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Abstract

The Faecal Egg Count Reduction Test (FECRT) is the most widely used method of assessing the efficacy

of anthelmintics, and is the only in vivo technique currently approved for use with horses. Equine Faecal

Egg Count (FEC) data are frequently characterised by a low mean, high variability, small sample sizes and

frequent zero observations. Accurate analysis of the data therefore depends on the use of an appropriate

statistical technique. Analyses of simulated FECRT data by methods based on calculation of the empirical

mean and variance, non-parametric bootstrapping, and Markov chain Monte Carlo (MCMC) were compared.

The MCMC method consistently outperformed the other methods, independently of the sample size and

distribution from which the data were generated. Bootstrapping produced notional 95% confidence intervals

containing the true parameter as little as 40% of the time with sample sizes of less than 50. Analysis of

equine FECRT data yielded inconclusive results in 53 of 63 (84%) datasets, suggesting that the routine

use of prior sample size calculations should be adopted to ensure sufficient data are collected. The authors

conclude that computationally intensive parametric methods such as MCMC should be used for analysis

of FECRT data with sample sizes of less than 50, in order to avoid making erroneous inference about

the true efficacy of anthelmintics in the field. Software to perform all three types of analyses documented

here is freely available in the form of an add-on package to the R statistical programming language from

http://cran.r-project.org/web/packages/bayescount/index.html.
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1. Introduction1

The Faecal Egg Count Reduction Test (FECRT) is the most widely used method of assessing the in2

vivo efficacy of anthelmintics against parasitic nematodes of horses, sheep and cattle (Coles et al., 2006;3

Kaplan, 2002), and is an essential tool in the process of monitoring the increasing prevalence of anthelmintic4

resistance. The test is known to have several limitations, including the variability of Faecal Egg Count5

(FEC) data (Uhlinger, 1993), leading to a relatively variable FECRT result (Miller et al., 2006). This is6

especially true in equine FEC data, where effects such as differing age related immunity (Klei and Chapman,7

1999) and differences in grazing management (Dopfer et al., 2004) impact on the observed FEC. Combined8

with the small group sizes and frequent zero FEC observations (Kaplan, 2002; Nielsen et al., 2006) often9

encountered with horses, this high variability between animals and low mean FEC introduce difficulties in10

analysis of equine FECRT data which do not arise to the same extent in analysis of FECRT data obtained11

from cattle or sheep.12

The method currently advocated by the World Association for the Advancement of Veterinary Para-13

sitology (WAAVP) involves calculating the empirical mean and variance before and after treatment, and14

calculating the empirical mean reduction and estimates of the 95% confidence interval for the true reduction15

using these figures (Coles et al., 1992). This method takes no account of the difference between uncertainty16

regarding the true mean of a sample, introduced by the Poisson variability of the counting process, and17

variability in the true mean of different samples. Calculation of 95% confidence intervals in this manner18

also assumes that the distribution of error for the mean is symmetrical on the log scale, although parameter19

likelihoods (and therefore errors) have been reported to be skewed for FEC data (Denwood et al., 2008),20

potentially justifying this assumption.21

A non-parametric bootstrapping approach has recently been suggested as an appropriate method to22

generate confidence limits from equine FECRT data (Vidyashankar et al., 2007). The technique involves23

re-sampling and summarising the observed data, and makes no assumptions about the underlying dis-24

tribution or processes generating the data (Mooney and Duval, 1993), or the parameter error structure.25

Non-parametric bootstrapping approaches are therefore widely used and extremely useful when the under-26

lying distribution of data is unknown. A fundamental assumption underlying this approach is that the data27

obtained are fully representative of the population, an assumption which risks being violated when deal-28

ing with small sample sizes, giving misleading results. A non-parametric bootstrapping approach is more29

complex and time consuming than the currently advocated WAAVP method, however the use of facilities30

like Excel spreadsheet macros and basic computer programs potentially allow different data to be analysed31

relatively quickly.32

Alternative options for analysis of FECRT data include computationally intensive parametric methods.33

