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Abstract. In this paper we present Three-Valued Spatio-Temporal Logic
(TSTL), which enriches the available spatio-temporal analysis of prop-
erties expressed in Signal Spatio-Temporal Logic (SSTL), to give further
insight into the dynamic behaviour of systems. Our novel analysis starts
from the estimation of satisfaction probabilities of given SSTL properties
and allows the analysis of their temporal and spatial evolution. Moreover,
in our verification procedure, we use a three-valued approach to include
the intrinsic and unavoidable uncertainty related to the simulation-based
statistical evaluation of the estimates; this can be also used to assess
the appropriate number of simulations to use depending on the analysis
needs. We present the syntax and three-valued semantics of TSTL and a
specific extended monitoring algorithm to check the validity of TSTL for-
mulas. We conclude with two case studies that demonstrate how TSTL
broadens the application of spatio-temporal logics in realistic scenarios,
enabling analysis of threat monitoring and control programmes based on
spatial stochastic population models.

1 Introduction

In many case studies, considering spatial structure is of key importance to better
understand and predict the evolution of the system under study. For example,
dispersive processes such as spread of disease, invasive species or fire spread have
an intrinsic and fundamental spatial dimension that has to be included in the
model. Spatial stochastic models provide a good representation of such system
dynamics, typically studied through simulations. Correspondingly, the formal
analysis of these spatial stochastic models has to also accommodate spatial and
temporal modalities to be able to describe and verify properties about the spatio-
temporal evolution of the specific systems.

Suitable analysis is provided by spatio-temporal logics and model checking.
In most cases a statistical approach [1] is needed to estimate satisfaction prob-
abilities of given properties, expressed using logical formulas. Simulation tra-
jectories alone make it difficult to fully analyse the dynamic behaviour and to



compare different systems, and the exhaustive exploration of all possible spatio-
temporal trajectories is computationally infeasible. Using current simulation-
based approaches the outcome is summary information about the satisfaction of
properties over the spatial domain.

In our work we seek to add value to such information by providing a novel
logic, called Three-Valued Spatio-Temporal Logic, to reason about spatial and
temporal evolution of the satisfaction of these properties, giving further insight
into the dynamic behaviour of the system under study. For example, in the anal-
ysis of the efficacy of a control measure for disease spread, we can verify whether
the spread in a specific area will happen with probability under a given threshold
over time. We can also identify the locations at highest risk, being surrounded
by locations with high probability of becoming infected. The new TSTL atomic
propositions are inequalities on the estimated satisfaction probabilities of given
logical formulas (in the spatio-temporal logic SSTL [2] in this case, which for-
mally describes and verifies properties of spatio-temporal trajectories), which
are estimated using statistical model checking. This simulation-based evaluation
has an intrinsic and unavoidable uncertainty, but frequently it is the only com-
putationally feasible approach, requiring just an executable model. We use a
three-valued approach to keep track of the associated uncertainty in the results
of our model checking and we interpret the inequalities with different degrees of
truth, using true, false and a third value unknown. This extension can be also
used to give an indication of when more simulations are needed to make the
evaluation of atomic propositions more precise and thus allowing stronger con-
clusions to be drawn. Conversely this enables initial explorations with relatively
few simulations and assessment of whether they result in sufficient precision.
We implemented the monitoring algorithms for the TSTL logical operators, to
evaluate the satisfaction function of TSTL properties. The operators and the
procedures are defined in a similar way to SSTL but on a different domain, deal-
ing with three truth values.

Related work Several existing logics can be used to describe spatial proper-
ties of systems and estimate satisfaction probability values. Much of this work
is based on topological models [3], looking at properties of subsets of points of
topological spaces, whilst we take a more concrete representation of space. Other
literature concerns spatial logics for process algebra with locations [4], used to
study the mobility of concurrent systems; here space is represented as a tree
and locations are nested. Based on a graph structure, there are logics such as
the Multiprocess Network Logic [5], which can express spatio-temporal proper-
ties in discrete time. Considering stochastic systems, there are existing logics for
expressing properties on probabilities, such as Probabilistic Computation Tree
Logic (PCTL) [6] and Continuous Stochastic Logic (CSL) [7]. In these cases,
the analysis is limited to temporal aspects, without spatial modalities, while our
novel approach considers both. Three-valued logics, such as ours, with just one
additional truth value, are a simple case in the field of multi-valued logics [8]. The
initial concept was created by  Lukasiewicz [9] and developed further by different
logicians, such as Kleene [10], introducing the concept of “undefined” dealing



with partial recursive functions. The three-valued approach is used in [11], for
the definition of a new abstraction method for fully probabilistic systems and in
[12], for model checking of Discrete-Time Markov Chains. We are not aware of
any current use of a three-valued logic approach in the field of spatio-temporal
analysis of stochastic systems.

