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Abstract24

Populations living in a spatially and temporally changing environment can survive by26

adapting to the changing optimum and/or by migration towards the favourable habitat.

Two principal mechanisms have been proposed to explain limits to the range of a single28

species in a stable environment: maladaptive gene flow from centre to the edge and lim-

ited genetic variance. Here we discuss both predictions for evolution with fixed variance, by30

modeling joint changes in trait mean and population density, and evolution of variance in an

environment which varies in time and space.32

As for a stable optimum, when genetic variance is fixed, we obtain two regimes of adap-34

tation: uniform adaptation, where the population would eventually fill all available habitat

along the environmental gradient, and limited adaptation when the environmental gradient36

is steep relative to the genetic variance. As the optimum changes in time, the uniformly

adapted population tracks the optimum by shifting at a uniform rate matching the environ-38

mental rate of change. In contrast, a population that is only well adapted to a central region

adapts in the trait slower than is the rate of temporal change of the environmental optimum,40

and survives by moving in space towards favourable habitat. The degree of adaption as mea-

sured by the gradient in trait mean relative to the spatial gradient (which also determines42

the species range), and the critical gradient, above which the limited adaptation occurs, is

independent of the rate at which the optimum changes in time.44

We use population genetic model with many loci to allow the genetic variance to evolve.46

Now we only find equilibrium with uniform adaptation. The cline shape and number stays

the same as in the static model, hence the genetic variance only increases via dispersal across48

the spatial gradient and agrees with the predicted value for a stable environmental gradient

- although higher variance would lead to a better adaptation when temporal change in the50

environment is fast.

We explain that the outcome can be predicted by comparing the loads due to genetic52

variance, dispersal and temporal change, and discuss how these parameters can be measured

in nature.54
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Introduction56

Whilst many boundaries to species ranges are caused by sharp changes in the environ-58

ment, or are driven by interaction with other species (see reviews of Gaston 2003, Ch. 1;

Bridle and Vines 2007), often there is no apparent reason for the sharp spatial limits that are60

commonly observed. Some species survive remarkably well when transferred outside their

range (Prince and Carter 1985). More often, though, species would need to extend their niche62

by adapting in one or several traits (Gaston 2003, Table 2.1). We have only a limited under-

standing of why such adaptation fails even when the environment changes smoothly in space.64

Haldane (1956) suggested that the sharp boundary may be a result of maladaptive gene flow

from central populations, which prevents adaptation in less dense marginal populations - a66

likely explanation for limits to adaptation due to highly asymmetrical gene flow when density

changes sharply due to extrinsic reasons (as in the mainland-island model of Kawecki et al.68

(1997)). The second classic argument for limits to a species range is that genetic variance is

insufficient to allow niche extension (see Antonovics 1976). Two questions follow from this70

argument: how can we quantify such limits, and what constrains the variance in the first

place.72

Existing studies predicting response to a temporally changing optimum in structured74

populations are rather limited. Most notably, Pease et al. (1989) analysed evolution with the

optimum changing in time and space, described by bivariate Gaussian fitness (in time and76

space) and assuming that genetic variance is small and constant. Later, in an extension of

the Kirkpatrick and Barton’s (1997) model allowing for species interactions, Case and Taper78

(2000) briefly assessed the response of species range to a sudden change in an environment.

More is known about the response of a single, unstructured population: generally, the lag of80

trait mean behind the optimum is proportional to the speed of movement of the optimum,

divided by genetic variance and strength of stabilizing selection (Charlesworth 1993; Lande82

and Shannon 1996; Bürger 1999; Waxman and Peck 1999).

84

Genetic variance is crucial to understand the rate of evolution and in the long run, it is
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important to understand how is variance maintained. Various forces will elevate the vari-86

ance: mutation, frequency-dependent selection, heterozygote advantage, diversifying selec-

tion, some forms fluctuating selection. Genetic variance is substantially higher than we would88

expect based on simple mutation-selection balance (see Turelli 1988; Johnson and Barton

2005). After about 20 generations, increasingly more genetic variance is contributed by new90

mutations (Hill 1982), rather then coming from the standing variation. In a single popula-

tion, additive genetic variance maintained by mutation-selection balance, V̂G,m, reflects the92

product of genomic mutation rate (U = 2nµ) and the width of stabilizing selection, VS -

for multiple loosely linked loci, V̂G,m ≈ 2UVS (Turelli 1984). Laboratory studies of response94

to directional selection show that the genetic variance often stays constant for a hundred of

generations (e.g. Yoo 1980; Weber et al. 2001; see reviews of Barton and Keightley 2002;96

Keightley 2004). However, unless stabilizing selection γi = − VP

2VS
is very weak (see King-

solver et al. 2001 and the discussion), unrealistically high mutation rate or number of loci of98

small effect is required to maintain the variance that we observe (with h2 = 0.4 we require

U = 1
10

VP

VS
).100

Genetic variance can be substantially higher in a spatially heterogeneous environment:102

theoretically, if genetic variance of a quantitative trait can freely evolve in response to spa-

tially variable selection, it should at any particular location increase with the extent of104

migration across the environmental gradient and the width of stabilizing selection (Barton

2001). Therefore, the ability to adapt to temporal change can be significantly higher in106

species that are living in a spatially variable environment. Because migration is generally

several orders of magnitude higher than mutation (the increase of genetic variance due to108

mutation, mutational variance Vm, is about 10−3 to 10−2 times random variance due to ran-

dom environmental effects, VE (Lynch and Walsh 1998), migration may significantly increase110

local genetic variance even when spatial variability is low.

112

In spatially structured populations with limited gene flow, a cline at a single locus can

be maintained by differential selection, if the population can adapt over a large enough114

range. Slatkin (1975) and Nagylaki (1976) showed that a cline will develop if the environ-

ment changes over a scale which is large relative to the ratio of dispersal over the square116
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root of intensity of selection per gene, σ√
s
. If the environment changes over smaller spatial

scales, the gene frequency responds to the selection averaged over this characteristic length.118

Therefore, no cline emerges if the environment changes only over scales smaller than a few

characteristic lengths. It also follows that adaptation to a pocket or a marginal habitat of120

different environment which is small in terms of σ√
s

is prevented (for a real world example see

Lenormand et al. 1999). Hedrick (2006) gives a nice review of current studies of adaptation122

to spatially varying environments.

124

It has been shown by Kirkpatrick and Barton (1997), that it is low genetic variance

combined with high gene flow that can prevent adaptation to a stable environment, when126

optimum varies smoothly in space. Conversely, when genetic variance is unconstrained, no

limit to species range arises (Barton 2001). Kirkpatrick and Barton’s (1997) study follows128

jointly population dynamics and the evolution of trait mean due to adaptation to a static

spatial gradient. They find two classes of solutions at equilibrium: uniform adaptation when130

the trait mean matches the optimum perfectly on the whole range, and the solution, where

the gradient in trait mean is shallower than the environmental optimum, hence maladapta-132

tion increases away from the centre, leading to a limited range. Limited adaptation arises

as the gradient steepens relative to genetic variance. Both solutions are stable when the134

available habitat is infinite, but if an expanding population reaches the margins of the suit-

able habitat, uniform adaptation collapses from the margins (Kirkpatrick and Barton 1997,136

Appendix) towards limited adaptation, where gradient in trait mean is shallower then envi-

ronmental gradient. Barton (2001) extended the model by allowing the genetic variance to138

evolve. Then, the population could always adapt to the environmental gradient by increasing

its variance, and there is no equilibrium with a limited range. However, population density140

steadily decreases with increasing variation around the optimum - eventually, as gradient

steepens, population goes extinct on the who range.142

Here, we extend the above models to allow the environmental optimum to vary both144

in time and space. By continuity with the static case, we would expect that when genetic

variance is fixed, there would still be two solutions, either with uniform adaptation, or with146

adaptation only over a limited range. When the optimum changes in time, we suppose the
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population would track the changing optimum both by adaptation and migration (unless the148

environment changes too fast in either space or time, leading to extinction). In relation to the

static case, we are interested in whether the gradient in trait mean changes, which would lead150

to a change in size of species range, and if there is any change to the critical gradient, above

which the limited adaptation occurs. We address the evolution of genetic variance with a152

population genetic model, assuming that the quantitative trait under selection is determined

by nl loci with approximately additive effects and/or under weak selection. Then genetic154

variance increases as a function of migration across the spatial gradient and perfect adap-

tation (in trait mean) to arbitrarily steep gradients is possible, until the population density156

decreases to zero due to loss of fitness caused by variation around the optimum. Now the sole

solution we found has a uniform population density. We are address whether now genetic158

variance also increases with the rate at which the optimum changes in time; and whether

the temporal change can drive limits to the species range (rather than just cause a uniform160

decrease in density) when the variance can freely evolve.