These include parametric bootstrapping, or the likelihood profiling method proposed by Torgerson et al.34
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(2005), but here Markov chain Monte Carlo (MCMC) (Gilks et al., 1998) is used as an example. Each35

of these methods requires the use of a parametric distribution in order to describe the FEC data. The36

negative binomial is the most frequently used parametric distribution for FEC data, and is equivalent to the37

gamma-Poisson compound distribution implemented here (for the derivation see Vose (2004)). Conceptually,38

this represents a population of Poisson distributions with gamma distributed means, where the Poisson39

distributions account for counting variability in observed FEC within a sample, and the gamma distribution40

describes the variability between samples. The latter could arise as a combination of several factors, including41

the aggregated distribution of eggs in faeces, variations in worm fecundity over time, variations in faecal42

consistency, and variations in the numbers of worms present, which are impossible to separate using only43

a single faecal sample per individual. For the MCMC model, pre-treatment data are assumed to follow44

a single gamma-Poisson (negative binomial) distribution, while post treatment data are distributed as a45

different gamma-Poisson distribution, with a mean value which has been scaled relative to the pre-treatment46

mean, and a value for variability which has separately been scaled relative to the pre-treatment variability.47

This allows inference on the true change in mean egg shedding, with an additional parameter reflecting48

the true change in variability between egg counts. From this model, estimates of the mean anthelmintic49

efficacy and the variability in anthelmintic efficacy between animals can be obtained. The advantage of an50

MCMC based approach is that the different sources of variability can be taken into consideration, leading51

to more accurate estimates of the uncertainty of true parameter estimates. Disadvantages of this approach52

include the comparatively high computational effort required to implement the method, and the need to53

make distributional assumptions about the processes generating the data. FEC between animals is well54

described by a gamma-Poisson (negative binomial) distribution, however alternatives include zero-inflated55

distributions (Denwood et al., 2008; Nødtvedt et al., 2002), and the use of a lognormal distribution to56

describe the variability in means (Morrison, 2004).57

The bootstrapping and MCMC procedures also have the advantage of attempting to define the full58

distribution of likely values for the true FEC reduction. This allows the results to be presented in a more59

intuitive way, such as a probability that the true egg count reduction is less than a given percentage, typically60

the published efficacy of the drug used. This probability, p̂, is relatively easy to estimate using numerical61

integration for both the bootstrapping and MCMC methods, and can allow the group to be classified as62

‘Susceptible’ if 0 < p̂ < 2.5%, ‘Possible resistant’ if 2.5 < p̂ < 50%, ‘Probable resistant’ if 50 < p̂ < 97.5%,63

or ‘Confirmed resistant’ if 97.5 < p̂ < 100%. These definitions allow a distinction to be made between64

confirmed resistance and the lack of evidence of susceptibility, which is lacking in the current interpretation65

of lower 95% confidence interval and empirical mean reduction statistics described by Coles et al. (1992).66

Given the worldwide importance of anthelmintic resistance, there is an urgent need to improve and67

standardise the statistical method used to analyse such data (Coles et al., 2006; Kaplan, 2002). Compared68

to the case with ruminants, the relatively small sample sizes, high variability between counts, and relatively69
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low pre-treatment mean FEC frequently encountered with equine FECRT data may provide a challenge to70

the use of a non-parametric bootstrapping procedure, since there are relatively few data points from which71

to sample. There is also often insufficient data to be able to analyse the underlying distribution, which72

prevents validation of the choice of distribution used by the MCMC analysis. The aim of this study was to73

assess the usefulness of 95% confidence intervals generated using these three methods using simulated data,74

and then to assess the impact of the assumptions being made for each method.75

2. Materials and Methods76

2.1. Statistical Analysis77

The analysis currently recommended by the World Association for the Advancement of Veterinary Par-78

asitology was performed as described by Coles et al. (1992). Bootstrapping was conducted using a function79

written by the author in the R statistical programming language (R Development Core Team, 2008). New80

pre-and post-treatment pseudo-datasets were sampled from each dataset, and the mean reduction calculated81

10,000 times. The mean estimate and 95% confidence intervals for each dataset were then calculated and82

recorded from these 10,000 iterations.83

Bayesian MCMC analysis was performed using a bespoke model, implemented using JAGS (Plummer,84

