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1. Power Calculations1

A sample size of 300 study farms implied a power of 80% to estimate the2

true prevalence of herds with PI animals, hence active BVDV infection, with a3

95% confidence interval of +/- 6% or less. These calculations were based on4

the conservative assumption that 60% of the herds included a PI animal. A5

further assumption was that the probability of a calf having been infected by a6

PI animal and detected by antibody ELISA given that a PI animal was in the7

same management group depended on age, with probabilities of 0.95 and 0.97 for8

calves aged 7 and 12 months respectively.9

2. Bayesian Finite Mixture Modelling10

Our data comprises the observed number of animals which tested positive for11

BVDV antibodies (BVDV seropositive) out of a sample of typically ten animals12

on each of 301 farms. From this we infer the distribution of ’within herd BVDV13

seroprevalence in young stock’ (from now on referred to as seroprevalence) taking14

into account the sampling variability within and between herds. Our inferen-15

cial approach comprises a hierarchical Bayesian mixture model with an unknown16

number of mixture components (where these denote statistically distinct sero-17

prevalence cohorts in the population, to be inferred from the sample data). In18

addition we explicitly include error in the classification given by the BVDV anti-19

body ELISA (that is we do not assume the test is a gold standard). We follow the20

mixture modelling approach set out by Diebolt and Robert (1994). The likelihood21

for the data assuming binomial sampling in each individual herd is22
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N∏
i=1

qri
i (1− qi)

ni−ri , (1)

where qi = Se∆i + (1− Sp)(1−∆i) (2)

and we adopt the no gold standard parameterisation set out by Joseph et al.23

(1995) where Se and Sp denote the sensitivity and specificity of the BVDV anti-24

body ELISA respectively, ri and ni denote the observed number of seropositive25

animals and the total number of animals sampled from herd i respectively, and26

qi denotes the probability that a given animal in herd i tests BVDV seropositive.27

We define ∆ = ∆1, . . . , ∆N as independent observations (representing seropreva-28

lence on each farm) from a mixture density with k (assumed known and finite)29

components. Let p(∆ | π, µ, θ) denote the probability density for seroprevalence30

in the population of beef suckler herds:31

p(∆ | π, µ, θ) = π1f(∆; µ1, θ) + · · ·+ πkf(∆; µk, θ), (3)

where π = (π1, . . . , πk) are the mixture proportions and µ = (µ1, . . . , µk) are32

component specific parameters (representing mean seroprevalence within each33

component of the mixture), θ is a vector parameter which is common to all34

components (representing Se and Sp) and f is a density (either binomial or beta-35

binomial). When f is beta-binomial then µ comprises of component specific36

vector parameters representing mean seroprevalence and in addition a covariance37

related parameter. Following Stephens (2000) we assume that each observation38

∆i arose from an unknown component zi of the mixture where z1, . . . , zN , are39
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realisations of independent and identically distributed discrete random variables40

Z1, . . . , ZN with probability mass function41

Pr(Zi = j | π, µ, θ) = πj for i = 1, . . . , N and j = 1, . . . , k. (4)

Hence the Zi random variables are used to allocate each individual farm to a42

component of the mixture distribution. Conditional on the Z’s, ∆1, . . . , ∆N are43

then independent observations from the densities44

p(∆i | Zi = j, π, µ, θ) = f(∆i; µj, θ) for i = 1, . . . , N. (5)

We include f(∆i; µ = 0, θ) as a possible component in each of the models to45

allow for the possibility that each herd could have recently been free from BVDV46

exposure with non-zero probability.47

Our model formulation assumes that k, the number of components in the48

mixture distribution is known. Our goal is to determine the maximum number of49

components supported by the observed sample data, and we achieve this by simply50

enumerating over models with increasing values of k, assessing the goodness of fit51

in each case using Bayes factors (or more specifically log marginal likelihoods). We52

then use the model which maximises the goodness of fit. In each case we estimate53

the posterior distribution p(Z, π, µ, θ | ∆) using an implementation of the slice54

sampler due to Neal (Neal, 2003) written in C using the GNU scientific library55

(Galassi et al., 2006). In the absence of prior knowledge relating to estimates of56

parameters such as Se and Sp (in specific relation to Scottish beef suckler herds)57

we adopt non-informative priors for all parameters:, namely β(1, 1) priors for each58

of Se and Sp, Dirichlet(1, . . . , 1) for π and β(1, 1) for each µj for j = 1, . . . , k and59

finally a prior of P (Zi = j) = 1/k for i = 1, . . . , n and j = 1, . . . , k.60
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3. Observed BVDV seroprevalence61

