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using unconstrained MDS gives a rapid method to detect 
and remove problematic markers, and that a subsequent 
analysis using either constrained MDS or principal curve 
analysis gives reliable marker orders. The latter approach 
is also particularly rapid, taking less than 10 s on a set of 
258 markers compared to 6 days for the JoinMap software. 
This MDS approach could also be applied to experimental 
populations of diploid species.

Introduction

Genetic linkage maps are a vital tool for locating genes 
responsible for observable traits in plants and animals. The 
initial steps in constructing a linkage map for an experi-
mental population are clustering the markers into linkage 
groups corresponding to the chromosomes, and calculating 
recombination fractions and the strength of the evidence 
for linkage, measured as the LOD score (logarithm10 of the 
odds ratio) between all pairs of markers within a linkage 
group. However, ordering the genetic markers into a link-
age map is the most computationally demanding part of 
linkage mapping and this challenge is increasing as mod-
ern sequencing technologies produce larger data sets. For a 
linkage group of m markers, the number of possible orders 
is m!/2 and it is not possible to compare all orders. This 
ordering problem is a variant on the familiar ‘travelling 
salesman’ problem, and there is a large literature on dif-
ferent search methods. There are two aspects to the order-
ing problem: the choice of a criterion to optimise and the 
choice of an optimisation algorithm.

In a linkage mapping context, most optimisation criteria 
are functions of the recombination fraction between pairs of 
markers and the associated LOD score. An exception is the 
RECORD software (Van Os et al. 2005), which analyses 
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the marker genotypes directly to minimise the total number 
of recombination events: this approach has been shown to 
order large numbers of markers rapidly and accurately, but 
is implemented only for crosses from homozygous diploid 
parents or separate maternal and paternal data from a full 
sib population from heterozygous parents (a ‘pseudo-dou-
ble-testcross’ or CP population, Grattapaglia and Sederoff 
1994). Various criteria based on the recombination frac-
tion have been proposed, such as the maximum likelihood 
of an order (ML), the maximum sum of adjacent LOD 
scores (SALOD), the minimum sum of adjacent recombi-
nation fractions (SARF) or the weighted least squares cri-
terion (WLS). Details of these can be found in Liu (1998) 
or Van Ooijen and Jansen (2013). For some population 
types, such as a doubled haploid or backcross population 
from the F1 generation of homozygous parents, the LOD 
score is a monotonic function of the recombination fraction 
and so criteria such as SARF and SALOD are equivalent. 
In other population types, such as a CP population, some 
configurations of marker pairs can have the same recombi-
nation fraction, but quite different LOD scores. Maliepaard 
et al. (1997) has discussed this in detail for dominant and 
codominant markers in diploid CP populations.

The high number of possible configurations of marker 
pairs, and the variation in precision of estimates of their 
recombination fraction, is a particular challenge in auto-
tetraploid crops such as potato. Hackett et al. (2013) identi-
fied 67 possible configurations for a pair of SNP markers 
with different dosages and phases in an autotetraploid full 
sib population and examined the LOD scores for simulated 
pairs with an expected recombination fraction of 0.1 in a 
population of size 200. They found that for some configura-
tions linkage would not be detected, with an LOD score as 
low as 0.6, while for the most informative configurations 
the LOD score was as high as 43.1. The weighted least 
squares criterion is a particularly good choice for order-
ing markers in complex situations such as these, as it takes 
into account all recombination fractions and LOD scores, 
rather than just adjacent ones in each ordering. This is use-
ful if nearby markers are in a configuration with a low LOD 
score and results in this criterion being robust to errors in 
data (Shields et al. 1991).

There is a wide choice of optimisation algorithms. The 
older approaches have been reviewed by Hackett et al. 
(2003) and some newer ones by Van Ooijen and Jansen 
(2013). Wu et al. (2008) compared several approaches 
using simulated doubled haploid data and found that 
their MSTMAP approach, based on a minimum spanning 
tree algorithm, gave a more accurate marker order than 
RECORD, while both were faster and better for noisy data 
than JoinMap’s ML algorithm software (Stam and Van Ooi-
jen 1995; Van Ooijen 2006) and CarthaGène (Schiex and 
Gaspin 1997). Lep-MAP (Rastas et al. 2013) performed 

better than MSTMAP in large (10,000 SNPs) simulated 
F2 backcross datasets. However, of these programs, only 
JoinMap can analyse markers from a diploid CP popula-
tion without separating the data into male and female maps. 
Neither JoinMap’s ML algorithm nor any of the programs, 
MSTMAP, RECORD, CarthaGène or Lep-MAP, will cal-
culate recombination fractions and LOD scores correctly 
for all marker types in an autotetraploid cross.

The JoinMap software has an alternative ordering algo-
rithm to the ML approach, regression mapping, which uses 
a stepwise approach to optimise the WLS criterion. This 
can use a pairwise dataset of recombination fractions and 
LOD scores calculated by a separate program, and so can 
order markers from any cross, including autotetraploids 
or higher polyploids. Hackett et al. (2003) used a differ-
ent optimisation algorithm based on simulated annealing to 
optimise the same WLS criterion and to order AFLP and 
SSR markers in an autotetraploid potato population. The 
simulated annealing search was implemented in their Tetra-
ploidMap software (Hackett et al. 2007). Both JoinMap and 
simulated annealing approaches give a rapid and reliable 
ordering for a small data set, up to 50 markers, but become 
unfeasibly slow if there are 200–300 markers on a linkage 
group, which now occurs regularly with SNP technologies. 
Hackett et al. (2013) developed a methodology for calcu-
lating recombination fractions and LOD scores for data on 
SNP dosage in autotetraploid potato and ordered the SNPs 
using JoinMap’s regression mapping approach on this pair-
wise data. Two rounds of the JoinMap algorithm were run, 
and only markers below a specified threshold for the WLS 
criterion were retained for their final map. This procedure 
took 2–3 h for each potato chromosome and meant that 
some markers that showed an association with the mapped 
markers were dropped. To place all the markers onto a map 
requires a third round of the JoinMap algorithm and this 
can sometimes extend the time from hours to days.