Paper structure. The paper is structured as follows: Section 2 introduces no-
tation and background work on SSTL while Section 3 presents the novel logic
TSTL. Section 4 introduces the process algebra MELA we used to perform
stochastic simulations, the monitor jSSTL we used to verify SSTL properties
and how we linked all these aspects together to verify TSTL properties. Section
5 and 6 present two different case studies and applications of TSTL. Section 7
reports discussion and future directions for investigation while conclusions are
reported in Section 8.

2 Background

In this section we introduce some fundamental concepts and notation that we
will use in this paper aligned with the syntax and semantics of the existing
spatio-temporal logic SSTL.

Notation We define a spatial population model, on a discrete representation of
space; it describes a large number of different agents that can perform actions,
take different states, interact and move between different locations. More for-
mally, a spatial population model M is defined as a tupleM = (S, G,X,X0,Tr)
where:

– S = {1, . . . , n} is the set of states that the population agents can take.
– G = (L,E,w), a finite weighted undirected graph that represents the current

choice of underlying spatial structure of the spatial population model:
• L is the finite set of locations (nodes)
• E ⊆ L× L is the set of connections (edges)
• w : E → R≥0 is the function cost (weights). We extend w to E∗, the

transitive closure of E (set containing all the pairs of connected nodes).
w gives the sum of costs of the shortest path between two different nodes,
where this shortest path is the one that minimizes the sum of the costs.

– X : L → Rn, where X(l) = (X1, . . . , Xn) ∈ Rn is the state vector, that
represents the state of the population in each location. The entries of the
vector X(l) represent the number of agents in location l in the ith state;
therefore, to be more specific, these counting variables are Xi ∈ N0.

– X0 : L → Rn, where X0(l) is the initial state of the state vector, for each
location.

– Tr is the set of transitions, τi = (αi, vi, ri), describing the events that change
the global state of the system. Each transition consists of a label αi in the
label set L, an update vector, vi : L → Rn recording the change to each
counting variable in each location due to the transition, and a rate function
ri, which may depend on the global state of the system.



We can interpret the dynamical evolution of these models either stochastically as
a Markov chain or deterministically as a system of Ordinary Differential Equa-
tions (ODEs); in this work we focus on stochastic spatio-temporal systems. We
can describe the temporal evolution of our spatial population models using:

– σ, a spatio-temporal trajectory of M. σ : L × R≥0 → Rn gives the state of
the population vector for each location l ∈ L and each time t ∈ R≥0

– Σ, a set of spatio-temporal trajectories, that will be used in the analysis.

SSTL Syntax Signal Spatio-Temporal Logic (SSTL) [2] is a spatial extension
of Signal Temporal Logic (STL) [13], a temporal logic suitable for describing
properties of real-valued signals. The syntax of SSTL is given by:

ϕ :: = µ | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U [t1,t2] ϕ2 | �[w1,w2] ϕ | ϕ1S[w1,w2]ϕ2

The SSTL atomic proposition µ is of the form µ ≡ (f ≥ 0), f : Rn → R, an
inequality on expressions with population counts, given in the spatio-temporal
trajectory. Negation ¬ and disjunction ∨ are the standard boolean operators
and U is the bounded until operator. This temporal operator U is used to verify
that the property ϕ2 will be satisfied at some time instant in the interval [t1, t2]
and that at all preceding time instants ϕ1 holds. SSTL introduces two spatial
operators: the bounded somewhere operator �[w1,w2] and the bounded surround
operator S[w1,w2], with w1, w2 real values, w1 ≤ w2. The bounded somewhere
operator requires that the property ϕ holds in a location reachable from the cur-
rent one, with a cost w, w ∈ [w1, w2]. The operator bounded surround describes
the property of being surrounded by a ϕ2-region, while being in a ϕ1-region: the
formula ϕ1S[w1,w2]ϕ2 is true in a location l, if l belongs to a set of locations A
where ϕ1 holds, such that its external boundary B+(A) contains only locations
satisfying ϕ2. The external boundary of a subset of locations A is defined as
B+(A) := {l ∈ L | l /∈ A ∧ ∃l′ ∈ A s.t. (l, l′) ∈ E}. Moreover, the locations
in the B+(A) have to be reached from location l with a cost w, w ∈ [w1, w2].
Examples of SSTL formulas will be provided throughout the paper.

