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Identifying risk factors for the presence of Escherichia coli O157 infection on cattle farms is important for
understanding the epidemiology of this zoonotic infection in its main reservoir and for informing the design of
interventions to reduce the public health risk. Here, we use data from a large-scale field study carried out in
Scotland to fit both “SIS”-type dynamical models and statistical risk factor models. By comparing the fit (assessed
using maximum likelihood) of different dynamical models we are able to identify the most parsimonious model
(using the AIC statistic) and compare itwith themodel suggested by risk factor analysis. Both approaches identify
2 key risk factors: the movement of cattle onto the farm and the number of cattle on the farm. There was no
evidence for a role of other livestock species or seasonality, or of significant risk of local spread. However, themost
parsimonious dynamical model does predict that farms can infect other farms through routes other than cattle
movement, and that there is a nonlinear relationship between the force of infection and the number of infected
farms. An important prediction from themost parsimoniousmodel is that although only∼20% farmsmay harbour
E. coli O157 infection at any given time ∼80% may harbour infection at some point during the course of a year.
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Introduction

Escherichia coli O157 emerged over two decades ago and is now
widespread in Scotland, where the incidence rate of human infec-
tion is generally higher than in most other UK, European or North
American countries (Locking et al., 2006; Chase-Topping et al., 2008).
Cattle are the main reservoir host for E. coli O157 (Armstrong et al.,
1996) and play a significant role in the epidemiology of human
infections (Griffin and Tauxe, 1991). Previous work has shown that
direct contact with animals, their faeces and the farming environment
are all important risk factors for sporadic human infections (O'Brien
et al., 2001; Locking et al., 2001; Willshaw et al., 2003). Spatial
analyses also identified a positive association between human in-
fections and areas of high cattle density (Michel et al., 1999;
Kistemann et al., 2004; Innocent et al., 2005). Although human
infection may arise from person to person contact and from con-
sumption of food contaminated by asymptomatic human carriers,
primary human infection can be attributed to contamination of the
environment or the food chain from several livestock species,
especially cattle (Espie et al., 2006). Therefore understanding the
mechanisms of persistence and spread of E. coli O157 on Scottish
cattle farms is key to reducing the risk of human infection in Scotland
and elsewhere.

Two recent surveys (Gunn et al., 2007; Pearce et al., 2009)
concluded that c.20% of Scottish cattle farms harbour E. coli O157
infection, although there is variation in both time and space. In-
vestigationswith an exploratorymathematicalmodel (Liu et al., 2007)
suggested that although cattlemovement is a significant contributor to
the observed prevalence of E. coliO157 positive farms, it is not by itself
sufficient to explain the persistence of E. coli O157 on Scottish cattle
farms. The objective of this study is therefore to better understand the
impact of other risk factors on the spread and persistence of E. coli
O157 in Scotland and their interaction with cattle movement. To do
this we developed a set of stochastic epidemiological models that
represent different assumptions regarding the transmission of
infection among farms. By comparing the goodness of fit of different
modelswe gain insights into the underlying epidemiology of infection.
Data were also analysed using traditional risk factor analysis in order
to produce comparative results. Correspondence between the results
from empirical statistical models and those from the fitting of
dynamical process models has not, as far as we are aware, previously
been examined in infectious diseases systems.

Methods

Data. Three separate databases were used in this study. First, the
June 2003 Agricultural census of livestock premises combined with
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the Department for Environment, Food and Rural Affairs (DEFRA) list
of livestock premises; second, the Cattle Tracing System (CTS); and
third, E.coli O157 prevalence data. Each data set will be described
briefly below.

(1) June 2003 Agricultural census data (DEFRA, 2005). Among the
original 50,266 farms in Scotland recorded in the census,
22,286 farms are provided with the numbers of animals but
only 13,704 farms have cattle. Our system comprises these
Fig. 1. (a) distribution of farm sizes. (b) number of cattle moved between Scottish livestock
number of cattle moved per movement event from the same data set as (b).
13,704 cattle farms. The data include the Council-Parish-
Holding number (CPH), the X–Y coordinates of the farm-
house, the area of the farm, and the numbers of cattle, sheep
and pigs. The farms are unevenly distributed across Scotland:
with high densities in SW and NE Scotland and low densities
in the Highlands. The distribution of numbers of cattle per
farm is highly skewed, with a median of 91 cattle and an
interquartile range (IQR) of 174 (Q1–Q3: 26–200) (Fig. 1a).
Over 20% of the farms reported having b20 cattle. The number
farms each month from January 2002 to December 2004. (c) distances moved and (d)

http://www.defra.gov.uk/esg/work_html/publications/cs/farmstats_web/default/htm


Fig. 1 (continued).
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of cattle on each farm is assumed constant at the number re-
corded in the census.