The motivation of the current study is to develop a 
method for ordering large numbers of markers that can 
analyse data from autotetraploid species, with particular 
emphasis on SNPs for which dosage information is avail-
able, such as that from the Infinium 8300 potato SNP 
array (Felcher et al. 2012). It is important that the method 
is rapid enough to investigate the effect of omitting differ-
ent sets of markers that appear to be a poor fit to the map, 
or have other possible errors. We consider an ordering 
approach using metric multidimensional scaling (MDS) 
to optimise a criterion similar to the WLS criterion, usu-
ally called the stress criterion. This is one method from the 
general category of ordination techniques, which represent 
higher-dimensional configurations of points, described by a 
two-dimensional pairwise distance matrix, in a lower num-
ber of dimensions. Ordination techniques have been used 
occasionally in genetic mapping studies, but not widely. 
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Lalouel (1977) considered an ordination approach using 
non-metric MDS, with a criterion based on the ranking of 
recombination fractions, and applied this to order 25 loci. 
However, for a larger marker set where many marker pairs 
are likely to have similarly sized estimates of the recom-
bination fraction but varying precision, ordering mark-
ers based on ranking the recombination fractions is less 
appropriate than using the actual estimates of recombina-
tion fractions. A metric MDS approach was used by Newell 
et al. (1995) and tested on simulated data with up to 50 loci. 
However, their approach is fundamentally different in that 
it seeks to reduce the number of pairwise intermarker dis-
tances to a subset of the highest quality and then combine 
short segments into a map, whereas our method utilises all 
available information, weighting the points according to 
the precision of the distance estimates and fitting a map to 
all the data simultaneously. Their DGMAP software is no 
longer available (Cheema and Dicks 2009). The THREaD 
Mapper program (Cheema and Dicks 2009; Cheema et al. 
2010) is similar to DGMAP, but only analyses data from 
crosses from homozygous, diploid parents. Their study on 
the performance of this program and the technical details 
of its algorithm has not yet been published (Dicks, personal 
communication).

In the present study, we have tested MDS for order-
ing larger numbers of markers in an autotetraploid cross. 
We used either the recombination fraction or Haldane’s 
map distance (Haldane 1919) as a measure of pairwise 
intermarker distance and considered different weighting 
schemes based on the LOD scores to construct the stress 
criterion. Three different ordering methods were investi-
gated: constrained MDS, two-dimensional unconstrained 
MDS followed by principal curves (PC2) and three-dimen-
sional unconstrained MDS followed by principal curves 
(PC3). We have applied this to simulated data with 74–152 
markers on a linkage group, including missing values and 
genotyping errors, and to an experimental dataset of 277 
SNPs from linkage group I of an autotetraploid potato 
population.

Methods

The initial step of a linkage mapping study is to cluster the 
molecular markers into linkage groups. As we have focused 
on autotetraploid species here, and on markers for which 
allele dosages are available, the four homologous chromo-
somes from each parent are connected by duplex, double-
simplex and higher-dosage markers into a single linkage 
group. The ‘distance’ between each pair of markers was 
calculated as the significance of a Chi-square test for inde-
pendent segregation, and the markers were clustered using 
group average clustering. More details of the clustering for 

autotetraploids are given in Luo et al. (2001) and Hackett 
et al. (2013). The recombination fractions and LOD scores 
were then estimated between all pairs of markers within a 
linkage group. As there are at least two possible phases for 
each pair, and often more, the recombination fraction was 
estimated for all possible phases and the most likely phase 
was taken as the one with the highest likelihood among the 
phases with recombination fraction ≤0.5. The estimate of 
the recombination fraction and the LOD score for the most 
likely phase were then used for ordering. Again, full details 
can be found in Hackett et al. (2013). The recombination 
fractions among the m markers in a linkage group were then 
converted to an m × m matrix of pairwise map distances 
using a map function. There are many possible map func-
tions (reviewed by Zhao and Speed 1996) and we used the 
simplest, the Haldane map function (Haldane 1919). We 
also considered the recombination fraction as a measure of 
distance. Other map functions could equally well be used 
here instead. We have focused here on the step of ordering 
the markers to form a linkage map and estimating the dis-
tances between marker positions on the map. We use the 
terminology of Stam (1993) and refer to the estimated dis-
tances between adjacent markers along the map as direct 
map distances. In outline, our approach is to analyse the 
m × m matrix of pairwise map distances between molecular 
markers using multidimensional scaling (MDS), weighted 
by a function of the LOD scores, in the expectation that the 
MDS configuration in two or three dimensions will reveal 
the linear structure of the chromosome. It might be expected 
that a one-dimensional solution would show the structure. 
However for chromosomes of a realistic length, the mark-
ers near opposite ends are inherited almost independently 
of each other and therefore the recombination fractions 
between all such pairs are close to 0.5. This generally results 
in a curved plot, similarly to the ‘horseshoe effect’ in corre-
spondence analysis. The unconstrained solutions in two and 
three dimensions were therefore examined to identify and 
remove any obviously outlying points. To obtain a linkage 
map, the resulting configuration then has to be mapped onto 
a line. This can be done by fitting a principal curve (PC) to 
either the two- or three-dimensional MDS or by constrain-
ing the MDS solution to lie on a circle (spherically con-
strained MDS in two dimensions). The approach was tested 
on simulated data based on a full sib population from auto-
tetraploid parents, simulating data from the potato genetic 
maps published by Hackett et al. (2013). We also studied in 
detail the performance of the PC methods on real data from 
chromosome I of the potato genome.