162
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Evolution in a spatially and temporally changing environment

164

In the first section, we study a quantitative trait using a phenotypic model with fixed

genetic variance, using three different forms of density-dependence: simple regulation, where166

population density is a function of the average growth rate, and two models of joint regulation

of trait mean and population density, which we call logarithmic and logistic. In the second168

part, we address the evolution of variance by finding the uniform solution for the population

genetic model, and numerically iterating the evolution of allele frequencies.170

Adaptation to a linear environmental gradient, that moves in time - pheno-172

typic model

174

Following Pease et al. (1989), the change of the mean phenotype z can be written as:

∂z

∂t
=

σ2

2

∂2z

∂x2
+ σ2 ∂ ln(n)

∂x

∂z

∂x
+ VA

∂r

∂z
(1)

The equation describes the effect of migration and selection on a population with density176

n with quantitative trait (z) under selection. The first term represents migration, approxi-

mated by diffusion with variance σ2. The second term describes gene flow from populations178

which vary in population density, n. The third term describes the effect of selection on a nor-

mally distributed character z with additive genetic variance VA (Lande 1976, r is the mean180

(Malthusian) fitness, r in continuous time ∼ log(W ) in discrete time): ∂z
∂t = h2VP

∂r
∂z = VA

∂r
∂z

- here VA is additive genetic variance, VP the phenotypic variance and h2 is the narrow sense182

heritability h2 ≡ VA

VP
. The predicted effect of selection on phenotype will be accurate only for

weak selection as strong selection will generally distort Gaussian distribution of phenotypes184

(see Bulmer 1980, Ch. 9; ? ?): in this study, we would expect deviations namely when

temporal change induces high fitness cost - due to directional nature of this selection.186

Simple population regulation188

We start by following change in the trait mean, whilst population density is a function190

of mean fitness of the poplation. Throughout the paper, we assume that there is an optimal
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value θ[x, t] for the trait z[x, t], which is changing at a steady rate through space (x) and192

time (t):

θ[x, t] = bx − kt, (2)

where b is the gradient of optimum in space and k is the rate of change of the optimum in194

time. The habitat is one-dimensional, and the position on it is denoted by x.

196

The fitness

r[z] = rθ − (z − θ[x, t])2

2Vs
(3)

is a function of the adaptation of phenotype z at position x at time t and rθ is the fitness198

when mean phenotype is perfectly adapted. VS is the variance of stabilizing selection around

the optimum, the strength of stabilizing selection is 1
VS

. As the phenotypic variance VP ≡200

(z − z)2 = z2 − z2 = (z − θ)2 − (z − θ)2 for any θ, the average fitness gives the intrinsic rate

of increase of the population:202

r[z] = rθ − (z[x] − θ[x, t])2

2VS
− VP [x]

2VS
(4)

In the simple regulation we assume that local population density simply grows with the

average fitness r[z]:204

n = Keγr, (5)

where K reflects the carrying capacity and 1/γ is the intensity of density-dependent regula-

tion.206

It follows from the above equations that, just as for a fixed environmental gradient (Kirk-208

patrick and Barton 1997, Eq. 1), the mean phenotype changes as:

∂z

∂t
=

σ2

2

∂2z

∂x2
+

−z + bx − kt

VS

(

VA − σ2γ
∂z

∂x
(b − ∂z

∂x
)
)

(6)

We can immediately see a solution where the population adapts as the optimum moves:210

the trait mean is z = βx−kt+a, β = b. Substituting this into Eq. 6 reveals that the lag a of

the trait mean behind the optimum is a = kVS

VA
. (If there is no variance in the trait, VA = 0,212

a solution only exists for an optimum fixed in time, k = 0.) Population density is uniform

in space, at n = Ke
γ(rθ−

VP
2VS

−k2VS

2V 2
A

)
. High genetic variance allows population to maintain214
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its trait mean closer to the changing optimum, but population growth rate also decreases

with phenotypic variance (by VP

2VS
), and so there is an optimal variance when population has216

the highest density: VA = 3

√

2k2h2V 2
S . With simple regulation, there is no other solution in

which the population adapts to changing conditions.218

Before embarking on a detailed discussion of the results, and for comparison with more220

realistic models, it is useful to reduce the number of parameters by re-scaling time, distance

and trait. Following Barton (2001) we therefore introduce:222

T = r∗t, X = x

√

2r∗

σ2
, Z =

z√
r∗Vs

(7)

where r∗ is the strength of density dependence at equilibrium (for simple regulation, r∗ = 1/γ

as explained later in the logarithmic model with joint regulation of trait and density).224

We then have three parameters A, B and k∗.

A =
VA

r∗VS
, B =

bσ

r∗
√

2VS

, k∗ =
k

√

r∗3VS

(8)

The scaled growth rate is226

R =
r

r∗
=

rθ

r∗
− 1

2
(Z − BX + k∗T )2 − A

2h2
(9)

The scaled parameters A, B and k∗ describe the decrease of fitness due to the standing

genetic variance, the spatial gradient and the temporal change in the optimum. Specifically,228

Ar∗/2 is the standing genetic load, B2r∗2 is the load due to dispersal across the spatial

gradient and k∗2r∗/2 is the load due to temporal change in the optimum over the character-230

istic time ∆t = 1/r∗. Relative to the time T = r∗t, we get the loads of A/2, B2 and (over

∆T = 1), k∗2/2. Note that the lag load is described by the scaled variable a∗ = a√
r∗VS

: at232

equilibrium, the lag load caused by the temporally changing optimum is 1
2a∗2r∗.

234

Now, the re-scaled trait mean then changes as follows:

∂Z

∂T
=

∂2Z

∂X2
+ (BX − k∗T − Z)

(

A − 2
∂Z

∂X
(B − ∂Z

∂X
)
)

(10)
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As in the case of environmental gradient fixed in time (Kirkpatrick and Barton 1997),236

we get two locally stable equilibrium solutions for the trait mean Z = β∗X − q∗T + a∗ -

one with uniform adaptation, where the gradient in trait mean matches the environmental238

gradient, β∗ = B, and hence the range is unlimited, and another where adaptation is con-

strained by genetic variance, the gradient in trait mean is shallower than the environmental240

gradient, β∗ < B and species’ range is limited. With simple regulation, however, adaptation

to temporal change only occurs for the uniform solution. (This is not the case for the joint242

regulation, assessed later.) As the optimum changes over time, the trait mean changes at the

same rate as the optimum (q∗ = k∗) and lags behind the optimum uniformly by a∗ = k∗

A .244

Population density is uniform at n = eR = er0− 1

2
( k∗2

A2
+ A

h2
), where r0 ≡ rθ

r∗
.

246

In the second solution, the population is adapted on a limited range and the gradient in

trait mean β∗ = β∗
− = B

2 (1 −
√

1 − 2A
B2 ) is shallower than the environmental gradient (see248

Fig 1, thin lines). Such a solution only exists if the environment changes sufficiently sharply

relative to the genetic variance, B >
√

2A (see Fig 2, thin line). The population density is250

highest where the line Z = β∗X + a∗ intersects the trait optimum (on the infinite range, the

shift a∗ of the trait mean is arbitrary) and the population density n = er0− 1

2
((B−β∗)2X2+ A

h2
)

252

declines as a Gaussian from the center of the range, with variance given by the difference

between gradient in trait mean and environmental gradient, β−β∗. As the optimum changes254

in time, the trait mean stays constant: q∗ = 0, hence locally the population becomes extinct:

the population density (given by the simple regulation) simply tracks the changing optimum256

in space, moving at speed c∗ = k∗

B−β∗
, as long as there is a suitable habitat available.

258

On an infinite (spatial) range, both above solutions (with β∗ = β∗
− and β∗ = B) are locally

stable whenever they exist (B >
√

2A). The third, unstable solution, β∗
+ = B

2 (1 +
√

1 − 2A
B2 )260

(see Fig 1, dashed line), determines the global stability. If the space is effectively infinite and

the initial gradient in trait mean, β∗
0 , is above the unstable solution with intermediate gradi-262

ent, β∗
+, the population always evolves towards uniform adaptation. Conversely, if β∗

0 < β∗
+,

the trait mean evolves towards the solution with shallow gradient, β∗
− = B

2 (1−
√

1 − 2A
B2 ), and264

the range is limited at equilibrium. The gradients and hence the stability are independent of

the rate at which the optimum moves in time. When available habitat is limited and there is266
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no gene flow over the margins, however, adaptation collapses from the margins towards the

trait mean with the shallow gradient, β∗
−, whenever solution with limited adaptation exists268

(see Appendix: Stability, Simple regulation. No gene flow over the margins is represented

by reflecting or absorbing boundary conditions - when in the first case migrants intending to270

migrate over the margins move back to range or in the second case, die.) This corresponds to

similar results for local stability under static environmental gradient (Kirkpatrick and Barton272

1997, Table 17.1 and Appendix).