SSTL Boolean semantics SSTL presents a boolean semantics that returns
the value true/false (B = {T, F}) depending on whether the observed trajectory
satisfies the defined SSTL formula or not. The boolean semantics of a SSTL for-
mula ϕ is interpreted over a spatio-temporal trajectory σ ofM, for each location
l ∈ L and at time t ∈ R≥0, given values in the set B:

β(M, σ, l, t, ϕ) ∈ B

The satisfaction function β is defined as follows:

β(M, σ, l, t, µ) = µ(σ(l, t))

β(M, σ, l, t,¬ϕ) = ¬β(M, σ, l, t, ϕ)

β(M, σ, l, t, ϕ1 ∨ ϕ2) = β(M, σ, l, t, ϕ1) ∨ β(M, σ, l, t, ϕ2)



β(M, σ, l, t, ϕ1 U [t1,t2] ϕ2) =
∨

t′∈[t+t1,t+t2]

(β(M, σ, l, t′, ϕ2) ∧

∧
t′′∈[t,t′)

β(M, σ, l, t′′, ϕ1))

β(M, σ, l, t,�[w1,w2]ϕ) =
∨

l′∈L,w(l,l′)∈[w1,w2]

β(M, σ, l′, t, ϕ)

β(M, σ, l, t, ϕ1S[w1,w2]ϕ2) =
∨

A∈SR[w1,w2]

l

(
∧
l′∈A

β(M, σ, l′, t, ϕ1) ∧

∧
l′′∈B+(A)

β(M, σ, l′′, t, ϕ2))

where the surrounding region SR
[w1,w2]
l = {A ⊆ L | ∀l′ ∈ A : 0 ≤ w(l, l′) ≤

w2 ∧ ∀l′′ ∈ B+(A) : w1 ≤ w(l, l′′) ≤ w2}.
Monitoring algorithms have been defined to evaluate the validity of SSTL

properties, given a spatio-temporal trajectory, working inductively bottom-up
on the parse tree of the formula. To make the verification procedure tractably
computable, the time-domain has to be discretised, giving as output a piece-
wise constant approximation of the result. For this reason, in the analysis we
talk about time-steps, although we start from discrete-event continuous-time
simulations.

As discussed previously, in the study of stochastic systems we are generally
interested in evaluating the probability that given properties are satisfied; a
commonly used approach consists of estimating these values using statistical
methods on a set of trajectories. Therefore, given a SSTL property ϕ, we shift
the analysis from a single trajectory σ to a set of trajectories Σ, assigning to
each trajectory a truth value, according to the boolean semantics. After this step
we can estimate the satisfaction probability p∗ of the formula ϕ, provided with
a confidence interval. We define Pβ over the set of trajectories Σ, in terms of β:

Pβ(M, Σ, l, t, ϕ) = (p∗, δ) (1)

where (p∗, δ) ∈ [0, 1]× [0, 1] and represents the interval [p∗ − δ, p∗ + δ].

p∗ =
|Σ>|
|Σ|

and δ = fδ(|Σ|, |Σ>|, ε) (2)

where |ΣT | = {σ ∈ Σ | β(M, σ, l, t, ϕ) = T} and δ is calculated with a given con-
fidence level ε, according to a suitable function fδ. There are several approaches
to compute the confidence interval. For the sake of simplicity in our presentation
we assume this interval to be symmetric. Given the boolean nature of the ob-
servations, SSTL uses the binomial proportion confidence interval and the most
common choice for the calculation presupposes that the error distribution is ap-
proximated by a normal distribution. From this point on, all the results of SSTL
monitoring are given at 95% confidence.



3 Three-Valued Spatio-Temporal Logic

We now present the novelty of our research, introducing the syntax and three-
valued semantics of TSTL, providing also derived operators and a specific mon-
itoring algorithm.