Multidimensional scaling

Multidimensional scaling (MDS) refers to a class of ordi-
nation techniques designed to display ‘distances’ among 
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points in geometrical space. It is generally used to reduce 
data from many dimensions, m, to fewer, possibly more 
comprehensible dimensions, n. If there are m observa-
tions, then MDS techniques use an m × m matrix of 
observed distances (or dissimilarities) between points and 
the desired number of dimensions, n < m, is specified. A 
configuration of points in n-dimensional space is sought 
that best preserves the observed distances between points 
by minimising a loss function L. For a given configura-
tion X, the loss function L(X) is a function of the difference 
between the observed distances in the m-dimensional con-
figuration (which may be formed using any metric) and the 
Euclidean distances between points in the n-dimensional 
configuration

where || · || is any metric function (i.e. it satisfies the intui-
tive properties of a distance such as non-negativity, symme-
try and the triangle inequality ||x · y|| + ||y · z · || ≥ ||x · z|| ), 
di is the m-dimensional vector of the observed distances 
between point i and the other points, wi is a vector of 
weights associated with point i and d̂i(X) is the m-dimen-
sional vector of distances between point i and the other 
points in configuration X. In its simplest form, classical 
multidimensional scaling is also known as principal co-
ordinates analysis and, though the distance matrix may 
be calculated in a variety of ways, the metric is always 

Euclidean, ||di · d̂i|| =
√∑

j (dij − d̂ij)2, and the weights 

are always equal to one. If the distance matrix is Euclid-
ean, then this is equivalent to the principal components 
analysis and the function to be minimised reduces to √∑

ij (d
2
ij − d̂2ij).

Metric multidimensional scaling (or weighted met-
ric multidimensional scaling) generalises classical mul-
tidimensional scaling to allow for different metrics (and 
weights) and a commonly used loss function in this context 
is stress, defined as

There are many ways of minimising σ(X) and we used 
a common method, the stress minimisation by majorisa-
tion approach implemented in the smacof R package (de 
Leeuw and Mair 2009). This minimises σ(X) iteratively by 
minimising at each step a simple function that bounds σ 
from above, called the majorising function. The method is 
described in detail in de Leeuw and Mair (2009).

L(X) =

m∑

i=1

||widi · d̂i(X)||,

σ(X) =
∑

i<j<m

wij

(
dij − d̂ij(X)

)2
.

The analysis described above is an unconstrained MDS. It 
is also possible to constrain the final configuration of points 
to lie on a circle by imposing a penalty for deviations from 
that circle, in a constrained MDS. This is done by defining a 
new point in the centre of the data and constraining all points 
to be equidistant from it. The variation in distance from the 
centre point is added to the stress function.

Principal curves

We used the method of principal curves (PC) to map the 
final MDS configuration of points onto a curve. The same 
method applies no matter what the dimensionality of 
the MDS configuration. Formally, principal curves were 
defined by Hastie and Stuetzle (1989) as self-consistent 
smooth one-dimensional curves that pass through the mid-
dle of a p-dimensional data set providing a nonlinear sum-
mary of the data. (In this context, the projection of a data 
point onto a curve is the closest point on that curve, and 
for a curve to be self-consistent, any set of data points that 
project onto the same point, z, on the curve must have point 
z as their mean.) Fitting a PC is an iterative two-stage pro-
cess. A summary straight line, such as a principal compo-
nent, is fitted. Then this summary line is transformed to a 
smooth curve, using splines, to achieve self-consistency.

Since splines depend on the smoothing constraint, PCs 
are not unique. We used the algorithm implemented in the 
R package princurve (Hastie and Weingessel 2013) which 
uses the first principal component as the initial summary of 
the data, cubic splines for fitting smooth curves and local 
averaging to determine self-consistency. The smoothing 
constraint can be selected by an explicit option or deter-
mined automatically by leave-one-out cross-validation.

Algorithm for analysis

The recombination fractions and LOD scores were calcu-
lated as described above for each population, and, where 
map distances were used, the recombination fractions 
were converted to map distances using Haldane’s mapping 
function.

All pairs of resulting map distances were first analysed 
using unconstrained MDS implemented in the smacof R pack-
age (de Leeuw and Mair 2009) i.e. minimising a stress func-
tion. Each pairwise intermarker distance was weighted. Four 
different combinations of distance and weighting were used 
in the stress function—the map distance weighted by (1) the 
LOD score, (2) the square of the LOD score or (3) the square 
root of the LOD score (LOD0.5) and (4) the recombination 
fraction weighted by the LOD score. Two different approaches 
were used to obtain the final linkage map of marker positions 
and direct map distances from the MDS configuration:
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(i) Principal curves (PC2 and PC3): the first principal 
curve was calculated using the princurve R package 
(Hastie and Weingessel 2013), with the smoothing con-
straint selected by leave-one-out cross-validation. The 
projections of markers onto this curve give the marker 
positions and the direct map distances between them. 
In PC2, the curve was fitted to a two-dimensional 
MDS, and in PC3, it was fitted to a three-dimensional 
MDS.

(ii) Constrained MDS (cMDS): two-dimensional spherically 
constrained MDS was applied to the data with a penalty 
for markers deviating from the circle. The penalty was 
selected to ensure that the stress from the constrained 
MDS was no more than 10 % greater than that from the 
unconstrained MDS. The projections onto the circle give 
the marker positions and the direct map distances between 
them. The cap of a 10 % increase in stress is somewhat 
arbitrary, but was chosen by inspection of the simulations 
as effective in ensuring that key information is retained 
from the unconstrained configuration whilst allowing pro-
jection onto the circle.

A detailed algorithm for the fitting process is provided 
in the appendix. All the R packages were run in R 3.0.3 
(R Core Team 2014). Our R code has been included in the 
Supplementary Information.

Diagnostics for problem markers

It is common for linkage mapping studies to contain prob-
lem markers. Some markers can be generally difficult to 
score, leading to many genotyping errors, possibly distorted 
segregation ratios, or many missing values. Such markers 
need to be identified and eliminated before the final order-
ing. Other markers will have a lower level of genotyping 
error, which may be harder to detect, and it is important 
that the ordering approach is as robust as possible against 
these. The first diagnostic of problem markers is to inspect 
the MDS configuration (in the case of PC3, the configura-
tion can be considered in both two and three dimensions), 
to find clearly outlying points. This is a subjective step 
and it is usually necessary to carry it out more than once, 
removing outliers and then recalculating the configuration. 
Another diagnostic of overall fit from this plot is to super-
impose the configurations from the unconstrained MDS 
and the constrained MDS to see whether there has been a 
noticeable change in the rank order of markers, in either 
dimension, particularly if this moves markers from the cen-
tre of the configuration to either end of the arc. If this has 
occurred, it may indicate the inversion of a section of the 
map. An example is shown in Supplementary Figure 1.

