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Abstract : Using example applications from our recent research we illustrate the development of an 
integrated approach to modelling biological processes based on stochastic modelling techniques. The 
goal of this programme of research is to provide a suite of mathematical and statistical methods to 
enable models to play a more central role in the development of scientific understanding of complex 
biological systems. The resulting framework should allow models to both inform, and be informed by 
data collection, and enable probabilistic risk assessments to reflect inherent variability and uncertainty 
in current knowledge of the system in question. We focus on discrete state-space Markov processes as 
they provide a general and flexible framework both to describe and infer the behaviour of a broad range 
of systems.  Unfortunately the nonlinearities required to model many real world systems typically mean 
that such discrete state-space stochastic processes are intractable to analytic solution necessitating the 
use of simulation and analytic approximations.  We show how to formulate stochastic process-based 
models within this framework and discuss the representation of spatial and temporal heterogeneity. 
Simple population models are developed and used to illustrate these concepts. We describe how to 
simulate from such models, and compare them with their deterministic counterparts. In addition, we 
discuss two methods, closure schemes and linearization about steady-states, which can be used to 
obtain analytic insights in to model behaviour. We outline how to conduct parameter estimation for 
such models when, as is typically the case for biological and agricultural systems, only partial 
observations are available. Having focussed on familiar population level models in introducing our 
integrated approach its wider applicability is illustrated by two contrasting applications from our recent 
research. The first example combines the development and analysis of an agent-based model describing 
grazing in heterogeneous environments, with parameter inference based on data generated using a 
transponder system in a behavioural experiment on diary cows. The second example makes use of 
large-scale data describing bio-geographical features of the landscape and the spatio-temporal spread of 
an alien plant to estimate the parameters of a stochastic model of dispersal and establishment.  



 
 
 

1. Introduction 
 
A key difficulty faced in the study of biological and agricultural systems is their 
immense complexity. This fact makes even the observation, recording and 
cataloguing of biological phenomena a formidable task and such problems are 
compounded when one seeks to understand, predict and manipulate the dynamic 
processes underlying this observed complexity. Mathematical modelling currently 
plays an important role in developing scientific understanding of complex biological 
processes, and model-based risk assessments make it relevant to policy makers and 
resource managers. However, the gathering pace of data acquisition and consequent 
advances in knowledge require the continuing development of both mathematical 
methods, to cope with increasing complexity, and statistical methods, to fully 
integrate data and models.  Ideally such methods should allow mathematical models 
to both inform, and be informed by data collection, and enable probabilistic risk 
assessments to reflect inherent variability and uncertainty in current knowledge of the 
system in question. In this chapter, using examples from our research, we illustrate the 
development of such an integrated approach to modelling biological processes based 
on stochastic modelling techniques.  However, the picture is still somewhat 
incomplete and we discuss areas where further research effort is required to fully 
integrate model development and empirical effort. 
 
In the next few paragraphs we outline our approach, and in particular motivate our 
focus on stochastic models. We discuss: (i) the implementation simulation and 
analytic treatment of stochastic models; (ii) the incorporation of individual variability 
and spatio-temporal heterogeneity which are an inherent property of many biological 
systems; and (iii) statistically correct parameter inference and probabilistic model 
based risk assessment accounting for system variability, and uncertainty in models 
and parameters. Advances in both data collection, such as radio-tracking, contact-
logging and Global Positioning Systems (GPS), and data collation, such as the 
development of Geographic Information Systems (GIS) and the creation of large-scale 
species atlases enable parameter inference across a widening range of applications. 
Despite increases in available computing power statistically correct inference is still a 
significant bottleneck for complex models. Moreover, a commonly encountered 
problem in modelling biological systems is the explosion of model complexity, 
leading to poorly understood behaviour and low predictive ability.  Our approach 
therefore is to develop simple parsimonious stochastic process-based models which 
are more amenable to analysis and rigorous statistical treatment than complex 
mechanistic systems models. 
 
An important feature of many biological and agricultural systems is that of 
heterogeneity in both space and time, and between individuals. It has been shown that 
such variability can quantitatively and qualitatively change model behaviour, and 
should therefore be considered. A particularly powerful approach is to model 
heterogeneity by introducing a stochastic, or random, element into models. The model 
then predicts variation, in time and space or between individuals, in the outcomes of a 
particular event. This has the advantage of representing heterogeneity parsimoniously 
with relatively few parameters and without increasing the number of variables needed 



to represent the state of the system.  Rand and Wilson (1991) partition such stochastic 
effects for epidemics into two types (i) demographic fluctuations arising from the 
stochastic nature of contacts and infection events; and (ii) randomness in the 
environment and thereby in the parameters affecting the epidemic. This demographic 
and environmental stochasticity can produce model behaviour quite distinct from 
deterministic implementation (see for, example, Gurney and Middleton, 1996; Wilson 
and Hassell, 1997; Kokko and Ebenhard, 1996; Marion et al., 1998). As a first step 
the stochastic approach models heterogeneity at the population level and there is no 
need to model individuals explicitly.  However, the representation of heterogeneity 
can be enhanced by combining such stochasticity with an explicit representation of 
space, and/or of individuals. In the simplest case individuals and locations are treated 
identically, but nonetheless variation will be observed when comparing across 
individuals or locations for a given model run.  Such spatial and temporal 
heterogeneities have been shown to be critical in understanding epidemiological and 
ecological processes (for a selection of papers see e.g. Tilman and Karieva, 1997). In 
some circumstances it may be possible to partially attribute differences between 
locations or individuals to variations in some measurable factors or covariates, for 
example land-use category or animal status (lactating/non-lactating). In such cases the 
response will remain stochastic but the probability of different outcomes will depend 
on the covariates and thus vary between individuals or locations. For example, in 
studying the spread of an invasive plant Cook et al. (2006) define the suitability of 
local habitats in terms of land-use classes, temperature and altitude. 
 