TSTL Syntax With the existing SSTL we are able to verify spatio-temporal
properties of stochastic systems and estimate the satisfaction probabilities of
given formulas. After this initial analysis we use our proposed extension to per-
form spatio-temporal analysis of these estimated values. The syntax of Three-
Valued Spatio-Temporal Logic (TSTL) is given by:

ψ ::= P<p(ϕ) | ∼¬ψ | ψ1

∼
∨ ψ2 | ψ1

∼
U

[t1,t2]

ψ2 |
∼
�

[w1,w2]
ψ | ψ1

∼
S
[w1,w2]

ψ2

where p ∈ [0, 1] and ϕ is a given SSTL formula. The atomic TSTL formula
P<p(ϕ) expresses an inequality on the estimated satisfaction probability of the
SSTL formula ϕ, checking if it is below the given threshold p. The logical TSTL
operators link the TSTL propositions in a similar way to the SSTL ones, but
working with estimated values and on a three-valued domain, as explained in

the next section. We have negation
∼¬ and disjunction

∼
∨ operators, bounded until

∼
U , bounded somewhere

∼
�

[w1,w2]
and bounded surround

∼
S
[w1,w2]

. Conceptually

all these operators are identical to the SSTL operators, but they operate on a
different domain, reasoning about estimated satisfaction probabilities and not
population counts. In the remainder we will show examples and differences be-
tween the two spatio-temporal logics; we will use the letter ϕ for SSTL formulas
and ψ for TSTL ones.

Three-valued semantics TSTL presents a three-valued semantics that returns
a truth values in T = {T,U, F} (true/unknown/false). The truth tables for TSTL

negation
∼¬, disjunction

∼
∨ and conjunction

∼
∧ (that can be defined in terms of

negation and disjunction) are given by:
∼¬ T U F

F U T

∼
∨ ψ2

T U F

ψ1

T T T T
U T U U
F T U F

∼
∧ ψ2

T U F

ψ1

T T U F
U U U F
F F F F

as for Kleene’s logic of indeterminacy K3 [10]. The three-valued satisfaction func-
tion τ for the atomic TSTL proposition P<p(ϕ) will return a value in T:

τ(M, Σ, l, t,P<p(ϕ)) = Jp∗ <δ pK ∈ T

that is evaluated starting from the resulting (p∗, δ) given by Pβ(M, Σ, l, t, ϕ),
as shown in the equations (1), (2). The associated truth value will be:

Jp∗ <δ pK =


T if p > p∗ + δ

U if p ∈ [p∗ − δ, p∗ + δ]

F otherwise



The three-valued satisfaction function τ for the TSTL operators is defined as
follows, in an analogous manner as SSTL:

τ(M, Σ, l, t,
∼¬ψ) =

∼¬τ(M, Σ, l, t, ψ)

τ(M, Σ, l, t, ψ1

∼
∨ ψ2) = τ(M, Σ, l, t, ψ1)

∼
∨ τ(M, Σ, l, t, ψ2)

τ(M, Σ, l, t, ψ1

∼
U

[t1,t2]

ψ2) =

∼∨
t′∈[t+t1,t+t2]

(τ(M, Σ, l, t′, ψ2)
∼
∧

∼∧
t′′∈[t,t′)

τ(M, Σ, l, t′′, ψ1))

τ(M, Σ, l, t,
∼
�

[w1,w2]
ψ) =

∼∨
l′∈L,w(l,l′)∈[w1,w2]

τ(M, Σ, l′, t, ψ)

τ(M, Σ, l, t, ψ1

∼
S
[w1,w2]

ψ2) =

∼∨
A∈SR[w1,w2]

l

(

∼∧
l′∈A

τ(M, Σ, l′, t, ψ1)
∼
∧

∼∧
l′′∈B+(A)

τ(M, Σ, l′′, t, ψ2))

Note the similarity between the structure of β and τ , with operators that refer to
SSTL and TSTL respectively. We want to clarify that SSTL results are provided
performing SSTL monitoring with a given confidence level. Therefore, we are
not talking about confidence level of TSTL results, but about TSTL results,
given the confidence level for the SSTL monitoring. With the current definition
of TSTL we can derive more operators. We can obtain the operator P>p(ϕ) as:

P>p(ϕ) := P<1−p(¬ϕ)

Moreover, the everywhere spatial operator
∼
�

[w1,w2]
can be defined as:

∼
�

[w1,w2]
ψ := ¬

∼
�

[w1,w2]
¬ψ

This requires ψ to hold in all the locations reachable from the current one with

a total cost between w1 and w2. The eventually
∼
F

[t1,t2]

and the globally
∼
G
[t1,t2]

operators are defined as usual:

∼
F

[t1,t2]

ψ := T
∼
U

[t1,t2]

ψ
∼
G
[t1,t2]

ψ := ¬
∼
F

[t1,t2]∼¬ψ

The eventually formula holds if ψ becomes true within t1 and t2 time units from
the current one, while the globally formula requires ψ to be satisfied for each time
unit in the relative interval [t1, t2]. As we already presented, TSTL provides



an additional level of analysis for evaluation of spatio-temporal properties of
estimated satisfaction probabilities of SSTL properties. Hence, there is a crucial
difference between both the analysis and the logical operators used in SSTL and
TSTL. For example, the following two TSTL properties ψ1 and ψ2:

ψ1 := P<p(ϕ1 ∧ ϕ2) ψ2 := P<p(ϕ1)
∼
∧ P<p(ϕ2)

are intrinsically different and therefore they can take on different truth values.
For example, let us assume that we are working with a disease spread model and
we have the following SSTL properties on the number of infected agents I:

ϕ1 := I > 5 ϕ2 := I > 10

Let assume that, for a given disease probability threshold p:

τ(M, Σ, l, t,P<p(ϕ1)) = F τ(M, Σ, l, t,P<p(ϕ2)) = T

This can happen if we choose the value of p between the two estimates, outside
their respective intervals. Since ϕ1 ∧ ϕ2 ≡ ϕ2 then:

τ(M, Σ, l, t,P<p(ϕ1 ∧ ϕ2)) = τ(M, Σ, l, t,P<p(ϕ2)) = T

while:
τ(M, Σ, l, t,P<p(ϕ1))

∼
∧ τ(M, Σ, l, t,P<p(ϕ2)) = F

Moreover, the first could perhaps be derived empirically from observations, but

the second is only expressible with the new logical operator
∼
∧ and the domain

T.

Monitoring the three-valued semantics of the bounded surround
To evaluate the validity of TSTL formulas we implemented monitoring algo-
rithms for each logical operator, structured in a similar way to SSTL monitoring
[2]. We illustrate now the monitoring algorithm for the TSTL bounded surround

operator, which is more elaborate than the other procedures. Given a location l̂

and a TSTL bounded surround formula ψ = ψ1

∼
S
[w1,w2]

ψ2, the algorithm returns

the piecewise constant approximation sψ,l̂ of the function that maps each time

t with τ(M, Σ, l̂, t, ψ1

∼
S
[w1,w2]

ψ2), in the discrete time set T . The cardinality of

this set T depends on the given SSTL and TSTL formulas; it is the shortest finite
sequence of time-steps for which we have the values of the satisfaction function
of all the formulas involved1. As shown in Algorithm 1, as the first step of the
algorithm, we compute the value sψ1,l for all the locations l : 0 ≤ w(l̂, l) ≤ w2

and the value sψ2,l for all the locations l : w1 ≤ w(l̂, l) ≤ w2. These values are
obtained by recursive invocation of the monitoring algorithm on the TSTL sub-
formulas ψ1 and ψ2. We set these values for the other locations to be F , ∀t ∈ T .

1 We need to take into account that a temporal formula looks Tf time units into the
future, hence the domain [0, T ] becomes [0, T − Tf ].



After this initial step, we iteratively compute a fixed-point function, on the set
of locations satisfying the cost bounds, to get the value of the bounded surround
formula, for each time step in the discrete time set T . This fixed-point coincides
with the limit of the sequence (χi)i∈N, χi : L→ T, defined as follows:
1. χ0(l) = sψ1,l(t)

2. χi+1(l) = χi(l)
∼
∧ (
∼∧
l′:(l,l′)∈E

(χi(l
′)
∼
∨ sψ2,l′(t)))

where i indicates the iteration. The upper bound on the number of iterations of
the algorithm is given by the diameter dG of the graph; given χ(l) the fixed
point of χi(l), then χ(l) = χdG+1(l), ∀l ∈ L. The proof of the correctness
of the method follows that of the SSTL monitoring. The cost of this com-
putation for each location is O(dG|L||T |); therefore, the cost for all locations
is O(dG|L|2|T |). For more details, see [2], where a similar approach is used.

Algorithm 1:
Three-Valued Spatio-Temporal Logic: bounded surround operator

input: l̂, ψ = ψ1S[w1,w2]ψ2, T
forall l ∈ L do

if 0 ≤ w(l̂, l) ≤ w2 then
compute sψ1,l;

else

if w(l̂, l) ≥ w1 then
compute sψ2,l;

else
sψ2,l = F

sψ1,l = F ; sψ2,l = F

forall t ∈ T do
forall l ∈ L do

χprec(l) = T
χ(l) = sψ1,l

while ∃l ∈ L : χprec(l) 6= χ(l) do
χprec = χ
forall l ∈ L do

χ(l) = χprec(l)
∼
∧ (
∼∧
l′:(l,l′)∈E

(χprec(l
′)
∼
∨ sψ2,l′))

sψ,l̂(t) = χ(l̂)

return sψ,l̂

4 Modelling and monitoring: MELA and jSSTL

We used the process algebra MELA [14] to formally describe spatial popula-
tion models and to perform stochastic simulations, in order to produce spatio-
temporal trajectories for the SSTL monitoring. This process algebra MELA has