274

Joint population regulation

276

Logarithmic model

278

It is more realistic to assume that there is a joint regulation of trait mean (Eq. 1) and

population density. The population grows locally at rate r and migration is approximated280

by diffusion with variance σ2:
∂n

∂t
=

σ2

2

∂2n

∂x2
+ rn (11)

where the growth rate r[n, z] and the intrinsic rate of increase, r[n, z], both depend on the282

population density and adaptation in the trait:

r = re[n] + rg[z], r = re[n] + rg[z], (12)

As before, fitness depends on adaptation in the trait as follows:284

rg := − (z − θ[x, t])2

2Vs
, rg := − (z − θ[x, t])2

2Vs
− VP

2VS
(13)

First, we assess the logarithmic model, where the growth rate re declines logarithmically

as the carrying capacity is approached, re = rθ − 1
γ log( n

K ):286

r = rθ −
1

γ
log(

n

K
) − (z − θ[x, t])2

2VS
− VP

2VS
(14)

With logarithmic density dependence, the fitness is very high for low densities (n << K),

followed by fast regulation. We use the logarithmic model because it converges to the288

simple regulation near equilibrium (n → K). (Neglecting migration, at equilibrium we
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have r = re + rg = 0, and hence using the above formula for logarithmic re we recover290

n = Keγ(rθ+rg) - as for the simple regulation.) We can now see that r∗ = 1/γ is the strength

of density dependence, defined as r∗ ≡ −n dr
dn |n=n̂m

(Kirkpatrick and Barton 1997, where n̂m292

is the density at carrying capacity, i.e. spatially homogenous equilibrium when the optimum

is stable in time).294

It is clearer to describe all solutions when the model is re-scaled as was done for simple296

regulation (Eq. 7). In addition, we scale the population density so that it is equal to one

when trait mean matches the gradient: N = n
K∗

, K∗ = Ke
γ(rθ−

VP
2VS

)
= Ker0− A

2h2 . (Note298

that in Kirkpatrick and Barton 1997 and Barton 2001, r0 ≡ rθ

r∗
is in the logarithmic model

set to zero.)300

Then (from Eqs. 1 and 11) for joint regulation of trait mean and logarithmic density-302

dependence we obtain:

∂Z

∂T
=

∂2Z

∂X2
+

2

N

∂N

∂X

∂Z

∂X
− A(Z − BX + k∗T ) (15)

304

∂N

∂T
=

∂2N

∂X2
+ RN (16)

R =
r

r∗
= − log(N) − 1

2
(Z − BX + k∗T )2

These equations correspond to Eqs. 8 and 9 for fixed environmental gradient (k∗ = 0) in306

Barton (2001).

308

We search for an equilibrium solution in the form of a traveling wave: Z−θ∗ = f [U ]+a∗,

where U transforms the spatial coordinate according to the changing optimum: U = X−c∗T310

and c∗ describes the speed of the traveling wave. Now the lag of trait mean behind the opti-

mum, θ∗ = BX − k∗T , is a function of a single variable, U . We assume that the population312

density would have a form N = n∗
1e

−U2 ζ∗

2 , and the variance along U , 1
ζ∗

, is constant.

314

In the extension from the simple to joint regulation, and as when the environmental gra-

dient is fixed in time (Kirkpatrick and Barton 1997), we again find two classes of solutions: a316

uniform adaptation and, when spatial gradient is steep (B > Bc), an adaptation on a limited
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range. Both solutions can be described jointly by the following formulae.318

At equilibrium of joint regulation with logarithmic environmental growth rate, the scaled320

lag of the trait mean behind the optimum is

a∗ =
k∗

A + 2B2

A φ(1 − φ)
(17)

where φ ≡ β∗

B describes the degree of adaptation in the gradient of trait mean. The population322

density at equilibrium is

N = e−ζ∗− a∗2

2
−U2 ζ∗

2 , (18)

where ζ∗ = A(1−φ)
2φ is the inverse of the variance of population density along U . The trait324

mean Z = β∗X − q∗t + a∗ adapts at speed q∗ = k∗ − c∗(B − β∗) = a∗A. The speed c∗ of

movement of the traveling wave is c∗ = 2a∗Bφ
A for φ 6= 1. When the gradients match (φ = 1),326

the solution is uniform with respect to U and c∗ = k∗

B .

328

The solution with uniform adaptation, where the gradient in trait mean, β∗, and envi-

ronmental gradient, B are equal (φ = 1), always exists. At this equilibrium, the trait mean330

Z = BX − q∗T + a∗ changes at the same rate as the optimum (q∗ = k∗) and lags behind it

by a∗ = k∗

A . In the original units, the lag is a = kVS

VA
- as expected for a single population332

(e.g. Lande and Shannon, 1996).

334

The population density is uniform in space, N = e−
a∗2

2 - see Fig 3, left. Note that N

is the scaled population density, so that N = 1 for a uniformly adapted population when336

the environmental optimum is stable in time. In the logarithmic model, N is always greater

than zero, but we can reasonably assume that very small populations with density N ≤ Ntr338

are effectively extinct. If loss of fitness due to temporal change in the optimum is too high,

k∗ > A
√

2 log( 1
Ntr

), population (in term of scaled density N) goes extinct - see Fig A 6. In340

terms of the original units, population density is n = Ker0−a∗2

2
− A

2h2 = Ke
γ(rθ−

k2VS

2V 2
A

− VA

2h2VS
)
.

Hence when the abundance of resource described by K is fixed, the fitness r as well as the342

population density n are highest when VA = 3

√

2k2h2V 2
S - as with the simple regulation.

344
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When the environmental gradient is steep (B > Bc), the population may alternatively

adapt only on a limited range (see Fig 3, right), with gradient in trait mean β∗
− ≈ A√

2
< B.346

The cubic equation for the relative gradient in the trait mean (φ ≡ β∗

B ) is 2B2φ2(1 − φ) =

A2(1 − φ) + Aφ (see Fig 1). It follows that the solution with limited range exists when348

B > Bc = 1
4

√

20A + 8A2 + (1 + 8A)3/2 − 1; approximately for small A when B >
√

2A, or

VA < 1
4γσ2b2 in the original units (see Fig. 2). Note that the gradient in trait mean is inde-350

pendent of the speed of movement of the optimum, k∗, and the approximate formula is the

same as the exact result for gradient in trait mean under simple population regulation (Eq. 3).352

Populations with limited adaptation (φ < 1) adapt slower than is the rate at which the354

optimum changes in time (k∗) - the (scaled) trait mean changes at a rate determined by

q∗ = k∗A2

A2+2B2φ(1−φ) . The rate of adaptation always increases with the standing genetic load356

(Ã) and migration across the gradient (B) and is close to q∗ ≈ k∗A
1+A , unless B → Bc ≈

√
2A,

where the rate of adaptation drops off sharply (see Fig. 4, first row; approximations are A358

small). Therefore, when the population lives on a limited range, the trait mean is always

adapting slower than is the rate the environment changes in time, and the difference between360

the rates k∗ and q∗ decreases with A. The dependence on the effective gradient B is insignifi-

cant unless B is close to Bc, when the rate of adaptation a∗ increases sharply (Fig. 4, second362

row). The scaled lag of trait mean behind the optimum is simply a∗ = q∗

A . The population

is centered at X = c∗T , c∗ = 2Bφk∗

A2+2B2φ(1−φ) : the rate at which the population moves in space364

is close to c∗ ≈ k∗

B (1 + A
2B2 ), increasing as the fitness effect of variance (A) increases, and

decreasing as the effective gradient B gets steeper; again, the dependency gets stronger as366

B → Bc (Fig. 4, third row).

368

For a population adapted on a limited range, the degree of adaptation (φ ≡ β∗

B ) increases

only slowly as the gradient steepens, and the density declines - both in the centre, where370

when the environmental optimum is static, trait mean would match the optimum perfectly,

and as the difference between the trait mean and environment increases with the distance372

from the centre. A population living on a limited range goes extinct when the environmental

gradient is steeper than Be = A−2 log(Ntr)√
2

for k∗ = 0 (as it follows from the formula for374

the scaled population density, Eq. 18). The rate the gradient changes in time has only a

14



minor effect, Be decreases by − k∗2

4
√

2
( 1
log(Ntr)2 + A

log(Ntr)3 ) + O(A2, k4) - see Fig A 6. Note376

that for a given variance (A = γ VA

VS
fixed), the species range as determined by ζ∗ = A(1−φ)

2φ

is independent of the rate at which the environment changes in time - the width as given by378

(say) 2 standard deviations of N(X) is 2√
ζ∗

.

