014), in an application to the Eastern1025

North Pacific gray whales (Eschrichtius robustus) population, contrasted an1026

MPM with observation error only with a NDLM extension. Differences in some1027

of the parameter estimates were considerable, e.g., juvenile survival probabil-1028

ity was estimated to be 0.9999 (upper bound) for the observation error only1029

model and 0.8281 for the SSM. Advances in model fitting procedures lessen the1030

need to restrict process models to linear formulations, implicit to MPMs, with1031

additive normal (or multiplicative lognormal) distributions. More biologically1032

realistic nonlinear, and non-Gaussian formulations may make applications in1033

the MPM framework less common. However, the MPM structure will remain1034

valuable for formulating approximate deterministic skeletons underlying more1035

realistic models (Buckland et al., 2007).1036

For IPMs and IBMs, process and observation uncertainty can be readily1037

partitioned and accounted for by computer simulation. With IPMs, bootstrap-1038

ping the kernel density components yields measures of parameter estimate un-1039

certainty as well as between animal variation. For example, uncertainty about1040

parameters of the growth density model, g(z′t+1|zt), in the survival/growth1041

kernel (1.19), can be assessed by resampling the longitudinal data on sizes to1042

generate a bootstrapped distribution of growth densities. For a given fitted1043

growth density model, simulated variation of individual sizes around the ex-1044

pected size at time t+ 1 reflects demographic variation. For IBMs, computer1045

simulation of between individual variation and parameter uncertainty can be1046

carried out within a designed experiment structure to (a) determine the rela-1047

tive import of specific factors on the model predictions and (b) quantify the1048

degree of uncertainty in model predictions.1049
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Model fitting.1050

Extended attribute vectors for increasingly large numbers of individuals, along1051

with increasingly complex demographic model formulations, necessitate in-1052

creasingly complex model fitting procedures. The pace of development for1053

fitting such models is rapid and the variety of model fitting options avail-1054

able is increasing. Here we focus on options for fitting dynamic hierarchical1055

demographic models.1056

Mathematical integration and numerical optimization are at the heart of1057

hierarchical model fitting procedures, with the integration being over the un-1058

observed state process. In special cases, algorithms exist for analytic evalu-1059

ation of the integrals, e.g., NDLMs and the Kalman filter. As discussed in1060

section 1.7.2, numerical approximations to nonlinear, but Gaussian, popula-1061

tion dynamics models yield models amenable to such analytic solutions. For1062

general hierarchical dynamic models approximate analytic solutions to the in-1063

tegration problems include the Laplace approximation (Tierney and Kadane,1064

1986) and the Integrated Nested Laplace Approximation (INLA, Rue et al.,1065

2009). The software packages, AD Model Builder (ADMB, Fournier et al.,1066

2012) and Template Model Builder (https://github.com/kaskr/adcomp/),1067

use Laplace approximations to integrate over the state process to yield the1068

likelihood and then automatic differentiation for calculating maximum likeli-1069

hood estimates of the parameters. Widely used and well established software1070

for carrying out the integration using Monte Carlo procedures such as MCMC1071

and sequential Monte Carlo (section 1.7.2 includes WinBUGS (Lunn et al.,1072

2000) and JAGS (Plummer et al., 2003). Two recent software additions are1073

NIMBLE (de Valpine et al., 2015) and the R package pomp, both of which allow1074

users to choose from a variety of computer intensive model fitting procedures.1075

NIMBLE extends the BUGS software and allows estimation within Bayesian1076

or likelihood frameworks. The R package pomp, for “partially observed Markov1077

processes” , contains a variety of procedures for fitting state-space models,1078

with including “sequential Monte Carlo, iterated filtering, particle Markov1079

chain Monte Carlo, approximate Bayesian computation, maximum synthetic1080

likelihood estimation, nonlinear forecasting, and trajectory matching” (King1081

et al., 2016).1082
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