A useful framework for developing stochastic process-based models is that of discrete 
state-space Markov processes (Cox and Miller, 1965).  The theory provides a general 
and flexible framework both to describe and infer behaviour.  It is a powerful tool for 
developing models and provides a framework to parameterize such models from data.  
Crucially this framework enables the discrete nature of populations to be modelled in 
contrast to models based on deterministic ordinary differential equations, or diffusion-
like approximations such as stochastic differential equations (see below). The 
Markovian assumption is extremely widely used, for example being implicit in many 
ordinary differential equation models. However, in some cases a non-Markovian 
description of the system might be more parsimonious, but in principle any system 
can be expressed as a Markov process by a suitable expansion of the state-space.  
Unfortunately the nonlinearities required to model many real world systems typically 
mean that such discrete state-space stochastic processes are intractable to analytic 
solution (Isham, 1991; Bolker and Pacala 1997; Filipe and Gibson, 1998; Matis et al. 
1998; Keeling, 2000a,b), however simulation is usually straightforward (Renshaw, 
1991) unless the expected number of events is extremely large. The stochastic 
approach can also point the way towards better deterministic process models by 
accounting for variability and spatial heterogeneity using suitable limiting processes 
and approximations (Whittle, 1957; Isham, 1991; Bolker and Pacala, 1997; Matis et 
al., 1998; Keeling, 2000a,b; Holmes et al., 2004;  Marion et al., 2005). Such 
approaches are typically based on so-called closure approximations which we discuss 
below, and they offer analytic insights into system behaviour in addition to a 
computationally efficient alternative to, and check on, stochastic simulation.  A 
widely applicable alternative approximation procedure, based on expansion around 
the steady state (Bailey, 1963), re-casts the model in terms of linearised stochastic 
differential equations from which fluctuation characteristics may be obtained (Nisbet 
and Gurney, 1982; Marion et al., 2000). 



An important aspect of model development is the handling of uncertainty and the 
integration with data, and these are key difficulties for process-based models. 
Statistical approaches are data driven, naturally incorporate uncertainty, and a large 
toolkit is available for parameter estimation and assessing model performance. On the 
other hand such methodology is poorly developed for process-based models.   

Typically uncertainty can be broken down into uncertainty about the parameter values 
for specific models, and model uncertainty. If parameters are jointly estimated from 
data in a statistical fashion then the effect of the resulting parameter uncertainty can 
be accounted for in model output by repeatedly drawing parameter combinations from 
their joint distribution and running the model.  If a distribution over a set of stochastic 
models can also be inferred then predictions can reflect the inherent variability of the 
system and uncertainty in both models (Draper, 1995) and parameter values. It is easy 
to see that a proper accounting of variability and uncertainty is crucial in any model-
based risk assessment as it changes the nature of the advice given to resource 
managers or policy makers from unequivocal recommendation to probabilistic (e.g. a 
given course of action will result in the desired outcome with a certain probability). 
This distinction is especially important for phenomena, such as epidemics, which 
exhibit threshold behaviour. 

Fitting stochastic dynamical models directly to observations allows parameter 
uncertainty to be treated more completely since the model itself defines the error 
distribution and implicitly accounts for correlations in the data. In contrast estimation 
based on least-squares, as often used for deterministic models, typically makes the  
additional assumptions that errors are uncorrelated and Gaussian. However, a full 
analytic treatment of parameter estimation for dynamical stochastic systems is rarely 
feasible since observations of biological processes from practical experiments or field 
studies typically record only a subset of the information that defines the evolution of 
the system.  In such cases we must ``integrate out'' the missing information which 
typically leads to analytically intractable high dimensional integrals. Recent advances 
in computing power mean that sampling methods and in particular Markov chain 
Monte Carlo, or MCMC (Metropolis et al., 1953; Hastings, 1970; Gelfand and Smith, 
1990; Smith and Roberts, 1993; Besag and Green, 1993), are flexible enough to be 
used to make inferences about missing data and unknown parameters by providing 
robust approximations to such difficult integrals. The methods are based on Gibbs 
sampling, Metropolis-Hastings algorithms and the methodological advance of 
reversible-jump MCMC which is specifically tailored to explore state spaces of 
varying dimension (Gelman et al., 1995; Gilks et al., 1996; Gamerman, 1997; Green, 
1995).  The need to sample from state spaces of varying dimension arises here 
because the observed data does not determine the numbers of all event types. 
Therefore sampling from the range of plausible reconstructions of the missing data 
implies sampling over different numbers of reconstructed events. It should be noted 
that this approach is limited to relatively small numbers of missing events although 
later we will show an example requiring the estimation of ~104 missing events. 
 
The joint estimation of parameters and missing data (also referred to as nuisance 
parameters) is typically conducted within the framework of Bayesian estimation (Lee, 
2004) in which explicit quantification of uncertainty in model parameters (and indeed 
the missing data) is given by their posterior distributions with respect to the observed 
data and of course the model.  A requirement, which should be mentioned, is the need 



for the selection of subjective prior distribution of parameters in the Bayesian 
methodology. A potential advantage of this approach is that the shape of the prior can 
be chosen to quantify information gained from previous studies. In many cases 
however little prior information is available and the prior distribution is often chosen 
to be uniform, perhaps over some range of parameters determined from the literature. 
In either case prior influence, lessens with more information and large observation 
samples mean that posterior distributions are determined largely by the data. In 
addition the robustness of results to prior assumptions can be checked. The Bayesian 
approach coupled with MCMC techniques has been applied in recent years to infer 
the parameters of stochastic epidemic models (O’Neill and Roberts, 1999; Gibson and 
Renshaw, 2001a,b; Gibson and Renshaw 1998; Renshaw and Gibson 1998; Gibson, 
1997). In principle the Bayesian approach can be extended to enable model 
uncertainty (amongst a defined set of models) to be accounted for. However, such 
methods are computationally expensive and this approach has been applied rarely 
(Gibson and Renshaw, 2001b).  
 