A second diagnostic tool is the nearest neighbour meas-
ure (NNfit), derived from the matrix of distances. This 

is a measure given for each marker and is the sum of the 
absolute difference between the observed and estimated 
distance between that marker and the nearest informative 
neighbours on either side—that is, the nearest neighbours 
with a non-zero LOD score. (Neighbouring markers where 
different parents are heterozygous are uninformative about 
recombination.) For some markers near the ends of the 
chromosome, there will be a neighbour on only one side. 
High values of the criterion can be used to identify possible 
outliers, while the mean NNfit provides a measure of the 
fit to the original data. It can be used to compare models 
using the same distance metric (in our case, Haldane map 
distance or recombination fraction).

A third diagnostic is obtained by examining the ordered 
marker data, returning to the original genotype scores. 
Hackett et al. (2013) describe how a hidden Markov model 
(HMM) can be used to reconstruct the chromosomal states 
underlying each offspring’s genotype scores, using the 
inferred parental phases for the ordered markers, and this is 
used as part of their methodology for QTL mapping. In the 
present study, the HMM was run for each offspring to iden-
tify the chromosome configuration most likely to give the 
observed genotypes. This gave an m × o matrix of recom-
bination locations, where o is the number of offspring. 
From this matrix, we then calculated how the total number 
of recombinations across all offspring was affected by (1) 
excluding each marker in turn, (2) swapping each marker 
with the adjacent marker and (3) trying all other possi-
ble orderings of the surrounding triplet of markers. (This 
approach was motivated by the RECORD software (Van Os 
et al. 2005), and assumes that a badly scored or misplaced 
marker will have an unusually high number of recombina-
tions in its vicinity in the chromosomal configuration, and 
that the order can be improved by removing it or by a local 
swap in ordering.) Orders were compared using HMM_
mean, equal to the mean over all offspring of the recombi-
nations that can be removed by excluding that marker.

Finally, a diagnostic for marker genotypes derived from 
quantitative measurements, such as the theta scores from 
the Infinium 8300 potato SNP array (Felcher et al. 2012), 
is to map the quantitative measurements using QTL inter-
val mapping. This approach is discussed in more detail and 
used by Hackett et al. (2013). It was not appropriate for 
the simulated data sets here, as they were simulated as 0–4 
dosages, but it was applied to the analysis of the experi-
mental data.

Simulation of autotetraploid data

Simulation 1: problem‑free simulated data

The autotetraploid simulations were motivated by our work 
on analysing SNP dosage data in autotetraploid potato and 
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the simulations were based on the maps and parental geno-
types for the 12 potato chromosomes published by Hack-
ett et al. (2013). Table 1 and Supplementary Table S1 give 
details of the number of markers in each case. Ten popula-
tions of 200 offspring were simulated in Fortran, and the 
recombination fractions and LOD scores were calculated 
using the theory and Fortran program described in detail in 
Hackett et al. (2013).

Simulation 2: Data with 20 % missing values

Simulation set 2 introduced missing values, generating 
these randomly and independently for each offspring and 
genotype with probability 0.2. These were introduced 
to the ten original simulations for chromosomes I, II and 
III, choosing these as having a good range of lengths and 
marker densities.

Simulation 3: data with 5 % random errors

Simulation set 3 introduced errors into the original simula-
tions, selecting the combination of offspring and genotype 
to be changed randomly and independently with probabil-
ity 0.05. The genotype of the selected offspring, expressed 
as its dosage, was changed randomly to a different dos-
age that was compatible with the given parental dosages 
under the assumption of random chromosomal selection. 
(For example, if the parental configuration was a simplex 

marker AAAB × AAAA, with possible offspring dosages 
of 0 or 1 B alleles, an offspring with genotype 1 would 
be changed to 0, but not to 2, which is obtainable only by 
formation of a multivalent and double reduction, or to 3 
or 4, which are not possible from this parental configura-
tion. We assume that errors leading to such inconsistencies 
would have been detected at an earlier stage of the analy-
sis.) As with the missing values, these random errors were 
introduced into the ten simulations for chromosomes I, II 
and III.

Analysis of experimental autotetraploid data

The potato maps of Hackett et al. (2013) were derived 
using the regression mapping approach of JoinMap 4, 
and recombination fractions and LOD scores were calcu-
lated using the theory in that paper. Due to the slowness 
of this approach with large datasets, only two rounds of 
the JoinMap algorithm were run to obtain those maps, and 
consequently some SNPs that showed an association with 
the mapped SNPs were not included in the final maps. On 
chromosome I, 277 non-identical SNPs clustered together 
initially, but only 142 were placed after two JoinMap map-
ping rounds. The full set of 277 SNPs were reanalysed 
here using the MDS approach to see how many extra SNPs 
could be mapped. The theta scores for these 277 SNPs were 
then mapped as quantitative traits as a check on their dos-
age, phase and position, and the distribution of recombina-
tions was explored by fitting an HMM to each offspring’s 
dosages. Linkage maps were drawn using the MapChart 2.2 
software (Voorrips 2002).

Results

Various measures were used to assess all the simulations: 
map length, Spearman’s rank correlation with the true 
order and mean NNfit. The criterion of total swaps from 
the true order was also investigated, but did not show any-
thing in addition to the first three criteria and so is not dis-
cussed below. The process of calculating the HMM_mean 
(of recombinations that can be excluded by dropping a 
marker, based on the HMM reconstruction) was harder to 
automate and so was run for a single simulation of each 
scenario rather than for all ten simulations, and using the 
maps from the Haldane map distance with LOD and LOD2 
weighting, estimated by the PC2 and PC3 methods. The 
first three measures are shown in the text for chromosomes 
I–III, which we consider in detail, and in Supplementary 
information for chromosomes IV–XII. The HMM_means 
are also in the Supplementary information. All three meth-
ods ran be used rapidly––of the order of seconds rather 

Table 1  Median rank correlations of the ordering of simulation set 
1 with the true order, for chromosomes I–III and for four stress cri-
teria based on Haldane’s map distance with LOD, LOD2 and LOD0.5 
weightings and recombination fraction with LOD weighting

cMDS is the constrained MDS method. PC2 and PC3 are from the 
principal curves method applied to two- and three-dimensional 
unconstrained MDS, respectively

Weight Method Chromosome (no. markers)

I (142) II (120) III (74)

LOD cMDS 0.995 0.996 0.991

PC2 0.995 0.996 0.987

PC3 0.996 0.996 0.988

LOD2 cMDS 0.997 0.997 0.995

PC2 0.997 0.997 0.996

PC3 0.997 0.997 0.996

LOD0.5 cMDS 0.993 0.993 0.979

PC2 0.994 0.993 0.972

PC3 0.994 0.993 0.979

Recombination 
fraction

cMDS 0.995 0.997 0.807

PC2 0.996 0.997 0.991

PC3 0.996 0.997 0.992
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than minutes, but both PC2 and PC3 were of the order of 
ten times faster than cMDS.