In Figure 1 in the main text we showed the empirical distribution of seropreva-62

lence for the 274 farms in the study where exactly 10 young stock were sampled.63

Figure 1 in the supplementary material shows this distribution but over all 30164

herds, where the breakdown of the number of animals sampled on each farm is:65

274 farms with 10 sampled; 12 farms with 9 sampled; 6 farms with 8 sampled; 566

farms with 7 sampled; 2 farms with 11 sampled; 1 farm with 18 sampled; 1 farm67

with 20 sampled.68

Figure 1: Observed frequency distribution of seroprevalence for 301 beef suckler herds.
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4. Model Selection70

Determining the optimal number of components, k, in our mixture model is71

a key part of our statistical analysis as this is integral to the mechanism used to72

account for within and between herd variability. We identify the largest value73

of k supported by the sample data by simply successively fitting models with74

increasing values of k, and comparing the goodness of fit of each model. We also75

compare models for k = 2 and k = 3 in which one of the seroprevalence cohorts76

is the exposure free state to reflect the reality that an individual herd may be77

unexposed to the BVDV. That is we allow the true estimated seroprevalence in the78

herd to take the value zero with some positive probability, rather than assume the79

seroprevalence in each component has a continuous posterior probability density.80

An additional complication which requires consideration in our analysis is the81

possibility that the data may exhibit greater variance than that which could be82

accounted for by use of a binomial likelihood. This is typically termed overdis-83

persion and could reasonably be present in our observed data due to the presence84

of within herd correlation in the immune status of the animals sampled. The85

term “clustering” is also often used in the veterinary epidemiology literature (e.g.86

McDermott and Schukken (1994)) to describe such extra between farm/herd vari-87

ability. Statistical methods to correct for overdispersion are discussed by Lindsey88

(1999). A standard approach, and the one we adopt, is to compare the goodness89

of fit of our standard binomial model with the goodness of fit using an extension90

of this model which explicitly incorporates overdispersion. If the latter model fits91

the data better than the former, then we use the overdispersed model for infer-92

ence and vice versa. A number of extended binomial models exist (see Lindsey93
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(1999)) and we use the most common of these, the beta-binomial model, which is94

discussed in detail by Prentice (1986) including its various different parameteri-95

sations and how these relate to the standard binomial model.96

We discuss the results of our overdispersion (beta-binomial) model after pre-97

senting full results from our analyses using the standard binomial model. In short98

there is strong evidence that the standard binomial model is better supported by99

the data than the overdispersion model. However as parameter estimation and100

interpretation in the latter model is relatively complex we defer discussion of this101

until later.102

As is standard in Bayesian model comparison we use Bayes factors to compare103

models, or more specifically since we assume each model has the same prior prob-104

ability of being the “optimal model”, we compare the log marginal likelihood of105

each model. To ensure robust estimation of the log marginal likelihood we follow106

Congdon (2001) and divide the output into batches, calculate the harmonic mean107

in each batch and then mean these values. Up to eight batches were generated108

along with the use of the median rather than mean to average over batches. Such109

variations had negligible impact on the resulting marginal likelihood values giving110

confidence in the robustness of our estimates.111

The goodness of fit for models with k = 1, 2, 3 is shown in Table 1. For the112

three values of k so far examined k = 3 has a substantially superior goodness113

of fit. We also find that there is very little difference in goodness of fit between114

models with a exposure free cohort and otherwise (however we later provide115

justification of why the inclusion of the exposure free cohort provides a more116

robust model when k = 3). See Congdon (2001) Table 10.1 for approximate117
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Table 1: Goodness of fit comparisons between mixture models with 1, 2 and 3 components

Mixture Model log(marginal likelihood)

1 component -1496.927

2 components -700.116

2 components (inc. exposurefree) -700.059

3 components -552.551

3 components (inc. exposure free) -552.138

guidelines on the magnitude of differences required between Bayes factors to be118

notable, ranging from weak support (denoting the smallest difference between log119

marginal likelihoods) through to very strong support (denoting a difference in log120

marginal likelihoods of at least 5). As with all Bayesian analyses it is important to121

verify that the output from the Markov chain Monte Carlo sampler is sensible (i.e.122

that the sampler appears to have reached the stationary distribution and that the123

subsequent mixing is suitably stable). Next, we briefly illustrate diagnostics for124

our models with k = 1, 2, 3; an exercise which is of particular relevance when we125