380

Logistic density dependence

382

It is useful to understand how robust is the model against different assumptions about

density dependent regulation. The logarithmic model leads to high growth rates at low384

densities, and so we also assess the ”logistic” model, with the environmental growth rate

defined as re = rm(1 − n
K ). The scaled average growth rate for the logistic model is386

R =
r

r∗
= 1 − N − 1

2
(Z − BX + k∗T )2

where time T = r∗t is scaled by r∗ = rm − VP

2VS
. Scaling is the same as for the logarithmic

model, described by Eq. 7 and N = n
K∗

, with new parameters as in Eq. 8. Again, r∗ is388

the strength of density dependence at spatially homogeneous equilibrium if the mean was

perfectly adapted (a∗ = 0, β∗ = B), as defined in the description of logistic model. In the390

logistic model, scaled carrying capacity is K∗ = K r∗

rm
. The variance scaled by its effect on

fitness is A = h2VP

r∗VS
, hence K∗ = K(1 − A

A+2h2 ).392

We do not have an exact solution for the logistic model, but can obtain an approximation.394

The population density at equilibrium is close to N = (1−ζ∗− a∗2

2 )e−U2 ζ∗

2 , the approximate

formulas for a∗, c∗ and ζ∗ at equilibrium are the same as in the logarithmic model (see Eq. 17396

and below), only the gradient in trait mean differs: now the relative gradient φ follows equa-

tion 2B2φ2(1−φ) = A2

2 (1−φ)+Aφ(1− a∗2

2 ), hence depends on the rate of temporal change398

of the optimum as the lag a∗ is a function of k∗. (To obtain this result, population density

in the equation describing density regulation (Eq. 16) is approximated by N ≈ n∗
1(1−U2 ζ∗

2 ).)400

Again, the population range would expand without limits if the scaled environmental402

gradient B is below a critical gradient Bc. Its value is intermediate between the models with

simple and logarithmic regulation and agrees with the prediction for the simple regulation404

15



to first order in A, Bc =
√

2A + O(A3/2) (see Fig 2). For steeper gradients, both uniform

adaptation on the whole range and adaptation on a limited range with shallower gradient in406

trait mean are possible.

408

For the equilibrium with uniform adaptation, scaled population density N = 1 − k∗2

2A2

declines significantly as k∗ increases and the population goes extinct if selection due to410

temporal change is large relative to the standing genetic load scaled by the strength of

density-dependence, k∗ >
√

2A. Re-scaling to the original units, n = r∗

rm
KN = K

rm
(rm −412

VP

2VS
)(1− k2VS

2r∗V 2

A

): a uniformly adapted population would go extinct if the temporal change in

the optimum is greater than ke =
√

2r∗

VS
h2VP so that the lag of trait mean behind the opti-414

mum becomes larger than a =
√

2VSr∗, same as for unstructured population (see Lynch and

Lande, 1993, Eq. 11). The genetic variance, when the fitness r of the population is highest,416

does not depend on the environmental growth rate and stays as for the simple regulation at

VA = 3

√

2k2h2V 2
S . However, highest fitness does not coincide with highest population density,418

which requires genetic variance VA = khVS - the density initially sharply increases with VA

but drops to zero when phenotypic load is too high, VP

2VS
> rm.420

As the gradient B steepens relative to the scaled variance, A, another solution emerges.422

The population living on a limited range can migrate towards favourable habitat, but its

total population density reflects the rate at which the environment changes in space: the424

difference between the optimal gradient and the gradient in trait mean increases with B (see

Fig. 5), hence population away from the very centre becomes more maladapted and the426

density drops to zero - population goes extinct approximately when Be > A+2√
2
− k∗2

4
√

2
(1−A+

3
4A2) + O(k∗3) + k2O(A3). (We use that for B large, β∗ ≈ A√

2
.) The ”extinction” gradient,428

Be, slowly decreases with the rate optimum changes in time (k) and agrees well to the limit

for logarithmic regulation when Ntr = e−1. Re-scaling to original units we obtain that such430

an ”imperfectly” adapted population goes extinct for be ≈ 1√
VSσ

(2rmVS + VP (h2 − 1)) when

environment is stable in time. Note that this formula corrects the typographical error in432

Kirkpatrick and Barton (1997, Eq. 16), as their scaling uses genetic load A rather than A/2

stated in their Eq. 11a (as mentioned earlier by Case and Taper, 2001). When the optimum434

changes in time, extinction gradient for population constrained by its genetic variance be-
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comes be
σ√
VS

≈ 2rm + VP

VS
(h2 − 1) − 1

4k2
(

rm − VP

VS
(1
2 + h2)

)

+ O(V 3
P , h4).436

In comparison to the static case, though gradients in trait mean stay nearly the same438

whenever they exist, the faster moving optimum lead to zero densities sooner for uniform

adaptation (see Fig. 6). Also, though stability of the uniform solution on the infinite range440

does not change, on finite range we see that uniform adaptation is less prone to collapse from

the margins when optimum changes very slowly (as the advantage of marginal phenotypes442

does not build up over time). However, starting from little adaptation, solution tends to

evolve towards limited spread (see Fig. 5.)444

Before moving onto the evolutionary dynamics of populations when variance can evolve446

freely, we give a brief summary of the results for fixed variance. As for a stable optimum, two

regimes of adaptation exist at equilibrium: uniform adaptation, where the population would448

eventually fill all available habitat along the environmental gradient, and limited adaptation,

where the environmental gradient is steep relative to (fixed) genetic variance. As the opti-450

mum changes in time, the uniformly adapted population tracks the optimum by shifting at a

uniform rate, matching its rate of change. In contrast, a population that is only well adapted452

at the centre, adapts in the trait slower than is the rate of temporal change of the optimum,

and survives by moving in space towards favourable habitat. The degree of adaption as mea-454

sured by the gradient in trait mean relative to the spatial gradient (which also determines

the species range), and the critical gradient, above which the limited adaptation occurs, is456

independent of the rate at which the optimum changes in time.

458

Adaptation to a linear environmental gradient moving in time - Population

genetic model460

In order to relax the assumption of fixed genetic variance, we need to use a model with462

explicit determination of a trait; for comparison to the previous models, the trait distribu-

tion should be (close to) a Gaussian. For an optimum stable in time, Barton (2001) analysed464

three such models: assuming weak selection, a continuum of alleles model with many alleles

with Gaussian distribution of effects (Crow and Kimura 1964; Kimura 1965), the two alleles466
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model, where the trait under selection is encoded by many additive independent bi-allelic loci

with equivalent effects (Wright 1935) and Fisher’s infinitesimal model (Fisher 1918; Bulmer468

1980), where adaptation occurs via changes in linkage disequilibrium.

470

Here we only assess the two alleles model, where the trait under selection is determined

by nl diploid loci of additive effect with two alleles (with frequencies qi, pi, and effects472

−αi/2, αi/2). The trait mean is z =
∑n

i=1 αi(pi − qi) and variance at linkage equilibrium is

VA = 2
∑n

i=1 α2
i piqi. Substituting to Eqs. 1, 12 and 13 gives474

2
∑n

i=1 αi∂pi

∂t
=

σ2

2

2
∑n

i=1 αi∂
2pi

∂x2
+σ2 ∂ log(n)

∂x

2
∑n

i=1 αi∂pi

∂x
+2

n
∑

i=1

α2
i piqi(

pi − qi

2VS
−z − θ

VS
)−µ(pi−qi),

(19)

where µ is the mutation rate, which is assumed to be symmetric. Now the genetic vari-

ance changes with allele frequency, so we get an extra term pi−qi

2VS
arising from ∂r

∂z (using that476

∂
∂z =

∑n
i=1

1
2αi

∂
∂pi

).

478

The cline shape in a static environment (k = 0) has been derived by Barton (1999, 2001),

assuming that clines have the same form and are distributed in space so that the trait mean480

matches the gradient. Then, allele frequencies change as

∂pi

∂t
=

σ2

2

∂2pi

∂x2
+ σ2 ∂log(n)

∂x

∂pi

∂x
+

α2

2VS
piqi(pi − qi − 2δ) − µ(pi − qi), (20)

where δ ≡ z−θ
α . Barton (2001, p. 378-382) showed that at spatially uniform equilibrium482

with no mutation, allele frequency (centered at x = 0) has a form of p̂[x] = 1
1+exp(− 4

w
x)

(we

set αi = α); where the width of the cline is w = 4
√

σ2VS

α2 . The variance contribution due to484

one locus is VG,nl=1 = 2α
√

σ2VS , obtained by integrating the variance formula over space,

with p → p̂i[x]. As there need to be b
2α clines per unit distance (as each cline shifts the trait486

mean by 2α) to match the spatially variable optimum θ, we get V̂G = b
√

σ2VS . In the scaled

model (see Appendix: Scaling for the population genetic model), that is V ≡ VA

r∗VS
= B

√
2.488

As the optimum changes in time, allele frequencies will need to move in space. We are490

again looking for a traveling wave solution, where the allele frequency, p[x, t] = p[u], is solely

a function of a new variable u = x − ct (and ∂
∂x = d

du , ∂
∂t = −c d

du ):492
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−c
dpi

du
=

σ2

2

d2pi

du2
+ σ2 d log(n)

du

dpi

du
+

α2
i

2VS
piqi(pi − qi − 2δ) − µ(pi − qi), (21)

and where the allele frequency (which was at the time t = 0 centered on u = 0) has a form

of p[u] = 1
1+exp(− 4

w
u)