Simulation 1: problem‑free simulated data

Figure 1 shows an example of the unconstrained two-
dimensional MDS configuration (solid circles) and the pro-
jections onto the fitted principal curve (triangles and dashed 
line) for one of the simulations of chromosome I, using the 
Haldane map distance and LOD2 weighting. This arc shape 
was typical for these configurations. The Spearman rank 
correlations with the true order for each simulated chromo-
some are summarised in Table 1 and Supplementary Table 
S1. All three methods—cMDS, PC2 and PC3—had very 
high correlations when Haldane map distances and LOD or 
LOD2 weights were used, with LOD2 yielding slightly bet-
ter estimates of order, while the LOD0.5 weighting gener-
ally had lower correlations. When the recombination frac-
tion was used as a measure of distance, the correlations 
were more variable, with some simulations using PC2 and 
PC3 having as high correlations as the LOD2 weighting, 
but the cMDS method having lower mean correlations for 
some chromosomes, especially LG III. This is because in 
the two of the ten simulations of LGIII, the unconstrained 
MDS yielded an S-shaped configuration which had no nat-
ural mapping onto an arc. The PC method estimated order 
well in this case, but the constrained MDS method yielded 

a poor fit. However, this is visible from the diagnostics 
and Supplementary Figure 1 gives an example of how to 
recognise a poor fit. Either relaxing the cMDS penalty or 
using the PC method gives a better order here. LG III had 
the fewest markers of the simulated sets and had a central 
region with larger intermarker distances and neighbour-
ing markers in configurations with low LOD scores, which 
probably caused the difficulty.

For the estimates of length (Fig. 2 and Supplemen-
tary Table S2), the LOD or LOD2 weighting with cMDS 
yielded better estimates of total chromosome length than 
PC2 and PC3. However, all methods tended to underesti-
mate the lengths of the chromosomes. The LOD2 weighting 
led to consistently greater underestimates of length. When 
using the cMDS method with LOD0.5 weights, the cMDS 
method tended to overestimate chromosome length slightly. 
This was less of a problem with the PC methods, but there 
was still a tendency towards length inflation. For all meth-
ods with the recombination fraction as a distance measure, 
the chromosome length was underestimated to a greater 
extent than using either LOD or LOD2-weighted Haldane 
map distance.

For the mean NNfit (Table 2 and Supplementary Table 
S3), the LOD2 weighting performed better than the LOD 
weighting overall, which in turn was better than the LOD0.5 
weighting. For some chromosomes, the differences among 
the three methods were small, while for the others the 
cMDS method gave a worse fit than PC2 and PC3. The 
NNfits for the recombination fraction are not comparable 
with those from the Haldane distances, but again PC2 and 
PC3 were better than cMDS.

Overall, the LOD0.5 weighting did not perform as well 
as the other weightings for any of the criteria. Using the 
recombination fraction rather than the map distance per-
formed well in some cases, but underestimated the chro-
mosome length substantially and was worse than the LOD2 
weighting with regard to the rank correlation with the true 
order for some chromosomes. We therefore focused on 
LOD and LOD2 weights and Haldane map distances for the 
other simulations 2 and 3, the HMM reconstructions and 
the experimental data.

Simulation 2: data with 20 % missing values

With 20 % missing data, the median rank correlation 
remained high, although means (not shown) were occasion-
ally lower. The main occurrence of this was for one simula-
tion of chromosome I where the configuration was S-shaped 
(similar to the example in Supplementary Figure 1) and the 
cMDS method failed. Either the differences between meth-
ods were small, or LOD2 weights gave better estimates of 
order (Table 3), and the approaches using PC2 or PC3 were 
better than cMDS. Both LOD and LOD2 weights tended to 
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Fig. 1  Final configuration of the unconstrained two-dimensional 
MDS (solid circles) and the projections onto the fitted principal curve 
(open triangles and dashed line) using LOD2 weights for an example 
from simulation 1—problem-free data simulated from potato chro-
mosome I
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underestimate the length of the chromosome with LOD2 
weights giving greater underestimates (Fig. 2). cMDS with 
LOD weights consistently gave the best estimates of length, 
but the PC methods tended to give the best estimates of 
marker order—for chromosome I PC2 was better whilst for 
chromosome III PC3 was better. As in the case of the prob-
lem-free data, LOD weights gave better estimates of length, 
whilst LOD2 weights gave better estimates of marker order. 
For the mean NNfit (Table 3), the best results were obtained 
from the LOD2 weights and either PC2 or PC3; both of 
these were better than any other combination.

Simulation 3: data with 5 % random errors

With errors in the data, all methods tended to overestimate 
the chromosome length, but PC3 consistently gave the best 
estimates of length (Fig. 2) and marker ordering (Table 4). 
The LOD2 weightings with PC3 gave the best estimates of 
length. For chromosomes I and II using the PC3 method 
with either LOD or LOD2 weightings gave a better estimate 

of order, whilst in chromosome III PC3 with LOD2 weights 
gave a better estimate. The combination of LOD2 weights 
and PC3 had the lowest NNfit for each chromosome.