later consider models with k = 4, as diagnostics for the latter are highly unstable126

and suggest overfitting.127

4.1. Model diagnostics128

Figures 2 and 3, and 4 and 5, respectively show typical Markov chain Monte129

Carlo output for models with two and three components, both with and without130

the inclusion of a exposure free component. The initial burn-in period in each run131

was both obvious and very short (several thousands iterations) and the output132
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shown is from 10,000 to 1,000,000 iterations. The mixing appears generally quite133

satisfactory, and the same was true for the other model parameters which are134

not show. The possible exception is the mixing of the seroprevalence estimates135

for cohort 3 (the component with the highest seroprevalence) in the model with136

k = 3 and no exposure free cohort, the output in green in Figure 5. Running the137

chains for this model very much longer produces identical output which suggest138

that the problem is not due, for example, to excessively long burn-in and a failure139

to reach stationarity. The latter mixing is somewhat slow and unstable, and in140

addition the seroprevalence estimates for cohort 1 (the component with the lowest141

seroprevalence) are very low (mean and medians of 0.007 and 0.006 respectively),142

and much less that the minimum possible observed seroprevalence (of 0.05, 1143

BVDV seropositive animal out of a spot test of 20). This suggests that the model144

with k = 3 including a exposure free component is the more robust of the two145

k = 3 models, as the model without the explicit exposure free cohort appears to146

be trying to approximate a exposure free cohort but is restricted to a continuous147

posterior prevalence distribution (with an obvious boundary at zero). This may in148

some part explain the rather unsatisfactory mixing behaviour observed for cohort149

3. Hence the model with k = 3 with a exposure free cohort is our preferred model150

of those so far presented.151

5. Models with 4 or more components152

Figure 6 shows similar output to Figures 2 through 5 but now for the model153

with k = 4 components (including a exposure free component). Clearly there154

are serious issues with the mixing of this model. In direct comparison to the155
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Figure 2: Markov chain Monte Carlo output for mixture model with two components, one of

which is the exposure free cohort. Shown is the marginal trace of estimates for seroprevalence

in the non-exposure free cohort.
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Figure 3: Markov chain Monte Carlo output for mixture model with two components. Shown

are the marginal traces of estimates for seroprevalence in each of the two cohorts in the model.
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Figure 4: Markov chain Monte Carlo output for mixture model with three components, one of

which is the exposure free cohort. Shown are the marginal trace of estimates for seroprevalence

in the two non-exposure free cohorts.
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Figure 5: Markov chain Monte Carlo output for mixture model with three components. Shown

are the marginal trace of estimates for seroprevalence in the three cohorts.
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models with fewer than four components, where the seroprevalence estimates for156

each component were clearly distinct from each other, in the k = 4 model the157

various prevalence estimates are merging to cover the entire range of possible158

prevalence values from zero to unity. This behaviour suggests overfitting; for159

example the trace for seroprevalence in cohort 2 (in blue) appears to regularly160

visit the neighbourhood of zero but this model already explicitly has a exposure161

free component.162

In an attempt to improve the mixing we introduce constraints which bound163

away the various seroprevalence estimates from each other (in particular away164

from zero and aliasing with the exposure free cohort). Such constraints are com-165

monly used to avoid label switching problems in Bayesian mixture models (see166

Stephens (2000)). We use a range of bounds, b, from 0.001 up to 0.01 where167

for each value of b the constraint is implemented by adjusting the current set of168

seroprevalence estimates generated by the sampler to ensure that they differ by169

at least b from each other (if this is not already the case). The impact of these170

constraints on model estimation is shown in Figures 7 and 8.171

Figure 7 is similar to Figure 6 but now the prevalence estimates in each com-172

ponent at each iteration are adjusted (if necessary) to remain at least 0.05 apart,173

as can be most clearly seen by the movement away from prevalence estimates174

close to zero. The exposure free cohort is also present this model. It is clear175

that the same behaviour exists as in Figure 6 in that the prevalence estimates176

for cohort 2 (in blue) are still sampled regularly very close to the constrained177

lower bound of 0.05. Figure 8 is similar to Figure 7 but uses the greater bound178

of b = 0.1. The output from the sampler is again complex with potentially even179
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Figure 6: Markov chain Monte Carlo output for mixture model with four components, one of

which is the exposure free cohort. Shown are the marginal trace of estimates for seroprevalence

in the three non-exposure free cohorts.
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Figure 7: Markov chain Monte Carlo output for mixture model with four components, one of