. Then dp
du = 4

wpq and d2p
du2 = ( 4

w )2pq(p − q), so with no mutation, there494

is a spatially uniform solution for a given δ, where w = 4
√

σ2VS

α2 and c
δ = wα2

4VS
. The cline

width, w, is independent of the rate of movement of the traveling wave as u = x − ct only496

shifts the clines along x. For the uniform solution, where the rate of change in the trait mean

matches the change in the optimum, we must have c = k
b , and hence the lag of trait mean498

behind the optimum is a = k
√

V S

bσ . The number of clines required to match the optimum

at any particular time stays the same as in the static case at b
2α , and hence the resulting500

variance stays at V̂G = b
√

σ2VS (without mutation and under linkage equilibrium) - and so

as in the static case Barton (2001, p. 378-9), it is independent of allelic effect or numbers of502

genes. The lag of the trait mean is therefore a = kVS

V̂G

, in agreement with the prediction for

the phenotypic model.504

We can test the robustness of the predictions by iterating the two-allele model numerically,506

following joint evolution in clines (and hence mean and variance) and population density, as

described by Eq. 22 (Appendix) and 16. Initially, the population has no spatial adaptation:508

allele frequencies at time zero are uniform in space and almost fixed to zero or one, with

uniform distribution of deviations ranging from zero to 0.01. Over time, allele frequencies510

diversify across the range to match the optimum (see Fig. 8)

512

The population evolves to be uniformly adapted, with gradient in trait mean matching

the optimum and lagging behind by a∗ = k∗

A (a = kVS

VA
in the original units), matching the514

predictions for phenotypic model (see Fig. 7 and 9, top). Scaled genetic variance V stays very

close to the prediction (above), V = B
√

2 (Fig. 7 and 9, middle). As genetic variance does516

not increase above the static equilibrium when optimum changes faster in time, population

density decreases towards zero when the loss of fitness due to temporal change is too large518

relative to the standing genetic variance (Fig. 7 and 9, bottom). The rate of decrease of

population density is the only outcome which quantitatively differs between the logistic and520
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logarithmic model - for logistic model, population density declines faster with k∗, leading to

extinction at k∗ ≥
√

2A.522

Discussion524

In an environment which varies both in time and space, populations can survive by adapt-526

ing in trait mean or by moving to a more favourable habitat. Here we extend Kirkpatrick

and Barton’s (1997) model with static optimum to let the enviornent vary in time as well528

as in space. We show that a temporally changing environment does not have a significant

effect on the degree of adaptation as measured by the gradient in trait mean, and hence the530

species range: instead we see a steady decrease of population density as the rate at which the

optimum changes in time increases. In natural populations, however, we could still expect a532

range reduction arising from the Allee effect and possibly other forces which are not analysed

in this paper - most important, genetic drift (see Butlin et al. 2003; Alleaume-Benharira534

et al. 2006).As in the static case, we see two kinds of response: a population, which is

uniformly adapted in space, tracks the optimum by shifting at a uniform rate matching the536

environmental rate of change, and a population, where only the central range is well adapted,

both adapts in the trait and moves in space towards favourable habitat. Below we attempt538

to explain when one or the other regime is likely, and when a population is likely to fail to

track the change by adaptation and/or migration.540

We ignore many complications in the phenotypic and genetic models presented in this542

paper: namely epistasis between loci, possible adaptation in genotype-by-environment in-

teractions (Nussey et al. 2005). We also only explicitly assess evolution of one trait at a544

time; although we can think of genetic variance being constrained due to another trait (see

Grant and Grant 1995; Etterson and Shaw 2001) for examples of effect of interaction between546

loci). However, the nature of the Gaussian distribution of phenotypes which follows from our

assumptions is quite robust and allows for analytical predictions, whose sensitivity towards548

specific complex scenarios can be tested.

550

Whether a population can adapt to an unlimited range depends on the dimensionless
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parameters A, B; its ability to respond to change through time depends on the scaled pa-552

rameter k∗. These three parameters can be thought of as three kinds of genetic loads, each

scaled relative to the strength of density dependence, r∗. Ar∗/2 is the standing genetic load,554

i.e. loss of fitness due to genetic variance around the optimum; B2r∗2 is the loss of fitness

when an optimally adapted population shifts by one dispersal range; and similarly, k∗2r∗/2556

is the loss of fitness when an optimally adapted population shifts through the characteristic

time 1/r∗.558

Below, we first outline the general results and then relate them to the real world by dis-560

cussing estimates of the scaled parameters.

562

Evolution with constant genetic variance

564

First, we focus on predictions based on the assumption that genetic variance can be

treated as constant. In this case the equilibrium with uniform adaptation always exists, and566

as the effective spatial environmental gradient, B = bσ
r∗

√
2VS

, increases relative to the scaled

variance, A = h2VP

r∗VS
, we the equilibrium with limited adaptation as well. The critical gradient568

does not change significantly with the rate at which the optimum moves in time, and is close

to Bc =
√

2A (see Fig. 2), as shown previously for a static optimum by Barton (2001),570

Kirkpatrick and Barton (1997). When they exist, both solutions are locally stable on infinite

range. When habitat is limited, uniform adaptation tends to collapse from the margins when572

environmental gradient is steeper than the critical value Bc (see Figs. 2). In the original

units, limited adaptation emerges approximately when the critical gradient bσ√
h2VP

> 2
√

r∗:574

when the change in spatial optimum over one dispersal range, bσ, relative to the standard

deviation of genetic variance,
√

VA, is smaller than twice the square root of the strength of576

density dependence, 2
√

r∗. Optimum changing slowly in time extends the local stability of

uniformly adapted population as the optimum for marginal populations changes over time, so578

edge effects are less important. Population adapted on a limited range can however sustain

faster temporal change in the optimum than is possible for a uniformly adapted population580

(see Fig. 6).

582
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Uniform adaptation

584

For uniform adaptation, the spatial gradients in the trait mean and the environment

are equal, as are the rates of temporal change and adaptation in trait mean. The scaled586

trait mean, Z, lags behind the optimum by a∗, leading to a load of 1
2a∗2r∗. This load dif-

fers markedly between the uniform adaptation where gradients match, β∗ = B, and limited588

adaptation, where the gradient in trait mean is shallower than the spatial environmental

gradient, β∗ < B. At the uniform equilibrium, the scaled lag of the trait mean behind the590

optimum increases linearly with the scaled rate of temporal change (k∗): a∗ = k∗

A . In the

original units, we recover a = kVS

VA
, which is the same as for unstructured populations, and592

robust against the choice of growth rate (Lande and Shannon 1996; Bürger 1999; Waxman

and Peck 1999, and similar in Charlesworth 1993).594

At equilibrium, population density declines with the scaled lag of trait mean behind the596

optimum, a∗2, as a Gaussian for the logarithmic model: N̂ = e−
1

2

k∗2

A2 , and quadratically

for the logistic one (N̂ = 1 − 1
2

k∗2

A2 ). A uniformly adapted population fails to survive when598

selection due to the optimum changing in time, k∗, is large relative to the genetic load scaled

by the strength of density dependence, A. The critical rates of change of the optimum at600

which the population goes extinct are k∗
e = A

√

2 log(1/Ntr) (where Ntr is the density when

the population is no longer viable) and k∗
e ≈ A

√
2, for the logarithmic and logistic model,602

respectively. When we scale back to the original units, for the logistic model we recover

ke =
√

2r∗

VS
h2VP , which agrees with the result for an unstructured population (see (Lynch604

and Lande, 1993, Eq. 11). Note that since A as a function of additive genetic variance

VA only enters as a parameter, we do not get an explicit dependence of scaled population606

density N on the environmental gradient; but when we scale back to the population density

n = N
K∗

, we uncover the trade-off between the standing load caused by genetic variance vs.608

the increased ability of the population to adapt when additive genetic variance is higher. The

”optimal” genetic variance (when the fitness is highest) is VA = 3

√

2k2h2V 2
S - again the same610

as predicted for an unstructured population by Lande and Shannon (1996).