2008) for the MCMC simulation. The model fits a gamma-Poisson distribution to the pre and post-treatment85

data, with parameters for pre- and post-treatment means and shape parameters. The pre-treatment mean86

and shape parameters are given minimally informative prior distributions spanning all values that are seen87

in real FECRT data for each parameter. Post-treatment mean and shape parameters are calculated by88

multiplying the pre-treatment mean and shape parameters by a “change in mean” and “change in shape”89

parameter, respectively. The “change in mean” is given an uninformative Beta(1, 1) prior, and the “change90

in shape” a diffuse lognormal prior with a mean of one. The true % FEC reduction is derived from91

(1− change in mean) ∗ 100. Calling JAGS to run each simulation and summarising of MCMC chains was92

automated using the runjags package (Denwood, 2008) for R, with two chains. Convergence was assessed93

using the Gelman-Rubin statistic (Gelman and Rubin, 1992), and necessary sample size using Raftery and94

Lewis’s diagnostic (Raftery and Lewis, 1995). The median estimate and 95% credible intervals for the true95

egg count reduction were calculated in R using the MCMC output.96

For all three methods, credible intervals for the proportion of datasets with the true reduction parameter97

contained within the nominal 95% confidence intervals were calculated using a Bayesian approach with an98

uninformative Beta(1, 1) prior. The mean relative size of these confidence intervals was calculated using99

equation (1).100

confidence interval size =
∑

U−L
T

N
(1)
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Where L denotes the lower confidence interval, U the upper confidence interval, T the true parameter value,101

and N the number of datasets102

To assess the accuracy of the median estimates, the relative root-mean-square-error (RMSE) was calcu-103

lated using the simulated (true) value for each parameter. The RMSE can also be thought of as the standard104

deviation of the ratio between each median estimate and the simulated values; however it should be noted105

that this is not equivalent to the accepted meaning of the term “standard deviation”. The term relative106

RMSE will be used to avoid confusion.107

2.2. Comparisons of methods for analysis of FECRT data108

A total of 1000 parameters for a simulated FECRT were generated in the R statistical programming109

language. The true proportional FEC reduction was simulated from a Uniform(0.75, 1) distribution, so110

that true egg count reductions varied from reduced efficacy to efficacious reductions. The pre-treatment111

mean number of eggs counted (equal to FEC if the egg counting technique had an egg detection threshold112

of 1 EPG), and sample size (number of animals) were chosen to reflect the values seen in real equine113

FECRT data obtained from 63 typical Danish equine datasets. The 2.5% and 97.5% quantiles for observed114

pre-treatment mean and sample size were used as the lower and upper bounds of the distributions used115

to generate the parameters. Pre-treatment mean was taken from a Uniform(1.45, 53.1) distribution, and116

sample size per group was sampled randomly from integers between 4 and 16 inclusive with each integer117

having an equal probability of selection. The coefficient of variation (cv) between samples before treatment118

was sampled from a Uniform(1, 1.41) distribution (corresponding to a pre-treatment shape parameter of119

the gamma distribution, k, of between 1 and 0.5), and the proportional increase in cv after treatment was120

sampled from the same distribution (corresponding to a post-treatment shape parameter of between 1∗1 = 1121

and 0.5 ∗ 0.5 = 0.25). These values were also chosen to reflect the values most likely to be encountered in122

real FECRT data; published values of k are usually less than one (Shaw et al., 1998), and differing efficacy123

of anthelmintic between animals would be expected to result in an increase in variability post-treatment.124

In order to test the implications of the distributional assumptions made by the MCMC and WAAVP125

methods, simulated datasets were generated using the following three different distributions of underlying126

sample means; gamma-Poisson (negative binomial), multi-modal lognormal-Poisson, and uniform-Poisson.127