MELA
simulator

jSSTL

Φ

TSTL
monitor

Ψ

MELA
model Σ

SSTL
monitoring

TSTL
monitoring

Fig. 1: Σ is the set of spatio-temporal trajectories, Φ the set of SSTL formulas
and Ψ the set of TSTL formulas

been developed to build spatial population models of ecological systems, since
consideration of the spatial aspect has been recognized as of key importance in
ecology. MELA allows one to build models on different discrete spatial struc-
tures, to define agent behaviours with spatial constraints on their interactions
and probability for these interactions to be effective. Agents can perform dif-
ferent types of actions, that might change their state, their location, or their
number in the system. The components in the MELA model generate the states
of the underlying stochastic model, a Continuous Time Markov Chain (CTMC)
and we perform stochastic simulations using Gillespie’s Stochastic Simulation
Algorithm (SSA) [15], extracting initial configuration, model structure and pa-
rameter values directly from the MELA model description. We chose to use
MELA to facilitate the creation of spatial population models since it presents
features that fit perfectly with SSTL monitoring settings, such as discrete rep-
resentation of space and focus on spatial population models. Accordingly, it has
been used in order to produce spatio-temporal trajectories, used as input for
jSSTL [16], a Java library developed to support monitoring of SSTL properties.
Since SSTL works with a discrete space, in particular with weighted graphs, the
grid spatial structures in MELA are mapped to a weighted graph structure, to
fit with the SSTL framework, with all the weights equal to 1. The results of
jSSTL monitoring are used as input to verify TSTL properties. The structure of
our spatio-temporal analysis is shown in Figure 1.

5 Case study: Defining safety zones

We now present two case studies, related to fire propagation, using TSTL proper-
ties for the identification of safe zones and exit routes. The actual MELA models
and more details about the spatio-temporal analysis can be found in https:

//ludovicalv.github.io/TSTL. For the first case study we build a MELA
model of forest fire: the spatial structure in this model is a 2D grid, 25 × 25,
with Von Neumann neighbourhood of range 1 and absorbing boundaries. The
considered grid is crossed by a road (R), that has a high probability of causing
fire (B) in its neighbouring forest. We have zones of particular interest (P ) for
which we wish to provide strong protection (e.g. picnic areas, houses, regional
parks) and zones of safety (S) that will never burn. We want to identify safe
areas during the spread of fire. The spread can initiate from the danger zone
and it can expand to the neighbouring cells.

https://ludovicalv.github.io/TSTL
https://ludovicalv.github.io/TSTL


(a) ψsafe5 , ψsafe10 , without control (b) ψsafe5 , ψsafe10 , with control

(c) ψarea5 , ψarea10 , without control (d) ψarea5 , ψarea10 , with control

Fig. 2: (a, b): validity of TSTL formulas ψsafe5 , ψsafe10 at t = 0 (low risk)
(c, d): validity of TSTL formulas ψarea5 , ψarea10 at t = 0 (safe zones)

– Zones of interest (picnic areas P , brown sign)
– Zones of safety (fire assembly points S, green sign)
– Road (R, black line) and danger zone (D, neighbouring area)
– Green area: vegetation (25 km2)

To reach our goal we start with two SSTL properties: the SSTL property ϕpos ,
a “static” property, that predicates about respective position of locations, and
the property ϕfire5 , related to eventually burning (B) over a given time horizon,
here for example 5 time steps. With the formula ϕpos we identify the locations
that connect P and S with a bounded cost, where the cost bounds are chosen
given the distance between the two areas, and that are not part of the road. We
verify these properties at time 0.

ϕpos := (�[0,17](S > 0)) ∧ (�[0,17](P > 0)) ∧ (¬(R > 0))

ϕfire5 := F [0,5](B > 0)

We find the safe zones using the TSTL property ψarea5 , that identifies the loca-
tions satisfying the position requirements and with low probability of burning.

ψpos := P>0.01(ϕpos) ψsafe5 := P<0.2(ϕfire5 ) ψarea5 := ψpos

∼
∧ ψsafe5

The results of this analysis are shown in Figure 2a and 2c. Using TSTL we can
also identify the zone of higher risk: we use the operator everywhere to identify
the locations for which all the closest neighbours have high probability of being
on fire, within the first 10 time steps (ψrisk).