(2) Cattle Tracing System (CTS). The Cattle Tracing System (CTS) is
operated by DEFRA's British Cattle Movement Service (BCMS,
2005; Mitchell et al., 2005). In Scotland, during years 2002–
2004 there were 252,496 movements among 11,464 of the
cattle farms entered in the 2003 census database (the
remainder are assumed not to have moved cattle to or received
cattle from other farms). The data shows that there is a
seasonal pattern in the numbers of cattle moved (e.g. there are
more cattle movements during March–April–May and Sep-
tember–October–November than the rest of the year) (Fig. 1b),
mostmovements are within 50 km (Fig. 1c) and themajority of
movements involved only a few animals (Fig. 1d). Movements
outside Scotland and to/from abattoirs and markets are not
considered here.

(3) E. coli O157 prevalence data. Between February 2002 and
February 2004, a cross-sectional survey was carried in Scotland
funded by the Wellcome Foundation International Partnership
Research Award in Veterinary Epidemiology (IPRAVE). Over

http://www.bcms.gov.uk
http://www.bcms.gov.uk
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the survey period, 481 farms were each visited once to obtain
an estimate of the prevalence of E. coli O157 (Pearce et al.,
2009). Farmswere sampled in such a way that similar numbers
were included from each of the six designated Animal Health
Districts (AHD) throughout Scotland (Pearce et al., 2009) and
that AHDs were sampled evenly over time. The numbers of
faecal pat samples taken were chosen to ensure a mean 90%
probability of detecting shedding of E. coli O157 if at least one
shedding animal was present. Data on the CPH were not
recorded in the IPRAVE survey so farms were matched to the
DEFRA 2003 census data and the DEFRA CTS data for the
equivalent time frame (2002–2004) using the XY coordinates.
After matching, 461 of these farms were used for model fitting,
among which 87 (18.9%) were positive (see Fig. 2a). The
Fig. 2. (a) geographical distribution of the 461 farms sampled in Scotland between February 2
18.9% (exact binomial 95% CI=15.5 to 22.7). (b) temporal variation in prevalence of E. coli O
represent exact binomial 95% confidence intervals.
remaining 20 farms could not be matched to data in the 2003
census so they were excluded from the analysis.

Model development

We consider a metapopulation model where individual farms are
regarded as either susceptible (S) or infected (I) (i.e. E. coli O157
positive at least one cow). E. coli infection is not pathogenic in adult
cattle and infections are transient (Shere et al., 1998; Robinson et al.,
2004); therefore infected cattle can recover to become susceptible
and E. coli positive farms can lose their infected status.

One route of transmission from one farm to another is the
movement of infected cattle between them. Because movement data
are provided for each day, it is sensible to use a time unit of one day.
002 and February 2004. Red dots indicate positive farms. The prevalence is estimated as
157 infection. Black is the estimated prevalence for a given month and red dotted lines
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We assume that if a susceptible farm i on day t receives Mij(t) cat-
tle from an infected farm j on which a fraction xj is infected, the
chance that farm iwill become infected due to this movement event is
1−(1−xj)Mij (c.f., Green et al., 2006). Summing over all cattle moving
onto the farm from infected farms, the probability that farm i will
become infected on day t is

Pi;Move tð Þ = 1− ∏
j∈I tð Þ

1−xj
� �Mij tð Þ

; ð1Þ

where I(t) is the set of infected farms at time t (and also the number of
infected farms at time t, see below). The fraction of cattle infected on
farm j, xj was randomly sampled (with replacement) from the
distribution of on-farm prevalences found from IPRAVE survey data
(Liu et al., 2007), and Mij(t) was obtained from DEFRA CTS data as
described above.