In the next section we show how to formulate stochastic process-based models and 
discuss how they may be used to represent spatial and temporal heterogeneity. A 
simple population model, the immigration-death process is developed and used to 
introduce discrete state-space Markov processes. Subsequently this model is extended 
to include a simple disease dynamic, and then used to illustrate how spatial 
heterogeneity can be handled within this stochastic framework. We describe how to 
simulate from such models, and compare them with their deterministic counterparts. 
In addition, we discuss two methods, closure schemes and linearization about steady-
states, which can be used to obtain analytic insights in to model behaviour.  This 
culminates in a description of a general discrete state-space Markov process, and in 
section 3 we outline how to conduct parameter estimation for such models when, as is 
typically the case for biological and agricultural systems, only partial observations are 
available. Having focussed on familiar population level models in introducing our 
integrated approach to stochastic modelling, section 4 illustrates its wider 
applicability by discussing two contrasting applications. Firstly we describe in some 
detail the formulation and analysis of a model of grazing behaviour, for which we 
infer parameter values from partial data gathered in a behavioural experiment on dairy 
cows.  Finally, we consider the spread of an alien plant species across Britain, and 
describe the development of a model which incorporates the effect of spatial 
covariates on the suitability for colonisation. Bayesian estimation of parameters 
enables uncertainty in parameter values to be incorporated into model outputs 
predicting the risk of future colonisations. 
 
 
 
2. Formulation and analysis of stochastic models 
 
In this section we illustrate the formulation and analysis of stochastic process-based 
models using a simple toy example. We start with perhaps the simplest non-spatial 
population model imaginable, namely the immigration-death process. Subsequently 
we introduce some non-linearity by modelling the spread of an infection in this 
population, and finally consider the impact of spatial heterogeneity on the system. We 
use this example to demonstrate how to formulate discrete state-space Markov 
processes, and contrast stochastic model behaviour with that of deterministic 



counterparts. The solution of the linear immigration death model is discussed and the 
complications introduced by adding epidemiology used to illustrate the difficulties 
posed by the analysis of non-linear stochastic processes. The relative merits of several 
approximate approaches are discussed in this context. Finally we consider the effect 
of spatial heterogeneity and the utility of approximations to such complex stochastic 
processes.  
 
Model formulation and stochastic simulation for a simple example: 
To begin consider a population which is subject only to the twin effects of 
immigration at some constant rate ν, and death at per-capita rate µ. Then a standard 
deterministic continuous time model would describe the size of this population at time 
t by the positive real valued variable X(t) whose rate of change with time is given by 
the ordinary differential equation 
 

)()( tX
dt

tdX µν −=         (1) 

 
Where immigration balances mortality the population reaches the steady state where 
the rate of change dX(t)/dt=0. This steady state condition is equivalent to ν - µX(t) = 0 
which is satisfied once the population size reaches µ/vX = .  
 
Demographic stochasticity 
Reformulating this model as a discrete state-space Markov process introduces 
fluctuations in immigrations and deaths, which represent demographic stochasticity 
that crudely accounts for individual variation. To do so the population size is now 
represented, more realistically as an integer valued stochastic process n(t) which 
increases by 1 when an immigration event occurs and decreases by 1 if a death event 
occurs.  The occurrence of each event is governed by the rates defined above for the 
deterministic model as follows. The probability of an immigration event occurring 
during a sufficiently small time interval from t to t+δt, which is written as (t,t+δt), is 
proportional to the immigration rate ν and the length δt of the time interval 
 
( ) tnnimmigratonP δν=+→ 1:  

 
Similarly the probability that a death occurs in the short time interval (t,t+δt) given 
that the population is of size n(t) at time t, is proportional to the death rate µ n(t) 
 
( ) ttnnndeathP δµ )(1: =−→  

 
When the system is in state n(t) the time to the next event is exponentially distributed 
with the total event rate R(n; ν,µ) =  ν+µ n(t) (see e.g. Renshaw, 1991; Cox and 
Miller, 1965). This means that the time to the next event can be generated by 
calculating τ = -ln(y)/R(n; ν,µ) where y~U(0,1) is a random number drawn uniformly 
between zero and 1 (Renshaw, 1991). Note that uniform random number generators 
are available as standard in many programming languages, numerical libraries and 
software applications. The time is then advanced to t+τ, and an immigration event 
occurs with probability ν/R(n; ν,µ) or else a death event occurs. To simulate this step 
draw a second random number y2~U(0,1), then an immigration event occurs if 



y2≤ν/R(n; ν,µ) otherwise choose a death event. The population size is then adjusted 
according to the event type chosen (e.g. reduced by 1 for a death and increased by 1 
for an immigration event) and the process can be simulated to arbitrary time in the 
future by iterating this procedure.  For simple linear processes, such as immigration-
death, simulation is not always required as analytic solutions can often be obtained 
(see below).   
 
The model underlying both the deterministic representation (1) and the stochastic 
formulation can be summarised in terms of the definition of the state-space and the 
specification of events and associated mean rates, as shown in Table 1. The stochastic 
model then follows from specifying that the event times are exponentially distributed, 
or equivalently that if rate Ri is associated with event i the probability of the 
occurrence of event i in a small time interval (t,t+δt) is given by Ri δt. 
 

Change in state space Event description 
δn 

Event Rate at time t 

Immigration +1 ν 
Death -1 µ n(t) 

 
Table 1: Definition of the linear Immigration-death process where the 
population size n(t) is governed by immigration at rate ν, and death at rate µ 
per-capita. 

 
Environmental fluctuations 
Within this framework it is also relatively straightforward to account for temporal 
fluctuations in the environment by making the parameters of the model vary in time. 
The immigration rate ν(t) and per capita death rate µ(t) can be deterministic functions 
of time (e.g. sinusoidal reflecting diurnal or seasonal variation), stochastic processes 
representing random fluctuations or a combination of both. Although the exact 
simulation algorithm described earlier can be adapted for deterministically varying 
parameters, the easiest way to simulate the process is to adopt the following 
approximate algorithm. Firstly choose δt=min(1/ R(n;ν(t),µ(t)), δtmin) where δtmin is 
chosen so that changes in the time varying parameters can be ignored in the interval 
(t,t+δt), and update time to t+δt. Secondly, generate y~U(0,1) then if y<ν(t)δt choose 
an immigration event, else if   y<ν(t)δt +µ(t)n(t)δt then a death occurs, otherwise no 
event occurs.   
 