Recombinations in the HMM reconstructions

A, HMM was used to reconstruct the chromosomal con-
figuration for one simulation of each scenario, using the 
maps from the PC2 and PC3 methods with the stress func-
tion calculated from the Haldane map distance and LOD 
and LOD2 weighting. The HMM was also run with the 
true order for comparison. Supplementary Table 4 sum-
marises the recombinations that were inferred. For the true 
order and the problem-free simulations (simulation set 1), 
at most four recombinations could be removed by omitting 
markers—a proportion of 0.033 per marker. For 10 of the 12 
chromosomes, the PC3 method with LOD2 weighting found 
the order for which the HMM_mean was lowest. At most, 
seven recombinations could be removed by omitting a sin-
gle marker. The results were similar for the simulations with 

LOD0.5LOD LOD LODLOD2 LOD2 LOD2rf

Fig. 2  Mean and standard deviation of lengths from chromosomes I, 
II and III of simulation set 1 with LOD, LOD2 and LOD0.5 weight-
ings and recombination fraction (rf) with LOD weighting and from 
simulation sets 2 and 3 with LOD and LOD2 weighting using cMDS, 
PC2 and PC3 methods. The dashed line is the true length of the chro-

mosome, the height of the bars is the mean estimated length and the 
length of the error bar is twice the standard deviation of the esti-
mated lengths over the ten simulated populations of each chromo-
some
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missing values. For the simulations with 5 % error, all val-
ues of HMM_mean were much higher, including for the true 
order, and it was less clear which approach was best.

Experimental data from potato chromosome I

The MDS methods were used to map 277 non-identical 
SNPs that were found by Hackett et al. (2013) to cluster 

together as chromosome I, including 142 that were placed 
on the final map of chromosome I in that publication. The 
maps from LOD and LOD2 weighting were compared, 
using two- and three-dimensional principal curves. Fig-
ure 3 illustrates the first three dimensions using the LOD2 
weighting. SNP 269 is particularly prominent in the plot 
of dimension 2 against dimension 1, while 174, 232, 112, 
18, 123 and 122 are outlying in dimension 3 against dimen-
sion 1. The plot of dimension 3 against dimension 2 is less 
clear, but similar SNPs are outlying. SNP 269, which was 
placed at the end of the inferred configuration, also had a 
large value for its NNfit. Two-dimensional MDS gener-
ally identified fewer outliers, but in each case SNPs 269 
and 174 were well separated from the rest of the data. The 
SNPs identified as outliers and omitted from the ordering 
are summarised in Table 5a, which shows a good agree-
ment among the methods and weighting. A review of the 
SNP scores showed that SNP 269 was a double-duplex 
(AABB × AABB) SNP with significant (p < 0.001) asso-
ciations with some other SNPs in this group based on a 
Chi-square test for independent segregation, but the matrix 
of recombination fractions and associated LOD scores 
showed that SNP 269 had only a single significant linkage 
to the rest of the group, with an LOD score of 3.3. A re-
examination of the theta scores for this SNP showed it to be 
difficult to genotype and that it also showed some signifi-
cant associations with SNPs on LG VIII. Table 5a shows 
how the mean NNfit statistic is reduced by the first round 
of dropping outliers and is generally reduced by the second 
round if one is necessary.

For experimental data, mapping the theta scores as 
quantitative traits is a very effective means of investigating 

Table 2  Mean and standard deviation (SD) of the NNfit measure 
from simulation set 1, chromosomes I–III, with LOD, LOD2 and 
LOD0.5 weightings and recombination fraction with LOD weighting

cMDS is the constrained MDS method. PC2 and PC3 are from the 
principal curves method applied to two- and three-dimensional 
unconstrained MDS, respectively. SD is the standard deviation of the 
NNfit over the ten simulated populations of each chromosome

Weight Method Chromosome

I II III

LOD cMDS 2.07 (0.16) 1.64 (0.07) 3.09 (0.26)

PC2 1.99 (0.16) 1.57 (0.07) 2.97 (0.21)

PC3 1.98 (0.17) 1.56 (0.08) 2.95 (0.24)

LOD2 cMDS 1.94 (0.12) 1.50 (0.11) 2.95 (0.14)

PC2 1.84 (0.08) 1.47 (0.08) 2.86 (0.12)

PC3 1.82 (0.09) 1.46 (0.07) 2.81 (0.15)

LOD0.5 cMDS 2.26 (0.20) 1.79 (0.10) 3.22 (0.41)

PC2 2.18 (0.21) 1.73 (0.09) 3.16 (0.34)

PC3 2.18 (0.22) 1.72 (0.10) 3.15 (0.33)

Recombination 
fraction

cMDS 1.56 (0.09) 1.35 (0.08) 2.49 (0.12)

PC2 1.41 (0.09) 1.22 (0.07) 2.24 (0.11)

PC3 1.34 (0.08) 1.18 (0.04) 2.22 (0.15)

Table 3  Comparison of ordering methods for simulation data set 2, 
with 20 % missing data, for chromosomes I, II and III, by rank cor-
relation and NNfit

Abbreviations cMDS, PC2 and PC3 are as in previous tables

Measure Weight Method Chromosome

I II III

Median rank 
correlation

LOD cMDS 0.994 0.994 0.970

PC2 0.994 0.993 0.985

PC3 0.994 0.993 0.986

LOD2 cMDS 0.995 0.995 0.985

PC2 0.996 0.995 0.986

PC3 0.995 0.995 0.990

Mean NNfit 
(SD)

LOD cMDS 1.98 (0.14) 1.56 (0.06) 2.91 (0.50)

PC2 1.71 (0.32) 1.40 (0.06) 2.62 (0.25)

PC3 1.83 (0.15) 1.49 (0.09) 2.73 (0.29)

LOD2 cMDS 1.66 (0.10) 1.33 (0.05) 2.52 (0.19)

PC2 1.66 (0.10) 1.33 (0.05) 2.52 (0.19)

PC3 1.68 (0.12) 1.36 (0.08) 2.50 (0.20)

Table 4  Comparison of ordering methods for simulation data set 3, 
with 5 % errors, for chromosomes I, II and III, by rank correlation 
and NNfit

Abbreviations cMDS, PC2 and PC3 are as in previous tables

Measure Weight Method Chromosome

I II III

Median rank 
correlation

LOD cMDS 0.991 0.992 0.845

PC2 0.991 0.990 0.972

PC3 0.993 0.992 0.967

LOD2 cMDS 0.769 0.986 0.894

PC2 0.987 0.987 0.967

PC3 0.992 0.991 0.978

Mean NNfit 
(SD)

LOD cMDS 2.76 (0.24) 2.40 (0.12) 4.59 (0.40)