Farms can also become infected through a variety of other routes
including acquisition of infection from other host species and a
contaminated environment. Let Λ i represent the force of infection for
farm i due to sources other than movements. Combining together, the
overall probability that farm i becomes infected on day t is

Pi tð Þ = 1−exp −Λi½ � ∏
j∈I tð Þ

1−xj
� �Mij tð Þ

 !
: ð2Þ

When both contributions in transmission are small, Eq. (2) can be
approximated as Pi(t)=Λ i(t)+∑ j∈ I(t)xiMij(t), which suggests that
the probability is proportional to the force of infection and the
number of infected animals moved in. Λ(t) has units per day. The
infected farms can recover to become susceptible again. For simplicity,
we initially assume that this happens with a constant probability of
recovery per day

Qj tð Þ = γ: ð3Þ

The expression for the force of infection Λ i depends on the
assumptionsmade about the process of transmission. As E. coliO157 is
transmitted via the faecal-oral route the main transmission vehicles
are thought to be contaminated feed, water and grazing. Once in the
environment, E. coli O157 can remain viable for long durations
(Gagliardi and Karns, 2000; Williams et al., 2005). Transmission is
easier between animals kept at higher densities and hence in closer
proximity (Synge et al., 2003; Smith et al., 2009). A longitudinal study
of a dairy herd (Mechie et al., 1997) and previous work in Scotland
(Synge et al., 2003) reported seasonal incidence of shedding.
Livestock species other than cattle, and also wildlife, may be infected
and transmit infection (Synge, 2000). Mechanical transmission of
contaminated faeces is a likely means of farm-to-farm spread.

To represent all the possible mechanisms that are relevant to
transmission, we first consider the following basic model: the
probability of a farm becoming infected depends on the number of
cattle present Ni and the number of infected farms at time t, I(t)
(equivalently, the prevalence of infection across the whole population
of farms) in a nonlinear way,

Λi tð Þ = βNa
i I tð Þb: ð4Þ

Here (for the case b=1) βNi
a is the weighted probability of

infection of farm i per infected farm per day. The dimensionless
nonlinear index b determines the relationship between the force of
infection and the fraction of farms infected (c.f., Liu et al., 1987),
ranging from b=0 (Λ independent of I) to b=1 (Λ proportional to I)
(c.f., Liu et al., 2007). The dimensionless nonlinear coefficient a
describes heterogeneity in susceptibility as a function of the herd size,
N (Tildesley et al., 2008). We note that the field data do not indi-
cate any relationship between herd size and on-farm prevalence
(Spearman rank correlation: rs=−0.061, p=0.574), i.e. xj is not a
function of Nj.

Further, to examine the influence of other possible risk factors on
the transmission of E. coli O157, the following variants to the basic
model were considered:

i) Seasonality: the transmission coefficient varies such that β=βc

for December to April and β=βw (Nβc) for May to November.
ii) Sheep or pigs: contribution of other livestock species: the force

of infection is given byΛ i=βNi
aIb+σ, where σN0 if the other

species is present and σ=0 otherwise. Two sub-variants were
considered: sheep, where σ refers to the presence of sheep on
the farm (according to the DEFRA census data) and pigs, where
σ refers to the presence of pigs.

iii) Herd size-dependent recovery rate (N-dep-Recovery): though
the detail of the dynamical relationship between the number
of cattle and the average infectious period may be complica-
ted, here we assume simply that the recovery rate of an in-
fected farm is dependent on the number of cattle such that
Q j(t)=γ/Nj

c where c is a constant.
iv) Imperfect farm-level detection or imperfect test sensitivity: the

IPRAVE prevalence survey was designed to have a farm-level
detection sensitivity of around 90% (Pearce et al., 2009) and
diagnostic testing of individual samples is less than 100%
sensitive (Matthews et al., 2009). To explore the effect of
imperfect farm-level detection on model fitting, the model-
predicted probability of a farm being observed as E. coli O157
positive was multiplied by 0.9 (imperfect detection). To explore
the effect of imperfect diagnostic testing on model fitting test
sensitivity was assumed (conservatively) to be just 50% (see
Matthews et al., 2009) and on-farm prevalences, x, were
accordingly transformed as (2−x)x (imperfect sensitivity).