Marion et al., (2000) explore the modelling of environmental fluctuations within 
stochastic population models. They suggest using some simple continuous valued 
stochastic processes to model random variation in rate parameters. In particular they 
consider transformations B(Z(t)) of the auto-correlated Gaussian mean-reverting 
Uhlenbeck-Ornstein process Z(t). Two transformations, B(Z)=Z2 and B(Z)=eZ, are 
employed to ensure that the rate parameters (e.g.  ν(t)= B(Z(t))) remain non-negative. 
Z(t) can be generated by iterating the following difference equation 
 

)()]([)()( tdBtttZZbtZttZ δσδδ +−+=+    
 
where dB(0),  dB( tδ ), dB(2 tδ ),…, dB(n tδ ),…, are uncorrelated Normal random 
variables with zero mean and unit variance. In equilibrium the mean and variance of 



Z(t) are Z  and b2/2σ  respectively. A third characteristic of this noise process is its 
auto-correlation, or colour and this has an important effect in determining how the 
system responds to environmental perturbations. It is well known that the periodicity 
of deterministic perturbations strongly determines size of the resulting population 
fluctuations. For example, Roberts and Grenfell (1992) analyse the effect of seasonal 
fluctuations on the dynamics of a generic model of nematode infection in ruminants. 
Based on linearization around a steady state it can be shown that each system has a 
resonant frequency and any deterministic environmental perturbation at or near this 
will drive large fluctuations compared with environmental perturbations of a similar 
magnitude but of a different frequency. A similar effect is seen with stochastic 
perturbations where environmental noise with a colour (auto-correlation) close to the 
resonant frequency will produce relatively larger fluctuations. 
 
  
Analysis of stochastic models: 
Marion et al., (2000) solve the stochastic immigration-death process, showing for 
example that if the population size n(0)=0 then the population has a Poisson 
distribution with mean ( ) µνµ /1 te−− , which tends asymptotically to the deterministic 
steady state µν / . Indeed it is straightforward to show that in this linear model the 
expected population size E[n(t)] obeys the deterministic equation (1). To do so 
consider the expected change, at time t + tδ , in a population of size n(t) at time t 
 

ttnttnttn δµνδδ )()1()1()()( −+++=+ , 
 
in which the right-most terms are the event probabilities multiplied by the change 
associated with each. Rearranging this expression one obtains 
 

)()()( tn
t
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δ
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Finally, taking the expectation at time t and taking the limit 0→tδ  reveals that 
 

)]([)]([ tnE
dt

tndE µν −= , 

 
which is seen to be equivalent to the deterministic equation (1) on identifying X(t)= 
E[n(t)]. We will see later however that when the event rates are non-linear functions 
of the state variables (population size in this case) the deterministic model does not 
describe the evolution of the mean. Indeed if one replaces the linear death rate µn(t) in 
the preceding derivation with, say, µn2(t) we find that  
 

)]([)]([ 2 tnE
dt
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That is the evolution of the first-order moment E[n(t)] depends on the second-order 
moment E[n2(t)] which is related to the population variance (i.e., Var[n(t)] = E[n2(t)] - 
E[n(t)]2). It turns out that a similar equation can be obtained for the second-order 
moment, but that this depends on the third-order moment E[n3(t)], and in general the 



evolution of the kth order moment E[nk(t)] depends on the (k+1)th order moment 
E[nk+1(t)]. This effect, which is indicative of a more general intractability of non-
linear stochastic processes, is termed the problem of closure since any finite set of 
equations for the moments is not closed in the sense that it will depend on an 
additional variable not included in the set (e.g. in this case the (k+1)th order moment). 
The upshot of this is that any finite set of moment equations can’t be solved, even 
numerically. Similar problems arise with statistics other than the raw moments 
considered here, for example central moments or cumulants (Kendall, 1994). 
Moreover, other methods of solution become problematic when non-linearities are 
introduced into stochastic processes (see e.g. Renshaw, 1991) and in general it is not 
currently possible to obtain exact solutions for such systems. In such cases simulation 
remains the only generally applicable exact method for revealing model behaviour.  
 
 
One approach to the development of approximations to the discrete state-space 
Markov process is to add a stochastic term representing noise on to the deterministic 
equation (1). Stochastic calculus provides a formal framework for doing this, but a 
more intuitive approach is to consider the stochastic difference equation of the form  
 

)(),),((),),(()(
1
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Where the functions f & g depend on state variable X(t) and the model parameters ν 
and µ, and δBi(0),δBi( tδ ),δBi(2 tδ ),…, δBi(n tδ ),…, are uncorrelated Normal 
random variables with zero mean and unit variance. In the limit 0→tδ , this can be 
expressed more formally as a stochastic differential equation (SDE, see e.g. Mao, 
1997). The uncorrelated nature of the noise terms means that, to first order in tδ , the 
mean and variance of the update )(tXδ are given by  
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The corresponding moments of the updates for the discrete-state-space Markov 
process model are ( ) ttntnE δµνδ )()]([ −= and ( ) ttntnE δµνδ )()]([ 2 += , which if 
there is a separate noise term for each event type suggests the following identities 
 

)(),),(( tXtXf µνµν −= , νµν =),),((1 tXg  and )(),),((2 tXtXg µµν = . 
 