For each dataset, the meta-population mean and variance was the same for all distributions. The number128

of modes for each multi-modal lognormal-Poisson distribution was sampled as between two and ten for129

each dataset, and a separate lognormal distribution used to describe the distribution of modes within the130

group. These modes conceptually represent sub-groups within the population, with the population variance131

split equally between the two compound lognormal distributions for each animal. If the simulated parameter132

mean and variance required negative parameter value for the lower limit of the uniform-Poisson distribution,133

then a log-uniform distribution was used instead (that is, a distribution which is uniform on the log scale).134
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Pre- and post-treatment egg count data were generated using each of these three distributions with the 1000135

parameter values, to simulate a FECRT for a total of 3000 datasets. These datasets were then analysed136

using each of the three methods. More details regarding the generation of these data are available from the137

corresponding author.138

2.3. Equine FECRT data139

The MCMC and bootstrap methods were applied to equine FECRT data obtained from 63 typical140

Danish equine establishments, with a median (range) of 9 (6-22) animals per dataset. For these data, a141

modified MCMC method using zero-inflated gamma-Poisson distributions in place of the gamma-Poisson142

distributions was used, in addition to the MCMC method described previously. For each dataset, the143

probability, p̂, that the observed FEC reduction was less than the “desired” FEC reduction was calculated144

by numerical integration of the posterior estimates for true FEC reduction. From this, the dataset was145

classified as ‘Susceptible’ if 0 < p̂ < 2.5%, ‘Possible resistant’ if 2.5 < p̂ < 50%, ‘Probable resistant’ if146

50 < p̂ < 97.5%, or ‘Confirmed resistant’ if 97.5 < p̂ < 100%. In this study, the “desired” FEC reduction147

was set 95%, corresponding to the best estimate of the efficacy of the drug used in a näıve population. This148

figure represents the minimum population mean FEC reduction we would expect from a fully susceptible149

group of animals if we were able to observe the true mean FEC before and after treatment, and could be150

adjusted for both methods with other datasets depending on the drug used and desired tolerance in true151

efficacy.152

2.4. Bootstrap analysis153

A more complex analysis of the performance of the bootstrapping method was performed using gamma-154

Poisson data. Sample size was drawn from the set {5, 10, 20, 30, 40, 50, 60, 70, 80, 90 & 100}, and155

pre-treatment mean number of eggs counted from the set {1, 5, 10, 20, 30, 40, 50, 75 & 100}. Each of these156

99 combinations was used to generate 1000 datasets using two gamma-Poisson distributions and a true157

FEC reduction randomly generated from a Uniform(0.75, 1) distribution. For each dataset, the parameter158

value used for pre-treatment cv was either 1 or 1.41, and post-treatment change in cv either 1 or 1.41. Each159

dataset was analysed using the bootstrap method to provide a median estimate and 95% confidence intervals160

as before.161

3. Results162

3.1. Comparisons of methods for analysis of FECRT data163

Of the 3000 datasets, 35 of the gamma-Poisson datasets, 32 of the multi-modal lognormal-Poisson164

datasets, and 33 of the (log) Uniform-Poisson datasets gave an empirical reduction of 100%. The me-165

dian (95% confidence interval) simulated true reduction for these empirical 100% reduction datasets was166
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99.13% (82.23% - 99.97%). As the post-treatment variance for these datasets was 0, the WAAVP method167

of calculating 95% confidence intervals could not be applied. In practice, these datasets would be assumed168

to represent a 100% reduction, so 95% confidence limits of 100% to 100% were assigned to these datasets.169

The non-parametric bootstrapping approach generated the same confidence limits for these datasets, since170

all possible combinations of datapoints give a 100% reduction.171

In Figure 1, the proportion of true reductions that were contained within the notional 95% confidence172

intervals for each method with all datasets are shown (95% credible intervals calculated using a Bayesian173

method with an uninformative prior). There is no evidence that the MCMC method did not estimate true174

95% confidence intervals for both the gamma-Poisson and (log) Uniform data, but the confidence was lower175

for the multi-modal data. Non-parametric bootstrapping and the WAAVP method both returned notional176

95% confidence intervals that contained the true value between 85% and 90% of the time for all data types.177