612

Adaptation on limited range
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614

As the environmental gradient, B, steepens relative to the scaled genetic variance, A,

another equilibrium emerges: now the gradient in trait mean is much shallower than the616

environmental gradient, the (initial) position of the population in space is arbitrary (see

Fig 3, right), and population density decreases away from the center, leading to a limited618

species’ range. The population tracks favourable conditions both in space and time - the

rate at which the trait mean changes is slower than the change in optimum: approximately,620

q∗ ≈ k∗A
1+A . The centre of population density moves in space at a rate c∗ ≈ k∗

B (1 + A
2B2 ) (see

Fig. 4) - hence as the rate of temporal change increases, the decline of density is much slower622

than for uniform adaptation (when favourable habitat is available). We can find the critical

rate of change of environment in time and space when the population goes extinct: for the624

logistic model, that is Be ≈ A+2√
2

− k∗2

4
√

2
(1 − A + 3

4A2); in terms of the original units that is

be
σ√
VS

≈ 2rm + VP

VS
(h2 − 1) − 1

4k2
(

rm − VP

VS
(1
2 + h2)

)

: the extinction gradient increases with626

the genetic load Ar∗/2 = h2VP

2VS
- both due to the static term, and as the decrease due to

temporal change (last term) is smaller.628

Evolution of variance630

The equilibrium variance, which determines the rate of response to selection (Fisher632

(1930)), depends on the shape of fitness as a function of phenotype and space. When op-

timum moves in time, the equilibrium variance must be also dependent on fitness form;634

therefore below, we discuss studies of moving optimum of a Gaussian, or approximate Gaus-

sian (≈ 1 − (z−θ)2

2VS
), fitness as used in our model, extended with spatial gradient.636

We can get an idea about the optimal distribution of phenotypes in a single unstructured638

population by analysing the dynamics of cumulants describing the phenotypic distribution:

1993’s (1993 and 2000, Ch.VII/7.3) studies predict that unless mutation is infinitesimally640

small, the genetic variance would increase with skewness of the underlying distribution,

which arises from directional selection (Bürger 2000, Eq. 7.20, p.327). It is less clear how642

often this is the case in finite sexual populations: individual-based simulations by Bürger

and Lynch (1995) and Bürger (1999 and 2000, Ch.VII/7.3), demonstrate sharp increase and644
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a maintenance of higher variance as the optimum changes in time (Bürger and Lynch 1995,

Fig 7.4) - unless effective population size is very small (Bürger and Lynch 1995, Fig 7.5;646

genomic mutation rate U = 10−2). Consistently with the expectation that the total num-

ber of mutations in the population would limit the adaptation, Waxman and Peck (1999)648

show that in infinite sexually reproducing population (assessed via simulations of genotype

frequencies), high variance evolves even for much lower mutation rates. Note that in unstruc-650

tured populations, mutation is essential to maintain nonzero variance, which is not the case

when selection varies in space.652

In a static environment, variance can be maintained by gene flow across spatial gradi-654

ent. When environmental optimum changes in both time and space, higher variance could

evolve. We approximate the trait with the ”two-allele” model Barton (2001), following fre-656

quencies of nl clines of additive bi-allelic loci. For a static environment, the study of Barton

(2001) shows that in this case, gene flow across spatial gradient, bσ, maintains a variance658

of VA = bσ
√

VS . Uniform equilibrium, where clines are scattered in the space and have

the same form, can be found analytically: as environment changes in time, the shape of660

the cline stays the same as in the static case (Barton 2001), but the cline moves in space

at a rate c = k/b (in scaled units, c∗ = k∗/B. As neither the shape of the cline nor the662

number of polymorphic clines changes as the optimum moves in time (and we assume that

alleles are at linkage equilibrium), the predicted variance stays the same as for the static case.664

The above predictions can be tested by numerically iterating the two-allele model over666

time, so that the shape, spacing and number of (variable) allele frequencies are not con-

strained. The solutions confirm that the variance stays at the same level as maintained by668

gene flow across the environmental gradient in the static case, even though as k∗ increases,

population density gradually drops to zero (see Fig 7), and better adaptation would be pos-670

sible if VA was higher. The variance does not increase above the static equilibrium even

when we add mutation to the model. We can imagine that if population was age structured672

(see Charlesworth 1980), then the spatial gradient can be thought of as blurred with stan-

dard deviation as a function of change of the environment over the average generation time,674

k∆t, which would lead to an increase of variance. Also, individual-based model may bring a
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different result, for two reasons: first, we could follow genotype frequencies, so that linkage676

equilibrium could build up. Second, genetic drift can have a qualitative effect on the results

regarding species range (see Butlin et al. 2003; Bridle et al. in prep.) - as such, however,678

this is the scope for a separate paper and we do not elaborate on the topic here.

680

Because genetic variance of an additive trait tends to evolve towards V̂ =
√

2B; in terms

of the original units V̂A = bσ
√

VS), spatial gradient facilitates adaptability in time: we can682

clearly see from the formula for the fitness maximum at VA = 3

√

2k2h2V 2
S that the popula-

tion grows fastest when bσ ≈ 3

√

2k2h2

VS
, which also gives the highest population density for684

logarithmic growth rate. Under the logistic model, phenotypic load must be smaller than

the maximum growth rate ( VP

2VS
< rm) to maintain positive population density, which leads686

to extinction for steep spatial gradients when variance can evolve (Be ≈
√

2h2rm/r∗); and

the density is highest for bσ = hk. When environment changes in time, the ”extinction” in688

terms of the scaled density, N , occurs approximately for k∗ >
√

2A in the logistic model and

for k∗ >
√

2A log(1/Ntr) in the logarithmic one: therefore for uniformly adapted population,690

we would expect extinction at k∗
e ≈ 2B and k∗

e = 2B log(1/Ntr), respectively. In terms of

the original units, a population with logistic environmental growth rate and unconstrained692

variance would go extinct when the rate of change of the optimum in time is greater than

ke ≈ bσ
√

2(rm − bσ
2h2

√
VS

) = bσ
√

2r∗.694

Parameters in nature696

What are plausible values for the parameters A, B, k∗ and r∗? First, consider A, a mea-698

sure of the load due to genetic variance around the optimum. Since Lande and Arnold (1983)

renewed interest in the quantitative genetics of wild populations, there have been hundreds700

of studies of the strength of stabilising selection, and of additive genetic variation, in nature.

The observed distribution (Kingsolver et al. 2001) of the standardized quadratic selection702

gradient, γ, is wide and fairly symmetrical on the continuum of stabilizing (γ < 0) to disrup-

tive selection (γ > 0), with median for the stabilizing selection −γ̃− = ṼP

2VS

.
= 0.1, ranging704

from 1.5 to 0. This corresponds to VS/VE = 5/(1 − h2) rather than VS/VE = 20, which

used to be the common consensus (see Johnson and Barton 2005). If we take heritability706
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h̃2 .
= 1/2 (which implies that VA = VE + VR, where VR are all non-aditive components of

genetic variance), the median of A = VP h2

r∗VS
per a measured trait is Ã

.
= 0.01 for r∗

.
= 1 and,708

mostly, A < 2 (see below). The overall genetic load Ar∗/2 scales with the number traits

under selection, as the total effect on fitness would encompass independent components of710

the load for all traits.

712

Burt (1995, 2000) reviews evidence on the additive genetic variance for fitness, and makes

an interesting argument concerning (in our notation) the scaled dispersal load, B2. He points714

out that the total dispersal load can be estimated from transplant experiments, in which in-

dividuals are moved from their native location, or are fertilized by pollen from elsewhere;716

this dispersal load must be balanced against the increase in relative mean fitness due to se-

lection, which equals the standardized additive variance in fitness (∆W
W

= h2V ar(W )

W
2 = VW ).718

By dispersal of expected distance σ away from the optimal habitat, fitness decreases by

∆rx→x+σ = B2r∗2. The decrement of fitness due to dispersal and mutation (∆log(W ) ≈ ∆r)720

is at equilibrium balanced by its increase via additive variance in fitness, VW : from Burt’s

reviews (above) we see that VW ≤ 0.1; if we ignore mutation, B̃
.
= 0.15/r∗ and B ≤ 0.3/r∗.722

How fast might optima change through time? In reality, change may occur over all724

timescales, rather than as a simple linear change as assumed here. However, fast changes will

average out, and slow changes will have negligible effect: we are concerned with changes that726

occur over the joint evolutionary and ecological timescales. The load from a perfectly adapted

population, due to changing optimum over characteristic time 1/r∗, is k2

2r∗2VS
= k∗2r∗

2 . We728

can get an estimate of a load due to temporally changing environment from the speed of

advance of the range due to temporal change in the environment. This speed (in terms of730

dispersal ranges, as c∗ = c
σ

√

2
r∗

), at which a point population density moves in space, is

around c∗ ≈ k∗

B when β∗ → B or A ≪ 2B2. We give an example of one well studied, fast732

advancing, species. The butterfly Hesperia comma is advancing at a rate about c
.
= 0.63km

per generation due to rising temperature (Thomas et al. 2001), while its expected dispersal734

distance is about σ
.
= 0.1km (as measured by Hill et al. (1996) for the first nine generations).

Approximately, the load due to temporally changing optimum is around k∗2r∗

2 ≈ ( c
σ )2B∗2 at736

equilibrium; using the medians for B and r∗ we get an upper estimate of k∗ at about 2.7 (σ
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is necessarily going to be an underestimate to some extent as migrants long distance away738

will not be measured and because dispersal may increase during expansion).