v) No movement: to test the importance of cattle movement for
the spread of E. coli O157 infection, the term representing cattle
movements among farms was removed from the model.

vi) No herd size effect: to test for any effect of herd size on suscep-
tibility of farm we considered the special case a=0.

vii) Density-dependent and density-independent: we also considered
two special cases for the value of the nonlinear index b: b=1
(corresponding to Λ proportional to I: density-dependent) and
b=0 (corresponding to Λ independent of I: density-indepen-
dent). These correspond respectively to density-dependent and
density-independent models of Liu et al. (2007).

viii) Local spread: we assumed that the force of infection decays
exponentially with the distance (in kms) between farms at a
rate α (i.e. so-called spatial kernel), giving

Λi = βNa
i ∑

I

j=1
exp −αdij

� �
; ð5Þ

where dij is the distance between susceptible farms i and
infected farm j. To test whether there is evidence for local
spread, the model was fitted with α set at three different
values: 0.5, 1 and 2 (corresponding to increasingly localized
spread). With α=0, this model is equivalent to the density-
dependent model above.

Model fitting methods

The infection of E. coli O157 on Scottish farms is likely to be at an
approximate steady state because a comparative analysis of the
IPRAVE data with an early Scottish Executive Environment and Rural
Affairs Department (SEERAD)-funded survey, performed between
1998 and 2000, found no statistically significant difference in farm-
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level prevalence of E. coli O157 (Pearce et al., 2009). However, the
IPRAVE prevalence data are quasi-longitudinal (although individual
farms were visited only once, the survey design involved a stratified
sequence of visits to different regions of the country) and some
fluctuation in prevalence is apparent (Fig. 2b). The time scale of these
fluctuations allows us to obtain an estimate of the recovery rate.

We used the following method to obtain model predictions of the
probability that each farm i is infected, ρ̅i, for i=1 to 461. For a given
model and set of parameter values, a large number of replications of
simulated steady state conditions was needed to estimate the average
probability ρ̅i given the highly stochastic nature of the infection and
recovery processes. Visual C++ was used to code the simulation
programme. We randomly chose five different infection seeds, and
allowed a burn-in period of 15 years to let the system reach a steady
state condition (c.f. Liu et al., 2007). The model system was run for
another 1000×3 years. κ–statistic tests of autocorrelation (Dohoo
et al., 2003) showed that the infection status of the farm in one 3 year
interval was independent of its status in the adjacent interval; thus
each simulated 3 year period can be regarded as an independent
sample. From these 1000 samples, the predicted probability was
estimated for each individual IPRAVE farm i as: ρ̅i=(number of times
farm i was positive)/1000. Here, ‘positive’ indicates that the simu-
lation predicted that infection would be present on the day (relative
to the simulated 3 year period) on which the farmwas sampled in the
field during 2002–2004. That 1000 samples were adequate was
justified by numerical experiment. When a few samples are taken,
then the average log-likelihood l (see below) fluctuates widely across
different runs. As the number of samples increases l converges
quickly.When the number of samples equals 1000, l varies over a very
small range such that its standard deviation is about 0.5 units in
absolute value, with no discernible reduction in variability for larger
sample sizes (Fig. 3).

Given the model prediction ρ̅i for each of the 461 IPRAVE survey
farms, the natural logarithm of the likelihood is calculated to quantify
model fit:

l = ∑
461

i=1
loge 1− Pρi

� � 1−rið Þ Pρ
ri
i

� �
; ð6Þ

where ri=1 if farm i is recorded in IPRAVE survey as positive, ri=0
otherwise. The downhill simplex method (Press et al., 1997) was
Fig. 3. The relationship between variation in negative log-likelihood l and the number of s
γ=0.011 per day per farm. 12 replicates were used and the mean and standard deviation of l
the estimated log-likelihood fluctuate widely among different replicates. With increasing nu
equal to 1000, the values of log-likelihood are distributed across a small range, with a stan
employed to search for the maximum likelihood estimates (MLE) of
the model parameters for each model. To select the most parsimo-
nious model (balancing goodness of fit with the number of parame-
ters fitted), the Akaike Information Criterion (AIC) (Akaike, 1973) was
calculated:

AICm = −2l Data jMLEmð Þ + 2pm; ð7Þ

where pm is the number of parameters of model m and MLEm repre-
sents the maximum likelihood estimates of the parameters of model
m. The most parsimonious model is the one with the lowest AIC value.
To quantify the extent to which the most parsimonious model is
better than competing models, evidence ratios were calculated as:

w1 =wk = exp 1
2
AICk−AIC1ð Þ

h i
; ð8Þ

where model 1 is the estimated most parsimonious model and k in-
dexes each alternative model. This value quantifies the relative likeli-
hood that model 1 is better thanmodel k, given the data set (Burnham
and Anderson, 2002).

To evaluate each model's accuracy in predicting the observed
infection status of each individual IPRAVE farm, an empirical estimate
of the odds ratio for each independent sample was calculated by:

OR =
F ++ × F−−
F +− × F−+

; ð9Þ

where F++ is the number of farms that are positive for both model
prediction and observed data, and the meanings of F–, F+- and F-+
follow accordingly. An odds ratio greater than 1 indicates that the
model is more likely than not to predict the correct infection status of
a farm. The larger the odds ratio, the stronger the predictive power of
the model. We also calculate the area under the Receiver Operating
Characteristic (ROC) curve, which provides a measure of a model's
ability to discriminate between farms that are positive and those that
are negative (Dohoo et al., 2003). For this (non-parametric)
calculation, the farms are arranged in the descending order of the
predicted probability ρ̅i, which acts as the cut-off point for
distinguishing between positive and negative farms. In our system,
461 farms were sampled, of which 87 positive. For a given value of
cut-off point, say ρCT, the false positive rate (FPR) is calculated as NFP/
amples used for model fitting. The basic model is used with a=b=1.0 and β=10−8,
og-likelihood calculated from these. When the number of samples is small, the values of
mber of samples, they converge quickly. When the number of samples is greater than or
dard deviation of order 0.5.
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374 where NFP is the number of farms that are actually negative and
have predicted probability ρ̅i≥ρCT, the true positive rate (TPR) as NTP/
87 where NTP is the number of farms that are actually positive and
have predicted probability ρi̅≥ρCT. We obtain the Receiver Operating
Characteristic (ROC) curve by plotting TPR versus FPR over all possible
ρCT values from which the area under the ROC curve (AUC) can be
derived (Fig. 4).

Analysis of risk factors

Data for 461 of the 481 farms sampled in the IPRAVE study were
extracted from the DEFRA CTS database (time of movement events,
number of animals moved, coordinates of destination farm) during
year 2002–2004 and the DEFRA 2003 census database (the X–Y
coordinates of the farm-house, the area of the farm, and the numbers
of cattle, sheep and pigs) as described above. Additional variables
were created to describe farm clustering (number/presence of farms
within 1, 3 and 5 km), characteristics of surrounding farms (size, type,
distance, number of cattle), recent movement (movement within 1, 2,
3, 4, 8, and 30 weeks before sampling), amount of movement
(number of movement ‘events’ onto farms, number of cattle moved,
number of different farms supplying cattle). Movement events were
further characterised by distance moved (b10 km, N10 km), number
of animals moved per ‘event’ and the season of movement. Risk
factors for the presence of E. coli O157 on a farm were analysed using
generalised linear models (GLM) and Generalised Linear Mixed
Models (GLMM) procedures in SAS (SAS Institute Inc., Cary, NC)
with a binomial error distribution and a logit link function. GLM
analyses were carried out on a univariate basis initially. A hierarchical
forward selection and backward elimination approach was used. The
change in the deviance of the model was monitored as an indicator of
improved fit. Variables were added and removed based on significant
improvement in the mean deviance after changes to the model. Two-
way interactions were also tested in this manner. The final model was
carried forward for GLMM analysis incorporating a random variable
called ‘farm cluster’ which records the temporal/spatial nature of the
sampling carried out during the IPRAVE survey.