ϕfire10 := F [0,10](B > 0) ψfire10 := P>0.8(ϕfire10 ) ψrisk :=
∼
�

[1,1]
ψfire10



(a) t = 1 (b) t = 5 (c) t = 10 (d) t = 15

Fig. 3: TSTL property ψrisk : high risk zones, for t = 1, 5, 10, 15 time steps

The results are shown in Figure 3. We can observe that the locations neigh-
bouring the road and the safe zones do not satisfy ψrisk : in fact, not all their
neighbouring locations will burn, since both the road and the safe zones will
never catch fire. We can also introduce a control measure, like a firebreak [17],
to protect the areas between the zone of interest and the safe zones. Firebreaks
work as a barrier and they usually consist of a gap in vegetation that slows down
the fire spreads. For this reason, we add in our model fire detectors that, once
the fire is detected at a given distance, will activate the control measure. These
control actions will reduce the probability of fire spread, e.g. cutting the vege-
tation in the neighbouring area. Using MELA we can also estimate the expense
(accumulated performance cost) associated with the control measures, such as
the cumulative reward for Continuous Stochastic Reward Logic [18], and use
these estimations to balance between effectiveness and expense of the control
actions. The difference between the two models, without/with control, is shown
in Figure 2, where we can observe a wider safe zone in the model with the control
measure. We verify the TSTL properties ψpos (for position) and ψsafe5 , ψsafe10

(for low risk of fire spread in 5 and 10 time steps, respectively), while ψarea5 and
ψarea10 are used to define the safe zones in the different scenarios:

ψsafe5 := P<0.2(ϕfire5 ) ψsafe10 := P<0.2(ϕfire10 )

ψarea5 := ψpos

∼
∧ ψsafe5 ψarea10 := ψpos

∼
∧ ψsafe10

We can expand our analysis using TSTL to identify the limited areas of risk,
in situations where we have isolated danger spots spread in the area, using the
TSTL bounded surround operator and the formula:

ψriskArea := (P>0.8(B > 0))
∼
S
[w1,w2]

(P<0.2(B > 0))

We can also analyse the effectiveness of the control measures, verifying that the
risk probabilities do not exceed a given threshold over time.

ψlowRisk :=
∼
G
[0,t]

P<0.2(B > 0)

In both case studies, for each property we run 30 simulations to perform TSTL
verification. With these relatively few runs we have an overall insight about



the dynamics and about the differences between distinct models, with a simple
representation of complex systems and properties. Nevertheless, this analysis
takes into account the uncertainty, that can be used to determine the need of
more runs for more precise results. We will expand our current framework to
automatically provide additional simulations to refine the analysis of the atomic
propositions, when a more precise result is needed.

6 Case study: Emergency evacuation route

For the second case study we introduce another fire related model: we want to
identify the most appropriate fire exit in a situation where the evacuation routes
are already defined. We aim to identify the safe evacuation routes from the centre
of the grid to the assembly points, located in the corners, having a fire starting
in the location in the lower left corner, that can spread to the neighbouring
locations. We build a MELA model on a 2D grid (25 × 25) where the fire can
spread everywhere, apart from the assembly points (safe zones). In the parts of
the grid defined as a route we have two agents in parallel, one that identifies the
presence of people and the other one that identifies the presence of fire.

– Fire spread model (on a grid, 25 km2)
– Agents at the center
– Different exit routes (grey lines) to safe zones

(located in the corners)
– For each route: (fire || people)

In this example the movement of people and fire are modelled separately, they do
not influence each other in the model. We will gather both types of information
in the study of TSTL properties. This model focusses more on the concrete safe
path and on actual movement, while in the previous one we were defining the
different safe areas in time, without specifying the route. In the inflammable area
the fire agent can be on fire (B, burning) or not (I, inflammable) while the exit
route locations can be empty (EM), occupied (Occ) or passed (P ); P represents
a cell that was occupied but empty again. To identify the safe evacuation routes,
we use TSTL to identify cells that have low probability of being on fire (ψfire)
and non-zero probability of being occupied (ψocc), given the agent movement in
the model.

ϕocc := Occ > 0 ϕfire := B > 0

ψocc := P>0.01(ϕocc) ψfire := P<0.2(ϕfire) ψsafe := ψocc
∼
∧ ψfire

The verification output of TSTL property ψsafe shows the routes that will lead
to the assembly point safely, as shown in Figure 4. To be able to identify the
safe evacuation routes from the beginning, instead of observing their temporal
evolution, we can check the TSTL property ψsafeRoute at t = 0. We want to
identify the route that, with probability higher than 0.8, will not be on fire if
occupied, in this case in the first 10 time-steps.