Stochastic calculus gives mathematical meaning to the difference equation (2) in the 
limit 0→tδ , and provides tools for the analysis of the resulting SDE (Mao, 1997). 
However, as noted earlier it is straight-forward to simulate the process by iterating 
equation (2), and in some cases it is possible to show that this is a numerical solution 
which converges to the corresponding SDE as 0→tδ  (Kloeden and Platen, 1992; 
Marion et al., 2002a). It should be noted that this system is simply a continuous 
approximation to the integer-valued Markov process. One particularly general 
approach to the analysis of the SDE system is to linearise around the fixed points of 
the deterministic dynamics (i.e. X where 0),),(( =µνtXf ). The fluctuation 
characteristics (expected values, variances and time-lagged correlations) around this 



deterministic equilibrium can typically be obtained by spectral analysis (see e.g. 
Nisbet and Gurney, 1981; Marion et al., 2000). However, whilst this approach is quite 
general in its applicability, for example to demographic and environmental 
stochasticity, and can provide surprisingly accurate approximations to the discrete 
state-space Markovian system in equilibrium, it is not applicable to transient aspects 
of the process.  
 
Closure methods (Whittle, 1957; Isham, 1991; Bolker and Pacala 1997; Filipe and 
Gibson, 1998; Matis et al. 1998; Keeling, 2000a,b; Holmes et al., 2004;  Marion et 
al., 2005) on the other-hand are applicable to both transient and equilibrium regimes, 
since they are based on equations describing the temporal evolution of quantities such 
as moments discussed above. As we saw above closure methods are not necessary for 
linear systems, but nonlinearity plays a central role in many biological systems and 
therefore such techniques are typically required for essentially all biologically 
plausible models. Moment-closure techniques are often based on the system of 
equations describing the evolution of moments up to some finite order k, which for 
non-linear models will depend on moments of order greater than k (in the case above 
the evolution of the kth order moments depended on the (k+1)th order moments). The 
system of equations is closed at order k, by making some assumption which enables 
moments of orders higher than k to be written in terms of moments of order less than 
or equal to k. This problem can  be expressed in terms of raw moments )]([ tnE k  as 
we have done here, or in terms of central moments ( )[ ]ktnEtnE )]([)( − , or so-called 
cumulants (the kth order cummulant is obtained by evaluating the kth derivative with 
respect to θ of [ ]( ))(ln tneE θ  at θ=0). The first-order cummulant corresponds to the 
expected value and the second-order to the variance (Kendall, 1994). The lowest order 
closure schemes truncate the system of equations at k=1 which corresponds to 
ignoring fluctuations and therefore reproduce the deterministic version of the model 
discussed above. Some stochastic features can be retained by assuming that cumulants 
(Matis and Kife, 1996; Matis et al. 1998) or central moments (Bolker and Pacala, 
1997) are zero above order k>1. For example cummulant truncation at second-order is 
equivalent to assuming a Normal distribution (Whittle, 1957). Moment-closure 
techniques are based on generalising this by making alternative distributional 
assumptions. Typically the parameters of the chosen distribution are determined from 
the set of moments up to order k, and higher-order moments can then be written in 
terms of these, thereby closing the system of equations. For example, Normal and 
(e.g. log) transformed Normal distributions are determined by first and second-order 
moments, and provide expressions for third- and higher-order moments. Typically 
standard distributions are used (e.g. binomial, Poisson, Normal, log-Normal etc.), but 
these may not always be suitable, for example when the coefficient of variation is 
large a Normal distribution can offer significant support to negative values which is 
an inappropriate description of population size. Krishnarajah et al. (2005) construct 
mixture distributions in a univariate setting in order to obtain better closure 
approximations in cases where standard distributions fail. 
 
 
A more realistic example: 
 
In order to illustrate the development of more realistic stochastic models consider 
extending our immigration-death model to include Susceptible-Infected disease 



dynamics. The model must now account for the numbers of susceptible (nS) and 
infected (nI) individuals in the population. For simplicity assume only susceptible 
individuals are recruited into the population via immigration at rate ν, and that 
susceptible individuals become infected at rate βnSnI, and then remain so until death. 
Finally, assume that in addition to the population wide per-capita death rate µ there is 
also excess disease induced mortality at per-capita rate µI.  The model is summarised 
in Table 2. 
 
 

Change in state space Event description 
δnS δnI 

Event Rate at time t 

Immigration of susceptible +1 0 ν 
Infection of susceptible -1 +1 β nS(t) nI(t) 
Death of susceptible -1 0 µ nI(t) 
Death of infective 0 -1 (µ + µI )nI(t) 
 
Table 2: Susceptible-Infected disease dynamics with contact rate β, and 
demographic fluctuations induced by excess disease induced by background 
per-capita death rate µ, excess disease induced mortality at per-capita death 
rate µI, and immigration of susceptibles at rate ν.  

 
As noted earlier once the state-space is defined and possible events and event rates 
chosen, it is straightforward to translate these into either a deterministic or a stochastic 
model. For consistency with previous notation, which emphasised that the 
deterministic model represents population size using continuous valued variables we 
will write the number of susceptibles as XS, and the number of infectives as XI. The 
rates of change of the susceptible and infected populations are then written as 
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The steady-state is given by simultaneously setting the rates of change dXS/dt and 
dXI/dt to be zero, and solving for XS and XI. Doing so reveals two steady-state 
solutions, the first corresponding to epidemic extinction 
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and the second to endemic disease 
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At time t in the equivalent stochastic model the time to the next event is exponentially 
distributed with a rate equal to the sum of event rates R(n;ν, µ, µI, β) =  ν+µ 
nS(t)+(µ+ µI) nI (t) + β nS(t)nI(t). And this event is an immigration, a susceptible 
death, an infective death or an infection with probabilities ν/ R(n;ν, µ, µI, β), µ 
nS(t)/R(n;ν, µ, µI, β), (µ+ µI) nI (t)/R(n;ν, µ, µI, β), and β nS(t)nI(t)/R(n;ν, µ, µI, β) 



respectively. Thus simulation of this process is straightforward and proceeds as 
described earlier for the immigration-death model. 
 