In order to compare the results of the statistical analysis to the
results generated from the stochastic modelling an analogous
empirical odds ratio estimate was developed. Values for the empirical
estimate of the odds ratio were derived using the parameter estimates
from the GLMM model. These estimates were used in the statistical
model to simulate binary response random variables for each farm
(absence/presence of E. coli O157 on-farm). The predicted presences/
Fig. 4. The ROC curve for the comparison between IPRAVE samples and prediction of the ba
positive rate and the true positive rate, respectively.
absences were then related to the observed presences/absences, and
aggregated over all farms, from which summaries an odds ratio was
calculated as above (Eq. (9)). This process was repeated to produce a
distribution of odds ratios which could then be summarised.

During a survey from March 1998 to May 2000, funded by The
Scottish Executive Environment and Rural Affair Department
(SEERAD), 952 farms were surveyed. It was found that E. coli O157
is present on 21.7% (19.2–24.5%) of the farms (Gunn et al., 2007).
Among 461 IPRAVE farms of interest here, 395 farms were also in
the SEERAD study. As a test of the predictive power of the most
parsimonious model (see Results), the expected degree of association
(using Cohen's kappa statistic, κ — Cohen, 1960) between different
sets of simulation results for those 395 farms was calculated and
compared to the observed degree of association.
Results

Table 1 shows the comparison among different model variants.
According to the AIC value the most parsimonious model is the basic
model, i.e. that described by Eqs. (2)–(4). We therefore compare all
other models with the basic model (noting that there is some error in
likelihood estimates – see Fig. 3 – and therefore in the AIC values).

i) The basic model with nonlinear index b fixed at 0 is very close
to the most parsimonious model, and the likelihood ratio test
(LRT=2.4 with standard error 0.40) suggests that they are not
significantly different at a 5% significance level. In contrast, the
basic model with nonlinear index b fixed at 1 is significantly
different (LRT=5.6 with standard error 0.40) and this model
can be rejected at the a 5% significant level.

ii) The modifications to the basic model that allow for the
imperfect detection of infection at the farm level (imperfect
detection) or imperfect diagnostic test sensitivity at the sample
level (imperfect sensitivity) do not improve model fit and
although both result in some modification of model parameter
estimates these remain within the ranges estimated from other
plausible models. Hence we do not consider these modifica-
tions further.

iii) The models with an extra parameter for the presence or
absence of pigs or sheep both have higher AIC values and
neither is preferred to the basic model (evidence ratios N2 and
N4 respectively). For the model incorporating sheep no
improvement was found over the basic model.
sic stochastic model with best fit parameters (see Table 1). The X- and Y- axes are false



Table 1
Comparison between models. The model variants are listed in the ascending order of their AIC values. l is the natural log of likelihood calculated using Eq. (6), Iprev is the prevalence
of infection on 461 IPRAVE farms, AIC is the Akaike Information Criterion (Eq. (7)) and w1/wk is the evidence ratio (Eq. (8)). OR is the odds ratio of the model prediction (Eq. (9)).

Model variants β# γ a b Additional parameter −l§ Iprev† AIC§ w1/wk OR

Basic model 3.38e-4 3.50e-2 0.270 0.230 – 213.0 19.4 434.0 1.00 1.38
Density-independent 2.40e-3 3.54e-2 0.249 0.0 – 214.2 19.8 434.4 1.25 1.26
Imperfect detection 1.27e-4 2.32e-2 0.437 0.188 – 213.4 19.7 434.8 1.48 1.48
Imperfect sensitivity 2.91e-4 3.35e-2 0.317 0.212 – 213.7 19.4 435.4 2.01 1.32
Pig 1.26e-4 2.82e–2 0.476 0.176 σ=1.15e-2 212.9 18.2 435.8 2.48 1.51
Seasonality 2.72e-4 2.84e-2 0.292 0.196 βw=3.22e-4 213.1 19.2 436.2 3.00 1.42
Sheep 1.95e-4 2.94e-2 0.396 0.189 σ=8.78e-4 213.6 20.1 437.2 4.95 1.43
Density-dependent 1.48e-6 5.14e-2 0.248 1.0 – 215.9 17.2 437.7 6.55 1.23
No herd size effect 3.15e-4 4.38e-2 0.0 0.437 – 217.0 19.5 440.0 20.7 1.25
N-dep-recovery 2.28e-4 0.112 0.187 0.329 c=0.242 215.1 18.8 440.3 23.1 1.33
No movement 1.73e-4 3.16e-2 0.379 0.246 – 217.2 18.2 442.4 68.0 1.20
Local spread 3.32e-5 1.94e-2 0.87 – α=0.5 262.6 22.6 531.2 1.32e+21 1.71