Discounting the datasets with an empirical reduction of 100% improved the apparent performance of the178

bootstrapping and WAAVP methods, although both methods still generated lower estimates of confidence179

than the MCMC method for all data types (data not shown).180

In Table 1, the mean relative size of the notional 95% confidence intervals for each method and dataset181

are shown. The relative RMSE for each combination is shown in Table 2. The MCMC method returned182

on average slightly larger 95% confidence limits than the other methods for each dataset, although when183

datasets with 100% apparent reductions were excluded, the three methods produce similarly sized 95% con-184

fidence intervals (data not shown). The 95% confidence intervals were largest for the (log) Uniform-Poisson185

data, and most narrow for the multi-modal data. The MCMC median estimates produced a lower relative186

RMSE than the bootstrapping median and WAAVP mean estimates in every case. The bootstrapping me-187

dian and WAAVP mean estimates generally had a similar relative RMSE, although those produced by the188

bootstrapping method were lower. As for the relative size of 95% confidence intervals, the relative RMSE189

was smallest for each method for the multi-modal data and largest for the (log) Uniform-Poisson data.190

3.2. Analysis of equine FECRT data191

The probabilities of resistance returned by the bootstrapping and modified MCMC method relative to the192

first MCMC method are shown in Figure 2. The probabilities were greater for MCMC than bootstrapping193

in all but one case, indicating that bootstrapping consistently estimated the true efficacy to be higher than194

the estimates produced by MCMC. Estimates produced by the modified MCMC method using the zero-195

inflated gamma-Poisson distribution were very similar to those produced by the first MCMC method using196

the uni-modal gamma-Poisson distribution.197

In Table 3, the classifications made for each dataset using each method are shown. None of the datasets198

were classified as confirmed susceptible using the MCMC method, and of 14 (22%) classified as confirmed199

susceptible with the bootstrap method, four (6%) were classified as ‘probable resistant’ using the MCMC200
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method. In addition, seven (11%) of the datasets were classified as ‘confirmed resistant’ using MCMC and201

only ‘probable resistant’ using the bootstrap method. There was insufficient information in the data to202

determine either confirmed resistance or susceptibility for 53 datasets (84%) using MCMC and 46 datasets203

(73%) using the bootstrap method.204

3.3. Bootstrap analysis205

The effect of increasing pre-treatment mean FEC and sample size on the ability of the bootstrapping206

method to accurately predict the true FEC reduction is shown in Figure 3 and Figure 4. As pre-treatment207

mean FEC increased, the 95% confidence intervals were more reliable, although this affect appeared to be208

less pronounced with an increase in mean above ten counted eggs at sample sizes 20 and greater. With209

sample sizes of five and ten, the notional 95% confidence intervals contained the true parameter no more210

than 90% of the time, and as little as 40% of the time with a very low mean FEC. At sample sizes 20211

to 40, the 95% confidence intervals contained the true parameter between 90% and 95% of the time for212

pre-treatment mean FEC of over ten counted eggs. This improved to between around 93% and 95% for213

sample sizes of 50 and above with pre-treatment mean FEC of ten counted eggs and above. Even with a214

sample size of 100, the notional 95% confidence intervals contained the true parameter between only 89%215

and 93% of the time with a pre-treatment mean FEC of one egg counted, and between 92% and 95% with216

a pre-treatment mean FEC of five eggs counted. Conversely, the confidence of the estimates produced by217

the MCMC method were not decreased by a reduced mean and sample size, with notional 95% confidence218

intervals containing the true value 99% of the time with a mean of 1 and sample size of 5, 97% of the time219

with a mean of 100 and sample size of 5, 97% of the time with a mean of 1 and sample size of 100, and 96%220

of the time with a mean of 100 and sample size of 100 (95% credible intervals not shown).221