 
Similarly, it is also possible to construct equations describing the evolution of the 
moments of this process as follows. Consider the expected number of susceptibles, at 
time t + tδ , in population with nS(t) susceptible and nI(t) infected individuals at time t 
 

ttntnttnttnttn ISSSS δβδµνδδ )()()1()()1()1()()( −+−+++=+ .  (4) 
 
As before the right-most terms are the event probabilities (i..e. the product of the 
event rate and tδ ) multiplied by the change associated with each. Finally rearranging 
this expression, taking the expectation at time t and taking the limit 0→tδ  reveals 
that 
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And similarly consideration of the change in the size of the infected population leads 
to  
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Note that these equations for the expectations (first-order moments) are not closed 
since they depend on the second-order term E[nS(t)nI(t)], and similarly the evolution 
equations for the second-order moments depend on third-order terms and so on. An 
important consequence of this lack of closure is that, unlike those in the linear-
immigration-death model the expected value of the stochastic model need not 
coincide with the solution of the deterministic dynamics. Indeed in this case 
simulation of the stochastic model reveals that even when the deterministic dynamics 
give rise to the endemic steady-state the corresponding stochastic system is unstable 
and the disease outbreak dies out (see Marion et al. 2002b).  Thus in this case it is 
extremely important to account for demographic fluctuations as they qualitatively 
change the behaviour of the model. Such stochastically induced instabilities are a 
common feature of a wide range of models in epidemiology and ecology. One of the 
most famous examples of this the instability of predator-prey interactions in which it 
is notoriously difficult to observe long-term persistence in non-spatial stochastic 
models or indeed in experimental systems (Renshaw, 1991). The standard solution is 
the introduction of spatial heterogeneities into the process, for example by allowing 
movement between discrete patches, which allows greater global persistence in the 
context of spatially asynchronous local extinctions and colonisations (Renshaw, 1991, 
Keeling, 2000a,b) 
 
To better understand the role of spatial heterogeneities consider its introduction into 
the simple SI model with immigration, death and disease induced mortality 
summarised in Table 2. Assume that there are now (nS)i susceptible and (nI)i infected 
individuals at patches i=1,…,N. The dynamics within each patch are simply those 
discussed above, but now the patches are linked by the random movement of infected 



individuals between patches. Thus the rate of emigration of infectives from patch i is 
(nI)iλ, whilst their immigration rate into patch i is Nn iI

N
i /)(1=∑λ . This model can be 

simulated by extending the algorithm described previously (also see below for a 
generic simulation algorithm). It is also possible to derive equations for the moments 
of the numbers of susceptibles and infectives at each site, (nS)i and (nI)i. However, it is 
both more convenient, and instructive to analyse the system in terms of spatial 

averages ( )iIiS
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∑>=< . By writing down equations for each patch 

analogous to (4), summing over all the sites, and dividing by N it is relatively 
straightforward to show that the first-order moments of the average numbers of 

susceptibles and infectives across all the sites, iS
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Note that these equations are not closed in terms of spatial moments, as the evolution 
of (the expectation of) >< )(tnS and >< )(tnI depend on the (expectation of the) 
second-order spatial average >< )()( tntn SI . Therefore, to make progress we employ 
closure schemes. The simplest of which is to ignore the spatial 
covariance, ))(),(( tntnCov IS , between numbers of infectives and susceptibles, and, 
since ))(),(()()()()( tntnCovtntntntn ISISIS +>><>=<< . This recovers the non-
spatial deterministic model, note that λ only enters equations (5) via the second order-
terms. Furthermore it suggests that, for a sufficiently large number of patches the 
deterministic model might be accurate in the limit of large λ  as the resultantly high 
mixing rate would break-down any spatial correlations. Marion et al. (2002b) analyse 
a closely related model applied to auto-catalytic reactions. They derive moment 
equations analogous to (5), for the second-order spatial statistics >< )()( tntn IS  

, >< )(2 tnS , and >< )(2 tnI showing that these depend on the third-order spatial 
moments >< )()(2 tntn IS  and >< )()( 2 tntn IS .  It is possible to deduce a number of 
results for the model considered here from the approximate analysis conducted by 
Marion et al. (2002b) who, in order to close this system of moment equations, employ 
a log-normal approximation which enables third-order spatial moments to be written 
as a function of the second-order spatial moments. The approximation is completed 
by assuming that the spatial domain is infinite and that correlations between spatial 
averages can therefore be ignored, for example 
that ])([])([])()([ ><><=>><< tnEtnEtntnE ISIS . By solving for the steady-state 
solution of the resulting approximation one obtains the fixed point 
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This shows disease extinction with the susceptible population governed by a Poisson 
distribution with mean ν/µ corresponding to the immigration-death process discussed 
earlier. In the limit of fast mixing, λ→∞, a second steady-state of the log-normal 
approximation can be identified to be 
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corresponding to a Poisson-like distribution about the endemic steady-state of the 
deterministic model. Thus when the system size is large and mixing is strong the 
deterministic model is a good approximation to the spatial stochastic dynamics. 
However, Figure 1 shows that the stochastic and spatial system can have markedly 
different behaviour from the deterministic system. For small mixing rate λ the disease 
does not persist and steady-state (6) of the log-normal approximation is an accurate 
description of the spatial stochastic process. As λ increases the disease becomes 
persistent and the log-normal approximation captures this behaviour qualitatively 
become increasingly accurate as the mixing rate increases. For very fast mixing the 
expected value of the stochastic dynamics corresponds to the deterministic system, 
and the endemic steady-state of the log-normal approximation (7) provides an 
accurate representation of the first- and second-order spatial moments. 
 
 



 

 
Figure 1  Disease persistence. The upper graph shows the expected equilibrium (large 
time) value of the spatial average number of susceptible individuals ])([ >< tnE S  
versus the movement rate of infectives λ, obtained from stochastic simulation 
(diamond symbols), the log-normal moment-closure approximation (solid line) and 
the non-spatial deterministic model (dot-dash line) described by (3). The lower graph 
shows the same for the equilibrium number of infective individuals ])([ >< tnE I . 
The parameter values used are β=1, µI = µ =ν = 1/17, and N=500. The equilibrium 
values for the stochastic model were obtained from the output of 10 simulations for 
t=500,…,1000, and the standard errors on the estimates are approximately equal to the 
size of the symbols. 
 