9.25e-5 1.89e-2 0.901 – α=1.0 272.8 19.6 551.5 3.34e+25 1.65
2.36e-3 1.20e-2 0.459 – α=2.0 277.1 23.8 560.2 2.61e+27 1.42

#For model variant Seasonality, the value of β listed in this column is βc for December to April.
§The standard errors in estimates of −l and AIC are approximately 0.15 and 0.30 respectively (Fig. 3).
†The prevalence of infection for the whole system is about 2–3% lower than Iprev.
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iv) The model with seasonal transmission also incorporates one
extra parameter but there was no improvement in fit over the
basic model and so this model has a higher AIC value and is not
preferred (evidence ratio=3).

v) The model with a recovery rate dependent on farm size has a
much higher AIC value, an evidence ratio N20, and can be
rejected.

vi) The model without an effect of herd size on susceptibility
(a=0) has a much higher AIC value, an evidence ratio N20, and
can be rejected.

vii) Themodel without movement-related spread of infection has a
much higher AIC value, an evidence ratio N60, and can be
rejected.

viii) Themodels including a spatial kernel do not improvemodel fit:
with larger values of α (i.e. more localized spread of infection),
the likelihood dramatically decreases and the AIC value
substantially increases. These models can be rejected.

The most parsimonious model generates a predicted prevalence of
infection on the IPRAVE study farms close to the observed prevalence
of 18.9% and well within the exact binomial 95% confidence intervals
(15.5 to 22.7%). However, themean odds ratio (which gives ameasure
Fig. 5. The distribution of Cohen's κ values between different sampling periods as predicted b
of κ for the SEERAD and IPRAVE surveys is 0.077 (indicated by the arrow).
of the ability to distinguish between positive and negative farms) is
low (1.38, with a standard error of 0.39) and the area under the ROC
curve (AUC) is only 0.636 (Fig. 4) (below the 0.7 threshold for
‘acceptable’ discrimination specified by Hosmer and Lemeshow,
2000). Several of the alternative models perform marginally better
using one or more of these indicators but in general the models
perform poorly at discriminating between positive and negative
farms.

The models can also be compared in terms of the parameter
estimates obtained. Estimated values of β are highly dependent on
model structure and so vary widely between models. Estimated
values of γ (with the exception of the model relating recovery rate to
farm size) are not directly influenced by model structure and show
much less variation. For the best fivemodels estimates of γ range from
0.0232 to 0.0354. Similarly, estimates of a range from 0.249 to 0.476
and of b (unless fixed) from 0.176 to 0.230. Overall, where
comparable, parameter estimates are reasonably robust across the
set of best models.

The results of comparing the simulation output for different time
periods show that the model predictions for the periods 1998 to 2000
and 2002 to 2004 are only weakly associated: the modal value of κ is
0.010 (Fig. 5), i.e. slightly larger than random. Comparison of the
y the most parsimonious simulation model. The modal value is 0.01. The observed value



Table 2
Results of the GLMM statistical models of risk factors for the presence of E. coli O157 on
the 461 IPRAVE farms. Overall OR gives empirical estimate of odds ratio for the entire
model.

Predictors Estimate SE p Overall ORa

Movement within 4 weeks 0.664 0.288 0.0214
Number of cattleb 0.785 0.322 0.0151

1.297 (0.379)

a Mean (SD).
b Log10 transformed.
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SEERAD and IPRAVE survey data gives a similarly low κ value. Among
the 395 farms, 22 farms were positive and 253 were negative in both
surveys, while 56 farms were positive in the SEERAD survey and
negative in the IPRAVE survey, and 64 farms were negative in the
SEERAD survey and positive in the IPRAVE survey giving κ=0.077
(95% confidence interval −0.028 to 0.182, p=0.128).