PC2 2.39 (0.24) 2.10 (0.12) 4.59 (0.40)

PC3 2.45 (0.20) 2.12 (0.16) 3.82 (0.23)

LOD2 cMDS 2.70 (0.39) 2.26 (0.15) 4.17 (0.46)

PC2 2.26 (0.27) 2.05 (0.13) 4.17 (0.46)

PC3 2.26 (0.13) 1.95 (0.09) 3.49 (0.20)
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the inferred dosage and phase of the parents and whether 
there are any quality issues with the data. This was car-
ried out after inference of the parental phase, using the 
approach described by Hackett et al. (2013). The map 
used was the best configuration from the LOD2 weighting 
and two dimensions, excluding only SNPs 269 and 174 as 
the most extreme outliers. We expect that broad conclu-
sions about the variability and phase from QTL mapping 
will be robust to small variations among maps. The theta 
scores from all 277 SNPs were mapped. The theta score for 
SNP 269 showed little association with this chromosome, 
with a maximum LOD score of 2.9, confirming that it was 
wrongly grouped here. (It showed an LOD of 45.5 when 
mapped to LGVIII.) All other theta scores showed a strong 
association with LGI, as expected, with the maximum of 

the LOD profile being at least 46 and the corresponding 
percentage variance explained being at least 66 %. Of the 
12 SNPs listed as outliers, 6 were problematic in the QTL 
mapping, with either too much variation in the theta scores 
for the dosage calling to be reliable, or inconsistencies 
between the parental phase and/or dosage inferred from 
the SNP and that inferred from mapping the QTL. Prob-
lems were also detected for nine further SNPs that were not 
obvious outliers in the MDS plots.

The second iteration of the MDS analyses used 262 
SNPs, excluding all those with problems according to the 
QTL mapping. Each of the four orders of the 262 markers 
was then analysed using an HMM to look for areas of high 
recombinations. For LOD weighting and the two-dimen-
sional configuration, excluding markers could remove a 
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Fig. 3  The three dimensions of the MDS configuration for experimental data from chromosome I, using LOD2 weighting
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total of 306 recombinants, (mean 1.168), with one marker 
(SNP 248) responsible for 32 of these and there were 
three regions where reordering pairs or triplets of markers 
could reduce the number of recombinations. After remov-
ing SNP 248, repeating the MDS analysis and swapping 
pairs, the count was reduced to 226 (mean 0.866). Details 
of the SNPs removed in the second round and the reduc-
tion in the NNfit and HMM_mean are given in Table 5b for 
each method and weighting. The LOD2 weighting and the 
three-dimensional configuration gave the lowest value for 
the NNfit.

Genome positions were known for 248 of the SNPs in 
this group from the potato reference genome version 4.03 
(Potato Genome Sequencing Consortium 2011; Sharma 
et al. 2013) and as a comparison the HMM was used to 
calculate recombinations for this order, which totalled 248 
(mean 1.000). All of the orders inferred by MDS had high 
rank correlations with these positions (0.996 for the orders 
using LOD weighting, 0.997 for the orders using LOD2 
weighting). Figure 4 compares the map from PC3 and the 
LOD2 weighting with that of Hackett et al. (2013). Apart 
from a small inverted region near the top, the orders are 
similar. Supplementary Table 5 shows the positions from 
the reference genome where known. The order of the top 
section found by the MDS analysis is closer to that of the 
genome sequence than that of Hackett et al. (2013).

The 258 SNPs on the map with the lowest NNfit from 
the LOD2 weighting and the three-dimensional configura-
tion were also ordered using JoinMap’s regression mapping 
algorithm. While the MDS analysis ran in less than 10 s 
once the pairwise data file had been read, the JoinMap anal-
ysis took 6 days and 13 min. The rank correlation between 
the orders was 0.999, and the rank correlation between the 
JoinMap order and that of the reference genome was 0.997. 
The positions from JoinMap are shown in Supplementary 
Table 5.

Discussion

We have shown in this study that MDS can be used to con-
struct linkage maps in autotetraploid species. It reveals 
markers that are well separated from the rest of the link-
age group and gives an order with a high correlation with 
the correct order in the presence of missing values or gen-
otyping errors. It is sufficiently rapid to run repeatedly to 
eliminate outlying markers. The JoinMap software also 
produced a map of the experimental data with a very high 
correlation with the genome sequence, but took just over 
6 days to complete a single linkage group, so is unsuitable 
for general exploration of large datasets.

The constrained MDS obtained the most accurate esti-
mate of marker position in problem-free data using the 

Haldane map distance with the best estimates of length 
being derived from LOD weights and the best estimates 
of order being derived from LOD2 weights. However, 
the PC method (whether in two or three dimensions) did 
nearly as well and was better than the constrained MDS 
method when recombination fraction was used as a met-
ric of distance. In addition, the PC method was noticeably 
faster and also more robust to missing data and errors in 
the data. There were a small number of simulations where 
the configuration formed an S-shaped curve and in these 
cases only the ordering from the PC method was satisfac-
tory. This occurred mainly in the linkage group with the 
fewest markers and a central region with larger intermarker 
distances, and is expected to occur less as maps become 
denser. There was little difference between two and three 
dimensions with problem-free data sets and the output from 
the two-dimensional MDS was easier to assess. However, 
the third dimensions can be very helpful in identifying out-
liers in more complex data sets. The speed of this approach 
means that it is feasible to explore the effects of dropping 
out problematic markers to see their influence on the map. 
The PC approach has a smoothing parameter, which by 
default is chosen by leave-one-out cross-validation, but 
as in the case of THREaD Mapper (Cheema et al. 2010) 
it is possible to manually specify the smoothing constraint 
instead to explore different fitted curves. With missing data 
or data with errors, it is not clear whether LOD or LOD2 
weights give better estimates of length, but LOD2 weights 
generally give better estimates of orders, so we recommend 
the use of unconstrained MDS followed by PC, using this 
weighting. This is the same weighting used in the WLS cri-
terion of JoinMap.