 
Model formulation and stochastic simulation in the general case: 
 
The formulation of the immigration-death process and the spatial SI model described 
above can be easily expanded to a general time-homogeneous Markov process 
defined in terms of the set of q allowed changes or event types {ei : i=1,...,q}, where 
event type ei induces a change δsei in the multi-dimensional state of the system, 
denoted s(t) at time t.  In other words if an event of type ei occurs at time t the state of 
the system immediately afterwards is s(t)+δsei. The rate r(ei,s(t);a) at which event ei 
occurs at time t is governed by the state of the system and the vector of model 



parameters a. The total event rate at time t is R(s(t);a) = q
i 1=Σ r(ei,s(t);a). As we saw 

above for the immigration-death model these rates may also be used to define a 
deterministic or mean-field dynamics in terms of ordinary differential equations. The 
stochastic dynamics of the corresponding time-homogeneous Markov process are 
defined as follows: (i) the time τ to the next event (of any type) is drawn from an 
exponential distribution with rate R(s(t);a); and (ii) the event type which occurs at 
time t+τ is chosen to be type ei with probability r(ei,s(t);a)/ R(s(t);a) (Cox and Miller, 
1965).   
 
Then to simulate a realisation of this stochastic process iterate the following 
procedure: (i) generated the time to the next event τ = -ln(y)/R(n; ν,µ) where y~U(0,1) 
; (ii) draw a second random variate y2~U(0,1), and starting with k=1 choose event k 
and update state-space accordingly, if y2≥ k

i 1=Σ r(ei,s(t);a)/ R(s(t);a), else increase k to 
k=k+1 and repeat; and (iii) update time to t+τ. 
  
It is also relatively straightforward to account for temporal fluctuations in the 
environment by making the parameters of the model vary in time. In such cases the 
easiest way to simulate the process is to adopt the following approximate algorithm. 
Firstly choose δt=min(1/ R(s(t);a(t)), δtmin) and update time to t+δt. Note δtmin is 
chosen so that changes in the time varying parameters are negligible in the interval 
(t,t+δtmin). Secondly, choose event ei with probability r(ei,s(t);a(t))δt. To do this 
generate a random variable y~U(0,1), calculate y’= yδt . Then starting with k=1 
choose event k if y’≥ k

i 1=Σ r(ei,s(t);a), else k=k+1. Repeat until k=q+1 unless an event 
is chosen, in which case update state-space appropriately. Repeat procedure for the 
next time step. Note that if y’≥ q

i 1=Σ r(ei,s(t);a) then the above algorithm will move on 
to next time step and no event occurs in the interval (t,t+δt). 
 
 
3. Parameter estimation in stochastic models: a general formulation 
 
Here we consider how to infer parameters from incomplete data for a general time-
homogeneous Markov process defined above (see also Walker et al., 2006). Recall 
that the total event rate at time t is R(s(t);a) = q

i 1=Σ r(ei,s(t);a) and the time τ to the next 
event (of any type) is drawn from an exponential distribution with rate R(s(t);a); and 
the event type which occurs at time t+τ is chosen to be type ei with probability 
r(ei,s(t);a)/ R(s(t);a). This definition leads to a stochastic updating rule such that, 
conditional on the state of the system being s(t) at time t the probability density that 
an event of type ei occurs before any other event type and does so at time t+τ is given 
by,  
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Suppose the timings and nature of all events (e.g. all births, deaths, immigrations and 
infections etc.) which occur in the interval [t0, tn] are observed and recorded. Then let 
tk be the time at which event k in the sequence occurs and denote its type by E(k) ∈  
{ei : i=1,...,q}. Suppose there are n events, then given an initial state s(t0) the finite and 



complete realization of the stochastic process,  { }n

ktk
sS

0=
=  can be generated from the 

set of events ζ ={(E(k),tk):k=1,...,n}. The Likelihood of the complete data set, ζ,  
L(a,ζ) = P(ζ | a, s(t0)), is the probability of observing the complete sequence of events 
ζ given the parameters a and the initial configuration s(t0) and is given by 
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In general the final observation time T may not coincide with the occurrence of the 
final event at tn. In such cases the likelihood (9) should be multiplied by an additional 
term exp{-(T-tn)R(s(tn);a)}describing the probability that nothing happens between tn 
and T. Given (9) if complete data is available Likelihood methods (Edwards, 1992) 
can be used to estimate model parameters. The likelihood follows directly from the 
definition of the model via the stochastic update rule (8), and in general this is also 
true for non-Markovian stochastic processes, although the form of the likelihood will 
differ from that shown in (9). In the sequel we shall simply write the complete 
likelihood as P(ζ | a) dropping the explicit dependence on the initial condition s(t0) 
which may either be regarded as known and fixed or considered as an additional set of 
parameters to be estimated and thus incorporated into the vector a. Note that we have 
already suppressed the conditional dependence of the likelihood on the model since 
we will not formally compare different models. 
 
In the case of incomplete data we observe a set of events D (the data), but there are 
also those hidden events H we do not observe. The complete realisation is therefore 
characterised by the full set of events ζ = (D, H). We note that in this missing data 
context one could employ data augmentation within a likelihood framework, however 
here we focus on a Bayesian treatment of this problem. Applying Bayes' rule,  
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to P(ζ | a) = P(D,H | a) we obtain the joint posterior distribution for the parameters a 
and the unobserved events H, 
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in terms of the likelihood for complete observations (9), the parameter prior P(a) and 
the normalisation constant P(D).  The prior distribution is typically chosen to reflect 
any knowledge about the parameters available before the data D were obtained. For 
example P(a) may be derived from previous analysis, or simply be a uniform 
distribution over some plausible range of parameter values as ascertained from 
appropriate literature. In the absence of such information the prior is usually chosen to 
be some convenient form, for example for the rate parameters considered here, an 
(unnormalised) flat prior on the positive real line or a gamma distribution. In addition 
it is common to assume independence between the priors for each of the N 



components of the parameter vector, i.e. ( ) ∏ −
=

N

k kaPaP
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)( . It is good practice to test 
the robustness of any analysis to prior specification. 
 