The results of the statistical analysis of the GLMMmodel are shown
in Table 2. The results suggest that farms that were positive for E. coli
O157 tended to have a larger number of cattle as well as recent
movements of cattle (within 4 weeks of sampling) onto the farm. The
mean overall odds ratio for this model was 1.297, with a standard
deviation of 0.379. None of the variables related to the clustering of
farms or the presence of sheep were statistically significant in the
multi-variable models. These results are very similar to the results
obtained by the basic model in the simulation models above.
Discussion

To investigate factors that affect the transmission dynamics of E. coli
O157 infection on Scottish cattle farms, we developed a set of stochastic
models and employed AIC to select the most parsimonious model. By
comparing the fit of different model variants, we have shown that the
most parsimoniousmodel to describe the dynamics of the spread of E. coli
O157 infection between farms is the one that is given by Eqs. (2)–(4). This
model simply says that the transmissionbetween farms isby twodifferent
routes: i) movement of infected cattle; and ii) all other routes, including
acquisition of infection from a contaminated environment or other
reservoir. The recovery rate is a constant, but the farm susceptibility
increases with herd size (c.f. Tildesley et al. (2008) who found a similar
result for farm susceptibility to foot-and-mouth disease). The force of
infection (ignoring transmissionviamovements) isnot a linear functionof
the number of infected farms (contrasting with the standard mass action
assumption). The nonlinearity (with coefficient b considerably below 1)
indicates saturation, that is, the risk that a susceptible farm becomes
infected increases more rapidly with each additional infected farm when
there are few infected farms than it does when there are many (c.f. Liu et
al., 1987). Indeed,wecannot formally exclude thepossibility that the force
of infection is independent of the number of infected farms, i.e. b=0. This
result has a significant influence on the anticipated effectiveness of
intervention measures, explored in detail elsewhere.

More complex models incorporating other risk factors do not
significantly improve the fit. For example, because sheep and pigs can
also carry E. coli O157, the presence or absence of these other livestock
species could give rise to different probabilities of infection. Similarly,
the prevalence of infection varies seasonally, so season could also
affect transmission rate. Inclusion of these risk factors marginally
improves the model fit but increases the AIC value, so the models are
rejected as not parsimonious. Also, it is plausible to argue that
proximity to an infected farm makes a farm more likely to become
infected. However, our model fitting exercise provided no support for
localized spread. Further, it is possible that a large farm will remain
infected for longer and has a smaller recovery rate but this does not
improve model fit, and thus was rejected.
All of these results are consistent with our risk factor analysis.
Generalised Linear Mixed Models also identify herd size and cattle
movements as risk factors, but the other risk factors considered here
(sheep, seasonality, clustering of farms) do not have statistically
significant effects. Correspondence between the results from empir-
ical GLMMs and those from the fitting of dynamical models has not, as
far as we are aware, previously been examined for any infectious
diseases system. The good agreement found here is encouraging since
both approaches are commonly used to inform the design of disease
control programmes, which implies that the targeting of interventions
could be based on either (this point will be considered in more detail
in subsequent work).

Model selection, not parameter estimation, was the major objective
of this analysis. The maximum likelihood method used here does not
readily yield confidence intervals on parameter estimates; these are
being obtained using Markov chain Monte Carlo methods and will be
reported separately. However, we note that the estimates obtained
appear reasonably robust across the best fitting set of models, which
includes twomodels allowing for the slight under-detection of infection
allowed for in the field survey design and for the imperfect diagnostic
test sensitivity. The estimated rate of loss of infection gives an average
duration of infection on a farm of approximately one month; this is
highly consistent with data from smaller scale longitudinal studies
(Synge et al., 2003).

Although these analyses do suggest farm size and cattle move-
ments as significant risk factors the risk profile across the population
of farms is relatively flat. This is indicated by the low odds ratios
(Tables 1 and 2) and the small area under the ROC curve (Fig. 4).
Reflecting these results, model simulations indicate that, while less
than 20% farms are E. coli positive on any given visit, over 80% can be
expected to be infected at some stage during a calendar year,
reflecting both the risk profile and the typically short duration of
infection on a farm (Robinson et al., 2004). This prediction is testable
and clearly has important consequences for the design of future
control programmes.
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