4. Discussion222

For all datasets, simulated from each of the distributions tested, the MCMC method provided confidence223

intervals with the best defined properties, as well as the most precise median estimates for the true FEC224

reduction. The size of the 95% confidence intervals produced was slightly greater for the MCMC method,225

but not when datasets with empirical reductions of 100% were removed. This indicates that the MCMC226

methods were producing more appropriate 95% confidence intervals, rather than merely larger 95% confi-227

dence intervals. This was the case not only for data simulated from a gamma-Poisson distribution, where228

the MCMC method using the same distribution would be expected to perform well, but also using data229

simulated from different distributions. The performance of the MCMC method was less optimal using the230

multi-modal data, but even here it out-performed the other two methods. In addition, the modified MCMC231

method (based on a zero-inflated gamma-Poisson distribution) produced much more similar results to the232
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first MCMC method (based on a uni-modal gamma-Poisson distribution) than the bootstrap procedure for233

the analysis of equine FECRT data. This implies that the distributional assumptions made by the MCMC234

method has less practical impact on the analysis of these types of FECRT data than the assumption that235

bootstrapping a limited number of data points can capture all the variability of an inherently very variable236

system. Vidyashankar et al. (2007) propose dealing with this effect by taking into account the inter-farm237

variability. The intention of this paper was to assess the performance of each method when analysing in-238

dividual datasets in the absence of any other comparable datasets, so that taking into account inter-farm239

variability would not have been possible. The MCMC method is also capable of analysing data from multiple240

sites, for example by defining a distribution of efficacy that describes the mean FEC reduction at each site241

and using this extra information to reduce uncertainty in the estimate for the true mean efficacy. However,242

by directly describing the variability structure in FEC data, parametric techniques eliminate the necessity243

for data from additional sites (where none is available), and allow efficacy to be analysed at an individual244

farm level.245

Several of the datasets generated with parameters similar to observed equine FECRT data gave an246

empirical reduction of 100%, even where the true mean reductions were close to 75%. These datasets present247

difficulties when using both the WAAVP and bootstrap methods, which were unable to generate appropriate248

95% confidence limits. Nineteen (19%) of these datasets were simulated using empirical reductions of less249

than 95%, and so represent a consistent source of false negatives for these methods. The MCMC method250

was the only method examined in this paper which is capable of analysing datasets with 100% empirical251

reductions in an appropriate fashion.252

It is also apparent from the analysis presented here that analysis of a single equine FECRT dataset will253

often prove inconclusive. Using the MCMC method, only 10 of the datasets from equine field studies were254

classified as ‘confirmed resistant’ and 0 as ‘confirmed susceptible’, with the remaining 53 (84%) datasets255

containing insufficient information to be sure if the true drug efficacy was reduced or not. This is consistent256

with the conclusions made by Miller et al. (2006), that the results of a FECRT based on an arithmetic257

mean reduction can be inconsistent. The utility of the method could be increased by performing a suitable258

sample size calculation prior to performing the FECRT, and increasing the number of samples taken and/or259

reducing the egg detection threshold accordingly. This is probably not practical for routine clinical tests,260

however, due to the added cost and time associated with taking more samples and counting more eggs. A261

more useful solution might be to use a process control approach for routine surveillance, combined with262

the use of a more detailed FECRT with prior sample size calculations to calculate the required number of263

samples to take when the process control indicated a possible problem. This may represent both a more264

efficient use of resources, and a greater overall diagnostic test sensitivity and specificity, than the current265

use of repeated reduction tests viewed in isolation and without the necessary sample size calculations.266

In this paper, the efficacy of reductions were classified according to the probability that the true reduction267
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was below a given threshold, which is not consistent with the method currently advocated by the WAAVP.268

This departure was made to allow a distinction to be drawn between cases where there is clear evidence269

for resistance and cases where there is insufficient evidence to demonstrate acceptable efficacy. Using the270

classification scheme currently used by the WAAVP, which involves consideration of the mean estimate and271

lower 95% confidence interval only (Coles et al., 1992), it is not possible to make this distinction in the272

absence of suitable power calculations. This limitation may lead to confusion over the clinical interpretation273

of FECRT analysis results.274

The more flexible and intuitive output produced by the MCMC and bootstrap methods, including the275

ability to produce a single probability that the true reduction is less than a given value, make them both276

more attractive methods than the current WAAVP recommendation. It is evident that the MCMC method277

outperformed the bootstrap method in this study, however this may not be true when the data has a larger278

sample size or mean. Since the true distribution of data is unknown, the most conservative estimate would279

be to use the data at which the MCMC method performed worst. This produced notional 95% confidence280

intervals with a true estimated confidence of 93%. The bootstrapping procedure returned notional 95%281

confidence intervals with a true confidence greater than or equal to 93% only when the sample size was282

at least 40 with a pre-treatment mean FEC of 40 counted eggs or more, or with a sample size of at least283