ϕroute := (EM > 0) ∨ (Occ > 0) ∨ (P > 0)



(a) t = 1 (b) t = 5 (c) t = 7.5 (d) t = 10

Fig. 4: Temporal evolution of safe evacuation routes: TSTL property ψsafe , with
movement rate of the agents equal to 2.0

(a) r = 1.0 (b) r = 2.0 (c) r = 3.0 (d) r = 4.0

Fig. 5: Safe evacuation routes: TSTL property ψsafeRoute , with different move-
ment rate of the agents

ϕnotFire := ¬((Occ > 0) ∧ (B > 0)) ≡ ¬(Occ > 0) ∨ ¬(B > 0)

ϕGsafe := G[0,10](ϕroute ∧ ϕnotFire) ψsafeRoute := P>0.8(ϕGSafe)

We will check this TSTL property changing the rate of agent movement in the
MELA model, as shown in Figure 5. We can observe that if the rate of movement
is not high enough, there are not safe options to reach the assembly points. As
further analysis, we examine the number of unknown values over time, given
TSTL properties and changing the quantity of spatio-temporal trajectories to
analyse. We study the percentage of locations having unknown as truth value for
different formulas, in both case studies, for different numbers of simulation runs.
We observed that the percentage decreases with the increase of the number of
runs. Since the width of the confidence intervals depends to a large extent on
this value, with an increase in the number of runs we tend to give a more precise
estimation of the satisfaction probability. Therefore we have narrower confidence
intervals as input for TSTL monitoring and a consequent smaller percentage of
unknown values. The three-valued approach is useful to discriminate among
TSTL properties in the process of acquiring spatio-temporal trajectories, until
the satisfaction set is large enough.

7 Discussion

In the current framework development we use verification of SSTL formulas
as input for TSTL monitoring and the starting point for the spatio-temporal



analysis. We want to point out that TSTL can be used to predicate on estimated
satisfaction probabilities of formulas specified with other logics and also on more
general uncertain values with an estimated confidence, as long as the required
format is maintained (estimated value for each location at each time point).

As future case studies we will apply our framework to model the spread of
invasive species, in particular giant hogweed [19]: we will analyse the effective-
ness of different control measures to protect areas of interest, such as regional
parks, taking into account also the suitability of the different locations for plant
colonisation. In particular, we will analyse the difference between prevention
(control outside the boundaries of the area) and direct action (eradication when
the invasive species are detected inside the area), considering also the expense
associated with the different measures.

As a future extension for TSTL we will define and implement the operator

bounded reachable
∼
R. This operator can be seen as a spatial until with direction

and associated with a path. We will be able to verify properties related with
locations reachable within a given cost range and satisfying defined TSTL prop-
erties, and the existence of a connecting path formed only by locations satisfying
a given set of TSTL properties. In the case studies we presented, the use of this
new operator would have allowed us to identify safe paths without having to
mimic the actual movement, detecting different possible solutions. Using this
new TSTL operator we could verify if there is a safe location (assembly point S)
that we can reach passing only through locations with low probability of burning,
with a cost w, w ∈ [w1, w2]:

ψ := (P<0.2(B > 0))
∼
R

[w1,w2]
(P>0.01(S > 0))

8 Conclusions

In this paper we presented Three-Valued Spatio-Temporal Logic (TSTL), an
extension of Signal Spatio-Temporal Logic (SSTL) that allows us to widen the
analysis of spatio-temporal properties of stochastic systems. We have shown how
this extension is used to study the spatio-temporal evolution of the estimated
satisfaction probabilities of given SSTL formulas. We implemented the monitor-
ing algorithms for each TSTL operator and used them in the case studies to
perform the novel analysis, checking the validity of different TSTL formulas. We
used TSTL to identify the zones that have high risk of catching fire during a
fire spread and to find the safest evacuation routes, checking the ones that have
high probability to be safe over time. We provide the novel spatio-temporal logic
with a three-valued semantics to handle the intrinsic uncertainty related to the
statistical methods used to estimate the satisfaction probabilities. The three-
valued approach allows us to perform initial analysis with a relatively small set
of spatio-temporal trajectories, taking into account the uncertainty; on the other
hand, it also provides a decision tool on the number of simulations needed for
drawing stronger conclusions.
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