which is the exposure free cohort, and using a between prevalence bound of b = 0.05. Shown

are the marginal trace of estimates for seroprevalence in the three non-exposure free cohorts.
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a new stationary “solution” being visited for some duration of the run. This may180

be explained by over-complexity in our model, in that fitting a model with four181

mixture components to data which does not support four distinct cohorts, will182

cause the process to drift through the parameter space unable to stabilise on a183

single (multivariate) stationary distribution. This appears to be exactly what is184

occurring with our four component model. Hence in summary our chosen model185

given the observed data is that with k = 3 components including an explicit186

exposure free cohort.187
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Figure 8: Markov chain Monte Carlo output for mixture model with four components, one of

which is the exposure free cohort, and using a between prevalence bound of b = 0.1. Shown are

the marginal trace of estimates for seroprevalence in the three non-exposure free cohorts.
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6. Modelling Overdispersion

We use the beta-binomial extension of the binomial distribution to examine

whether the data are better supported by a model with overdispersion. A possible

parameterisation of this model is shown in eqn (6),

Pr(R = r; n) =

(
n
r

) ∏r−1
k=0(q + γk)

∏n−r−1
k=0 (1− q + γk)∏n−1

k=0(1 + γk),
(6)

where q is the usual binary response probability within an experimental unit,

γ(1+γ)−1 the binary variate correlation parameter (see Prentice (1986) for more

details) and we adopt the usual convention that
∏x

k=0 ck = 1 for any x < 0. Our

finite mixture model is analogous to the binomial approach detailed earlier except

now our model contains mixtures of beta-binomial distributions, where again we

have qi = Se∆i + (1− Sp)(1−∆i).

Our beta-binomial mixture model is fitted to the observed data using exactly

the same slice sampler approach as for the binomial model except that we now

have additionally to estimate the within herd correlation parameter, or rather the

parameter γ which is a function of the correlation parameter but results in much

more stable sampling. As with all other model parameters we use an uninforma-

tive prior for γ, specifically uniform on the range 0, 100, and from MCMC output

it was clear that this choice of prior did not impose any practical constraints on

posterior realisations of γ. We fitted the range of models defined in Table 1 to

the data using mixtures of beta-binomial densities. The parameter estimation

for these models was more complex as the MCMC mixing appears to suggest

the presence of possibly bi-modal posterior distributions where each mode corre-

sponds to very different values of the correlation parameter. Figure 9 shows the
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Figure 9: Markov chain Monte Carlo output for beta-binomial mixture model with two compo-

nents (one exposure free). (a) estimates of the log likelihood at each iteration and (b) estimates

of within herd correlation parameter.
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log likelihood for the beta-binomial model with two components (with one set

to be the exposure free component) and corresponding values for the correlation

parameter. The burn-in period for this chain was short and clearly identifiable

and has been discarded. For the 1 × 106 iterations shown it is clear that the

log likelihood jumps between two modes, one where the log likelihood averages

around -760 and the correlation parameter around 0.7, and a second mode with

a higher mean log likelihood of approximately -670 and a much lower correlation

parameter with a mean close to 0.3. Running much longer chains for this model

results in a similar pattern of unpredictable jumps between these two seemingly

stable posterior modes. We estimate the log marginal likelihood for the mode

with the higher log likelihood as approximately -677.3 and for the other mode

as approximately -758.2. The beta-binomial model with three components (with

one exposure free component) has similar multi-modal behaviour to that of the

two component model. However the behaviour of the model with three compo-

nents suggests over-fitting with complex mixing (see Figure 10). In particular the

correlation parameters (one for each of the two non-exposure free components)

appear to “trade off” against each other as can clearly be seen in Figure 11. The

mode with higher log likelihood corresponds to one correlation parameter being

very close to unity while the other is close to 0.3 and vice versa. However it is

clear that the typical log likelihood is sufficiently poor compared to that for the

three component standard binomial model (Table 1), that the relatively complex

nature of the beta-binomial model does not improve the fit relative to this, our

optimal model.
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Figure 10: Markov chain Monte Carlo output for beta-binomial mixture model with three

components, one of which is the exposure free cohort. Shown are the marginal trace of estimates

for within herd BVDV seroprevalence in the two non-exposure free cohorts.
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Figure 11: Markov chain Monte Carlo output for beta-binomial mixture model with three

components (one exposure free). (a) estimates of the log likelihood at each iteration; (b)

estimates of first correlation parameter and (c) estimates of second correlation parameter.
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