740

Finally, the characteristic time is given by the inverse of the strength of density depen-

dence 1/r∗, where r∗ is the rate of return towards the equilibrium at carrying capacity, n̂m:742

r∗ = − d
dn

dn
dt |n=n̂m

= −n dr
dn |n=n̂m

Kirkpatrick and Barton (1997). Lande et al. (2002) and

Sæther et al. (2005) study this measure in detail, and give estimates both relative to a year,744

γd, and as change per generation, D ≡ ∆tγd (where ∆t is generation time). Their growth

rate per generation is λ∆t, therefore after t generations, population density is n[t] = n0λ
∆t t.746

Throughout this paper, the time is thought in generations: with simple regulation (and ignor-

ing mutation) we have n[t] = n0e
rt. Between the continuous and discrete time, r ∼ log(λ∆t),748

and the measures of r∗ and D are approximately equivalent. From Sæther et al. (2005), we

see that values of D lie mostly between 0 and 2.5: roughly, median for r∗ is around 1. (We750

included another estimate from Krüger et al. (2002), where continuous-time approximation

to their discrete-time autoregressive model directly gives the estimate for r∗ for the logarith-752

mic model, with mean strength of density-dependence r∗ = −(1 + β1)
.
= 1.) Also, for logistic

growth, the intrinsic growth rate r gives the upper bound for r∗: Grosholz’s (1996) study754

provides r for some invasive species: the range of r = 10−1 to 10, with median of r ≤ r∗ again

around 1 (see also Case and Taper 2000). The importance of strength of density dependence756

for limits to species range, and behaviour at the margins is discussed in a recent paper by

Filin et al. (2008).758

The above overview gives estimates for the standing genetic load per trait around ˜Ar∗/2
.
=760

0.005 (generally smaller than 0.7), the total dispersal load around ˜B2r∗2 .
= 0.02 (generally

smaller than 0.1) and the strength of density dependence r̃∗
.
= 1, mostly smaller than 2.5.762

From the anecdotic butterfly example we see that some populations can adapt to a large

selection due to temporally changing optimum, obtaining the upper indirect estimate of the764

load due to the temporal change k∗2r∗/2
.
= 3.6. Ideally, we would like to get all three loads,

and the growth rate r∗ estimated for one species, as they may well be correlated. We have766

not find such data, and the above paragraphs are intended to give some idea about the range,

possible ways of estimating and illustrate the meaning of the load parameters.768
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Predictions & nature770

There are many studies of and of adaptation to temporally changing environment (see772

Etterson and Shaw 2001; Thomas et al. 2001; Warren et al. 2001; Parmesan and Yohe 2003),

and of increase of genetic differentiation in quantitative traits in a continuous population,774

both due to sharply changing environments (Antonovics and Bradshaw 1970; Wilding et al.

2001) and variation on large scales (particularly QST vs. FST studies: Prout and Barker776

1989 and 1993; Spitze (1993); review by McKay and Latta 2002; Lynch et al. 1999; Whitlock

2008). Still, we did not find a study which would allow for a quantitative test of any of778

your predictions on limits to a species’ range as a function of our load parameters A, B2 and

k∗2. However, a recent study by Bridle et al. (in prep.) of Drosophila birchii compared two780

populations living on environmental gradients of different steepness in terms of distribution

of population density and adaptation in trait mean, assessing as well the genetic variance.782

Consistent with predictions, population density was concave across space for the steeper gra-

dient, and uniform for the shallower one (see their Fig. 2); genetic variance did not differ784

significantly. Currently, however, we still need more detailed studies to gain better under-

standing of robustness of the model predictions for experimental and natural populations.786
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Appendix: Stability794

Simple regulation796

With simple regulation, we only need to follow the evolution of the trait mean, Z (Eq.798

10). We introduce a perturbation to the equilibrium solution for trait mean, obtaining

Zǫ = β∗X − q∗T + a∗ + ǫ[X, T ]. Equilibrium with uniform adaptation has β∗ = B, a∗ = k∗

A ,800

q∗ = k∗ and substituting Zǫ into Eq. 10 leads:

∂ǫ

∂T
=

∂2ǫ

∂X2
− Aǫ + O(ǫ2)

We can immediately see that perfect adaptation is locally stable, as perturbation always802

decreases over time - without migration, at a rate λ = −A.

804

Perturbation around ”imperfect” adaptation, where β∗ = B
2 (1 ±

√

1 − 2A
B2 ) and q∗ = 0

(a∗ is arbitrary, set to zero*) grows at a rate :806

∂ǫ

∂T
=

∂2ǫ

∂X2
+ 2X(B − β∗)(2β∗ − B)

∂ǫ

∂X
+ O(ǫ2) =

∂2ǫ

∂X2
+ 2X

∂ǫ

∂X
(A − Bβ∗

c ) + O(ǫ2)

where β∗
c is the complimentary solution for adaptation on limited range (β∗

+ for β∗
− and

vice versa). As the central position of such population is arbitrary, we can set the central808

location and the perturbation ǫ(0, T ) to zero there without further loss of generality. For

the gradient to change, the perturbation ǫ has to grow away from the origin, so X ∂ǫ
∂X would810

be greater than zero. Such perturbation changes at a rate 2(A − Bβ∗
c ) - which is always

negative for the solution with shallower gradient, β∗
− = B

2 (1−
√

1 − 2A
B2 ), hence this solution812

is always locally stable. The converse holds for the locally unstable steeper solution. Global

stability has been assessed numerically - the unstable solution β∗
+ = B

2 (1 +
√

1 − 2A
B2 ) acts814
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as a repeller, and gradient in trait mean evolves towards perfect adaptation if the initial

gradient β0 in trait mean is greater than β∗
+ and towards the solution with shallow gradient816

if β0 is smaller than β∗
+. The gradient in trait mean is independent on the rate the optimum

changes in time, k∗, and so is the stability.818

Joint regulation: stability for k = 0, logarithmic model820

Under joint regulation, we follow both evolution of trait mean (Eq. 15) and dynamics of822

the population density (Eq. 16). For uniform adaptation, around equilibrium at k = 0 we

have β∗ = B + ǫ[X, T ], N = 1 + ν[X, T ]. Linearizing gives824

∂ǫ

∂T
=

∂2ǫ

∂X2
+ 2B

∂ν

∂X
− Aǫ + O(ν2) + O(ǫν)

and
∂ν

∂T
=

∂2ν

∂X2
− ν − 1

2
ǫ2 + O(ν2)

Hence without migration, the perturbation changes at a rate λ1 = −A and λ2 = −1.826

(The effect of the term 2B ∂ν
∂X on the rate of growth of the perturbation is of order O(ǫ2)

(from ∂ν
∂T ) and hence can be omitted as for any A 6= 1, |λ1| 6= |λ2| 6= 0. The fixed point is828

a stable node unless A is exactly 1 - the solution with perfect adaptation is always locally

stable on the infinite range.830

For adaptation on limited range, around equilibrium we have (for k∗ = 0) β∗ = Bφ +832

ǫ[X, T ], N = e−ζ∗−X2 ζ∗

2 + ν[X, T ]. Linearizing gives

∂ǫ

∂T
=

∂2ǫ

∂X2
− ∂ǫ

∂X
X

ζ∗

2
+ 2Bφ(

∂ν

∂X
+ νXζ∗eζ∗+X2 ζ∗

2 ) − Aǫ + O(ν2) + O(ǫν)

and834

∂ν

∂T
=

∂2ν

∂X2
− ν(1 − ζ∗ + X2 ζ∗

2
) − ǫXB(1 − φ) + O(ǫ2) + O(ν2)

Under joint regulation, obtaining eigenvalues for nonuniform solution appears intractable836

even for k∗ = 0, so we assess the stability using discrete lattice with stepping stone migra-

tion. Also, we know that the stability of the equilibrium is sensitive to behaviour on the838
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boundaries, which is easier to address in a stepping stone model.

840

Appendix: Scaling for the population genetic model

842

To scale the two-allele model, we define Am ≡ vmax

r∗VS
, where vmax = 1

2α2nl. The equation

Eq. 20 then becomes:844

∂pi

∂T
=

∂2pi

∂X2
+ 2

∂log(n)

∂X

∂pi

∂X
+

Am

nl
piqi(pi − qi − 2δ∗) − γm

2nl
(pi − qi) (22)

where δ∗ = (Z − BX)
√

nl

2Am
, Z = z√

r∗VS
=

√

2Am

nl

∑nl

i=1 pi − qi and scaled genetic vari-

ance is V = VA

r∗VS
= 4Am

nl

∑nl

i=1 piqi. Hence the scaled average effect of gene substitution is846

α∗ =
√

2Am

nl
. The last term is mutation rate scaled by the intensity of density dependent

selection, r∗: γm ≡ U
r∗

, where U = 2nlµ is the genomic mutation rate. (The scaling is848

the same as in Barton (2001) apart from that here V is not scaled directly relative to the

maximum variance possible and hence is consistent with Z and maintains the same scale as850

the parameter describing decrease of population density due to genetic variance, A.) When

solution is uniform, the second term vanishes - iterating the two-allel model, we drop the852

term 2∂log(n)
∂X

∂p
∂X .