50 with a pre-treatment mean FEC of ten counted eggs or more. This suggests that the MCMC method284

should be used in preference to the bootstrap method with a sample size of less than 40 with a pre-285

treatment mean FEC of 40 counted eggs (equal to, for example, 1000EPG with an egg detection threshold286

of 25 EPG), or with a sample size of less than 50 with smaller pre-treatment mean FEC. The authors287

expect that similar results could be obtained using any computationally intensive parametric method such288

as parametric bootstrapping, likelihood profiling, or MCMC sampling from the likelihood without the use289

of prior information. With larger datasets, the data distribution independence and reduced computational290

effort associated with the non-parametric bootstrap procedure make this method more attractive.291

5. Conclusions292

Using data simulated with similar values of mean and sample size to those observed in equine FECRT293

data, both the method currently advocated by the WAAVP and a non-parametric bootstrap method failed294

to provide true 95% confidence intervals for the FEC reduction. In order to avoid making erroneous inference295

regarding the true efficacy of anthelmintics in the field, computationally intensive parametric methods such as296

MCMC should therefore be used with sample sizes of less than 50. The large proportion of inconclusive results297

returned from analysis of equine FECRT data suggests that the routine use of prior sample size calculations298

should be adopted to ensure sufficient data is collected. Software to perform all three types of analyses299

documented here is freely available in the form of an add-on package to the R statistical programming300
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language from http://cran.r-project.org/web/packages/bayescount/index.html.301
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Gamma-Poisson Multi-modal Uniform-Poisson

Bootstrapping 0.702 0.459 0.803

WAAVP 0.673 0.532 0.786

MCMC 0.746 0.555 0.803

Table 1: Mean relative size of 95% confidence intervals for the true mean FEC reduction produced by each

method from the analysis of 1000 datasets simulated using each distribution

Gamma-Poisson Multi-modal Uniform-Poisson

Bootstrapping 1.69 1.49 2.6

WAAVP 1.7 1.53 2.66

MCMC 1.61 1.46 1.77

Table 2: Relative root-mean-square-error for median or mean estimate for the true mean FEC reduction

produced by each method from the analysis of 1000 datasets simulated using each distribution

Bootstrap

Sus. Poss. res. Prob. res. Res.

MCMC

Susceptible 0 0 0 0

Possible resistant 10 8 0 0

Probable resistant 4 9 22 0

Resistant 0 0 7 3

Table 3: The number of datasets assigned to each category of estimated efficacy status by MCMC and

bootstrap analysis for 63 individual Danish equine datasets (median (range) of 9 (6-22) animals per dataset)
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Figure 1: The proportion of 95% confidence intervals not containing the simulated true mean FEC reduction

parameter for each method from the analysis of 1000 datasets simulated using each distribution
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Uni−modal MCMC model

Z
er

o−
in

fla
te

d 
M

C
M

C
 m

od
el

 (
sq

ua
re

)
an

d 
bo

ot
st

ra
p 

(t
ria

ng
le

) 
es

tim
at

es

0

20

40

60

80

100

0 20 40 60 80 100

Figure 2: Comparison of the estimated probability of efficacy < 95% returned for 63 individual Danish equine

datasets by bootstrapping and an MCMC method based on a zero-inflated gamma-Poisson distribution,

relative to an MCMC method based on a uni-modal gamma-Poisson distribution (median (range) of 9 (6-22)

animals per dataset)
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Figure 3: Proportion of 95% confidence intervals produced using the bootstrap method that did not contain

the true parameter from 1000 simulated datasets at each pe-treatment mean number of eggs counted (95%

credible intervals in dotted lines). Sample sizes 5, 10, 20 and 30 shown.
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Figure 4: Proportion of 95% confidence intervals produced using the bootstrap method that did not contain

the true parameter from 1000 simulated datasets at each pe-treatment mean number of eggs counted (95%

credible intervals in dotted lines). Sample sizes 40, 50, 80 and 100 shown.
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