The MDS analysis is based on estimates of the recom-
bination fraction between all pairs of markers and does 
not use information on the individual genotypes. However, 
once an order has been estimated from the pairwise data, 
the original genotype scores can be inspected using an 
HMM to reconstruct the most likely inheritance of chromo-
somes from the parents for each offspring. This was used to 
identify markers with an unusually large number of recom-
binations over the population and to see whether excluding 
a marker or swapping its position locally would improve 
this. The software RECORD (Van Os et al. 2005) orders 
markers based on a minimum number of recombinations in 
diploid populations, but due to the higher number of possi-
ble phases in an autotetraploid cross, the information about 
recombination between neighbouring markers varies in 
precision and more pairs carry little information. Ordering 
based on the number of recombinations in an autotetraploid 
would require an HMM to be run for each order under 
consideration to establish the chromosome configuration 
and hence the number of recombinations and would be too 
slow to be practical. However, the HMM provides another 
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Fig. 4  Comparison of the link-
age map based on MDS (LOD2 
weighting, PC3) for potato 
chromosome I with that from 
Hackett et al. (2013) (H2013). 
Marker positions have been 
rounded to the nearest 1 cM
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useful diagnostic that can identify problem markers and 
suggest where local reordering can improve the map. It also 
shows which regions of the map have most confidence (i.e. 
all local swaps increase the count of recombinations) and 
which have less confidence (some swaps do not change the 
count of recombinations).

Linkage maps are generally presented in scientific 
papers as single orders with given marker positions. How-
ever, both order and positions are estimated from the 
data and there is uncertainty in them. Bootstrap sampling 
from the original population and re-estimation of the map 
would show the variation (Liu 1998), but this would be 
very time-consuming, especially for large numbers of 
markers. JoinMap’s maximum likelihood analysis dis-
plays ‘plausible positions’ using a resampling approach, 
but this cannot currently be applied to autotetraploid 
populations. If markers are very closely linked, and are 
informative about the same homologous chromosomes, 
then it may be useful to consider them together by bin-
ning. However if the linkage maps are constructed to 
map QTLs for phenotypic traits, a single order is neces-
sary for the QTL analysis. The HMM approach devel-
oped by Hackett et al. (2013, 2014) for inferring QTL 
genotype probabilities in an autotetraploid population at 
a grid of positions along the linkage group uses the dos-
age information on all markers. If two or more markers 
are located between recombination events, the informa-
tion they contribute to the HMM will be invariant to local 
rearrangements of their order. In Hackett et al. (2013), 
Table 4 illustrates how an HMM reconstructs the most 
likely chromosome configuration underlying a short sec-
tion of four markers and infers a single recombination in 
the second parent after marker M1; any other permutation 
of markers M2, M3 and M4 in this example would lead to 
the same configuration being inferred.

The analysis of the experimental data shows that it is 
important to select high-quality SNPs for linkage map-
ping, rather than to call as many SNPs as possible from 
less clear data. The set of 277 SNPs used here in the map 
of chromosome I had already been through filtering steps 
aimed to ensure high-quality genotype calls, as detailed 
in Hackett et al. (2013). However, some were outliers in 
the MDS plots and/or were found to have unusually high 
numbers of recombinations in the HMM. QTL mapping 
of the theta scores also showed that 15 SNPs among the 
set had problems that affected the quality of the map. The 
importance of high-quality markers will increase as even 
more dense data from genotyping-by-sequencing (GbS) 
(Elshire et al. 2011) and similar technologies becomes 
increasingly available in autotetraploid crosses. An alter-
native approach is the development of ordering meth-
ods that can model the uncertainty in the marker dosage 
estimation.

The methods described in this paper are being inte-
grated into a new version of the TetraploidMap software 
(Hackett et al. 2007) for use in estimating maps of auto-
tetraploid species. However, these methods can be applied 
to data on pairwise recombination fractions and LOD 
scores from any experimental cross and should also be 
useful in diploid CP populations as a rapid approach for 
ordering markers without the need to make separate paren-
tal maps. We are currently applying these approaches 
to construct a GbS map of red raspberry (Rubus idaeus). 
The R code for ordering a linkage group using pairwise 
information on recombination fractions and LOD scores is 
given in the Supplementary Information, and the MDS and 
PC methods are also being developed into an R package 
for general application.
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Appendix: Details of the MDS algorithms

Principal curves MDS

1. Use the smacofSym function from the R package sma-
cof (1.4-0) (de Leeuw and Mair 2009) to perform two- 
or three-dimensional weighted unconstrained MDS on 
the distance matrix.

2. Plot the final configuration to find potential outliers 
from Smacofsym plot (see Fig. 1 solid circles for a 
two-dimensional example and Fig. 3 for a three-dimen-
sional example)

3. Fit the principal curves using the method of Hastie 
and Stuetzle (1989) implemented in the R package 
princurve (version 1.1-12) (Hastie and Weingessel 
2013).
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4. Plot the first principal curve on the final configuration 
of the unconstrained fit and assess whether it looks rea-
sonable.

5. The projections of the markers onto the first principal 
curve give the estimated map positions.

Constrained MDS

Steps 1–2 as for principal curve

3. Use the smacofSphere function in two dimensions to 
constrain the points to approximate to the arc of a cir-
cle with a penalty, p, for deviations from the arc.

4. Plot the final configuration from smacofSym and sma-
cofSphere to check for any points which have major 
changes in rank with respect to either dimension in the 
final configuration (Supplementary Figure 1A).

5. Check the stress ratio smacofsphere stress/smacofsym 
stress. This is a metric for the increase in stress (which 
approximates to a measure of the reduction in fit) 
caused by forcing the points to lie on an arc and should 
be below 1.1. If the ratio is above this, return to step 4 
and reduce the penalty p.

6. Project the final configuration onto a line to get order 
and estimated map length.

(a) Centre sphere on (0, 0).
(b) Calculate the polar coordinates of each point in 

the configuration.
(c) Rotate, so that the mapping starts at the beginning 

of the arc.
(d) Radius of the sphere is the median distance of 

points from (0, 0) rescaled, so that the sum of 
the configuration is the same as the sum of the 
observed distances. (We also considered using 
the mean distance, but this made little difference 
and the median is less sensitive to outliers and so 
results are not presented here.)

(e) Order the markers by increasing the angle.
(f) Intermarker distances are equal to the radius mul-

tiplied by the difference in angle between the 
points.
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