854

We follow the population density in the original units, attempting to match the continuous

equation ∂n
∂T = ∂2n

∂X2 + Rn - with a stepping-stone model. After selection, the population856

density is

nw[X, T + δT ] = n[X, T ]
(

1 + δTR)
)

, (23)

where the growth rate is either logarithmic,858

R = r0 −
(

log(n/K)− (Z − BX + k∗T )2

2
− V

2h2

)

(24)

or logistic,

R =
rm

r∗
(1 − n/K) −

( (Z − BX + k∗T )2

2
− V

2h2

)

(25)

Migration is after selection (to keep the rate of change consistent with the continuous model,860

T + δT → T ),

n[X, T + δT ] = nw[X, T ] +
m

2

(

nw[X + δX, T ] + nw[X − δX, T ]− 2nw[X, T ]
)

(26)
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The carrying capacity is set to K = 1 and heritability h2 = 1; for logarithmic model,862

r0 ≡ rθ

r∗
= 0, for logistic model rm

r∗
= 1.

864

After selection, the allele frequencies are

pi,w[X, T+δT ] = pi[X, T ]+
δT

nl

(

pi[X, T ]qi[X, T ](pi[X, T ]−qi[X, T ]−2δ∗)−γm

2
(pi[X, T ]−qi[X, T ])

)

(27)

and after migration,866

pi[X, T + δT ] = pi,w[X, T ] +
m

2

(

pi,w[X + δX, T ] + pi,w[X − δX, T ]− 2pi,w[X, T ]
)

(28)

We use a stepping stone model on a spatial lattice with spacing δX and time step δT ,

where the migration rate m ≤ 1/2 is scaled according to the spacing, m = 2δT
δX2 . (In relation868

to the continuous model, variance in dispersal is approximately σ2 ≈ mδX2 and in the scaled

continuous model, σ2

2 = δT .)870

Throughout the MS, Mathematica (Wolfram Research) was used to manipulate some for-

mulae and to obtain numerical solutions.872
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Figure 1: The chart illustrates the equilibrium values of scaled gradient in trait mean, β∗,

for logarithmic growth rate (thick lines) and simple regulation (thin lines). The solution

with β∗ = B always exists and the solution when the gradient in trait mean is shallower

than B exists when the spatial gradient is steeper than the critical gradient Bc (dots, Fig

2). Thick line shows the solution for joint regulation with logarithmic density-dependence,

2B2φ2(1 − φ) = A2(1 − φ) + Aφ, β∗ = Bφ. The equilibrium value for imperfect adaptation

under joint regulation tends to the one with simple regulation as A → 0. When population

density is just given by mean fitness, as under simple regulation, the gradient in trait mean

for limited adaptation is β∗ = B
2 (1 ±

√

1 − 2A
B2 ). Equilibrium gradients in trait mean which

are always unstable are shown in a dashed line. The dots illustrate the critical gradient Bc

(see Fig 2.
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Figure 2: A solution on a limited range only exists for steep gradients: thick, dashed and

thin lines show the critical gradient, Bc, for logarithmic, logistic and simple regulation. A

critical gradient for simple regulation, Bc =
√

2A (solid line), is also the approximation

for the joint regulation for A small. The exact formula for logarithmic model is Bc =

1
4

√

20A + (1 + 8A)3/2 − 1 + 8A2 and the approximation (using a Gaussian density and k∗ =

0) for the logistic model gives Bc ≈ 1
4

√

20A + 2(1 + 4A)3/2 − 2 + 4A2. In the simple and

logarithmic models, the critical gradient does not depend on the rate at which optimum

changes in time, and the dependence is weak for the logistic model. The dotted line is the

estimated extinction gradient for logistic growth rate and imperfect adaptation, Be = 2+A√
2

;

hence the area between the dotted and dashed line delimitates the region where solution

with limited range exists for the logistic model. In the logarithmic model, density N → 0

as B → ∞, so extinction gradient depends on the (arbitrary) choice of density, Ntr, which

would be deemed as subcritical. Extinction gradients are discussed in the text and Fig. 6.

(Note that the solid lines for Bc in the figure are the same as in Barton (2001), but the

dashed line for the logistic model differs, because here we do not assume that B is large when

estimating Bc.)
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Figure 3: The graphical representation of numerical solutions for distribution of pheno-

typic density for logarithmic model with spatially and temporally varying environment: left:

uniform adaptation, right: limited range. Upper row shows the equilibrium density when

optimum is stable in time (k∗ = 0), lower row the density when optimum is changing at

speed k∗ = 0.2 at time T = 20. Environmental optimum is shown by the solid line; dashed

line depicts the trait mean. Notice the decrease of density for uniform adaptation, where the

lag behind the optimum is about a∗ = 1. Other parameters in the illustration are kept the

same: A = 1/4, B = 1.
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Figure 4: The charts show the scaled rate of adaptation, q∗, and the speed of traveling wave,

c∗, for the solution with limited range, β∗ < B - solid line is the exact solution for logarithmic

growth rate, dashed line an approximation. The scaled rate of adaptation is approximately

q∗ ≈ k∗A
1+A . The scaled lag of trait mean behind the optimum at equilibrium is a∗ = q∗

A ; hence

a∗ ≈ k∗

1+A (not shown). With uniform adaptation, trait mean tracks the optimum matching

its rates of change both space β∗ = B and time q∗ = k∗ = 0.7, and the scaled lag is a∗ = k∗

A

(not shown). The scaled rate at which the point (e.g., center of) population density moves

in space is c∗ ≈ k∗

B (1 + A
2B2 ). Dotted line depicts the solution for uniform adaptation, where

any point moves at speed c∗ = k∗

B . For the first column, B = 1; for the second, A = 0.1.
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Figure 5: As optimum moves in time, equilibrium gradients in trait mean, β∗, stays close to

the static value - if population can persist. In a static environment (black), the solution with

β∗ = B always exists and the solution when the gradient in trait mean, β∗ is shallower than

B exists when the spatial gradient B is steeper than the critical gradient Bc (see Figs. 1 and

2). Numerical solutions for scaled rate of temporal change k∗ = 0.5 are shown with grey dots

- we have A = 1/5, hence uniformly adapted population cannot persist (k∗ > k∗
e ≈

√
2A).

When gradient is too steep, B > A+2√
2

, the density drops to zero. Dashed line depicts the

prediction for steep gradients: β∗ = A√
2
. Parameters: A = 1/5, k∗ = 0 (black), k∗ = 0.5

(grey). The numerical solutions run on spatial lattice with spacing δX = 1/16 and time step

is δT = δX2

4 (so that consistently with the scaled model, migration is m = 2δT
δX2 = 1/2), and

there is no migration over the margins (reflective boundary conditions).
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Figure 6: Population density for the uniform population (where β∗ = B) decreases fast as

the optimum moves: N = e−
k∗2

A2 for the logarithmic model (solid) and (N = 1− k∗2

A2 ) for the

logistic model (dashed). Local population density becomes higher for population adapted on

a limited range (where β∗ < B) as the population density can slide along the environmental

gradient - upper (for k∗ > 0.4) solid line shows the density for logarithmic model, upper

dashed line for logistic model. The rate of change of the optimum when local population

density is higher for the population living on a limited range increases with A (not shown).

Parameters A = 1/3, B = 1.
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Figure 7: The simulations (dots) and predictions (lines) for the 2-allele model with logarith-

mic regulation match well. Top: The lag of the trait mean behind the optimum matches

the analytical solution shown by the dashed line a∗ = k∗

V , where V = B
√

2 - in the original

units, a = kVS

VA
. Middle: Genetic variance stays close to prediction for a fixed gradient,

V = B
√

2 (rescaling back to the original units, VA = σb
√

VS). Bottom: Population density

at equilibrium is n = Ker0− 1

2
( A

h2
+ k∗2

A2 ). The dots show results of a stepping stone model on a

spatial lattice with range < −Xm, Xm > and spacing δX . In the scaled model, the time step

must be δT = σ2/2 = mδX2/2, where m ≤ 1/2 is the migration rate. Parameters: B = 1/2,

number of loci nl = 20, δX = 1/2, m = 1/2, Xm = 50. The maximum scaled variance

is taken at Am =
B2X2

m

nl
; and as we display the density n(x) in the original units, further

parameters are K = 1, r0 = 0, h2 = 1. Cline shapes and more details of the equilibrium

solution are shown in the appendix (Fig. 9 and 8).
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Figure 8: Illustration of the shape of allele frequencies at time T = 5 (top) and T = 70

(bottom). At equilibrium, the cline shape is p̂[X ] = 1/
(

1 + e−
4

W
(X+c∗T )

)

, where the scaled

cline width is W = 4
√

nl

Am
, and the clines move across the space X at a speed c∗ = k∗/B. The

allelic effect is scaled as α = α∗ = BXm

nl
and the maximum scaled variance is Am = 1

2
α2nl

r∗VS
.

Fixing α∗ and Am, and taking higher number of loci than can fix in the static case, nl >

BXm/α∗, does not lead to a higher number of diversified loci (and hence higher variance).

Parameters as in Fig. 7, k∗ = 0.3.
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Figure 9: Scaled lag of the trait mean behind the optimum, a∗, scaled variance V and the

population density n(X) vary periodically as the optimum is matched by a finite number of

alleles. Parameters as in Fig. 7, k∗ = 0.3, T = 70.
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