Bayesian inference (see e.g. Lee, 2004) is based on the posterior distribution (10) 
which for a given set of data is simply proportional to the likelihood and the prior. For 
example the distribution of parameters is given by  
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which is just the joint posterior (10) marginalised over the hidden events. However, 
this integral is typically analytically intractable and the space of possible hidden 
events too large to allow evaluation by quadrature. Moreover, evaluation of the 
normalisation constant P(D) in (10) involves integrals of similar computational 
complexity. Fortunately, Markov chain Monte Carlo techniques, allow parameter 
samples to be drawn directly from the posterior P(a, H | D) without having to 
calculate the normalisation constant P(D). The Metropolis-Hastings algorithm and 
Gibbs sampling allow parameter samples to be drawn directly from the posterior, but 
since the number of unobserved events is in general unknown, in sampling over H, the 
Markov chain must explore spaces of varying dimension (corresponding to the 
numbers of events in a given realisation) requiring application of reversible jump 
MCMC (Green, 1995). The samples generated from the posterior P(a, H | D) using 
MCMC allow the calculation of essentially any statistic based on the parameters, and 
missing events. For example the marginal distribution of parameters described by (11) 
may be estimated by simply disregarding the sampled hidden events and forming a 
histogram of the sampled parameter values only. The marginal distribution of any 
single parameter (component of a) or the joint distribution of two or more may be 
obtained in a similar fashion.  Such estimates improve as the number of samples 
generated from the Markov chain increases.  
 
Reversible-jump Metropolis-Hastings Algorithm 
 
In order to implement the procedure described above samples of parameters and 
missing events must be generated from the posterior (10). In order to do this we 
describe here two algorithms, the first samples hidden events H for fixed parameters 
a, and the second samples parameters for fixed H. Samples from the joint distribution 
are obtained by iteratively applying the first and then the second algorithm. 
 
To generate samples of the missing events from the posterior P(a, H | D) for a given 
set of parameters a we employ reversible jump MCMC (Green, 1995) based on the 
Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970). Start with a 
set of hidden events H0 which are consistent with the observations D. Let Hi denote 
the set of hidden events at the ith step and iterate the following procedure M times: 
 

1. propose Hi  H’ with probability q(Hi ,H’) 

2. set Hi+1 = H’ with probability :
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3. else Hi+1 = Hi 
 



Note that since in general the method only makes use of relative values of the 
posterior P(a, H | D) the acceptance probability in step 2 is straightforward to 
calculate as the ratio of likelihoods of complete events (10) multiplied by a ratio of 
proposal probabilities (as shown). The proposal probabilities allow the exploration of 
the space of possible hidden events.  In theory q(,) can be any distribution, e.g., 
uniform, however selection of the proposal distribution determines how well the chain 
mixes, and thus convergence time (the number of samples that must be discarded as 
burn-in).  
 
A general approach that enables a full exploration of the space of possible events, 
although may not be optimal, is to allow the proposal of three basic changes to the 
current reconstructed realization; a birth step where a new event is added to the 
realization; a death step where an event is deleted from the realization; and a 
rearrange step which changes the time of an existing event in the realization.   
 
In order to draw parameter samples from the posterior we can apply a variant on the 
above algorithm in which we keep the reconstructed events H fixed. If we draw 
parameter samples from the proposal distribution q(a,a') then the acceptance 
probability becomes  
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From which it is noted that if the proposal distribution were proportional to the 
posterior q(a,a') ≈ q(a')∝ ( ) )'('|, aPaHDP , then the acceptance probability would be 
1. This is the basis of Gibbs sampling which in principle this is more efficient that 
using the Metropolis-Hastings algorithm as no samples are rejected. Of course the key 
difficulty is in drawing from a distribution proportional to the posterior. To see how 
this can be applied in the present context, suppose that ai ≥ 0, then we can assign a 
Gamma prior distribution P(ai) ≈ Ga( α,β)∝ ia

i ea βα −−1 . If the rates of the time-
homogeneous Markov process (described earlier) are linear in ai then, up to a constant 
of proportionality independent of ai , the likelihood can be written 
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where in general α' and β' depend on the data, the missing events and the other 
parameters a-i. It follows that since the prior is a gamma distribution then so is the 
posterior  
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It is therefore possible to sample values directly from this distribution. Moreover this 
is relatively efficient compared with the Metropolis-Hastings algorithm, since α' and 
β' are certainly no more computationally demanding to calculate than the likelihood 
itself. 
 
To draw a set of samples {(ai,Hi):i=1,…N} from the joint posterior P(a, H | D ) we 
must choose {(a0,H0) consistent with the data D and then iterate the following: 
 



A. For fixed parameters ai propose M changes to the hidden events using the 
reversible jump Metropolis-Hastings algorithm described in steps 1-3 
above. This generates Hi+1 

 
B. Draw the next set of parameter samples ai+1 using Gibbs sampling from 

the univariate conditional posterior distributions. 
 
This combined Metropolis-Hastings/Gibbs procedure implements a Markov chain 
(indexed by i) which asymptotically as i → ∞ generates samples from the distribution 
P(a, H| D ) (Metropolis et al., 1953; Hastings, 1970; Green, 1995). In other words if 
we run the chain for long enough (the burn-in period) it will settle down to an 
equilibrium in which each sample generated (post burn-in) is draw from the posterior 
distribution. In practice the key problem is deciding on the burn-in period, that is, how 
many samples to discard before it is safe to assume that the Markov chain has 
converged to the desired distribution. There are a number of convergence diagnostics 
available (Gilks et al., 1996) but none guarantee convergence in general, and by far 
the most common approach is visual inspection of the chain output.  This is the 
method we rely on and we monitor time series of the parameter samples obtained by 
the chain after an initial burn-in (determined post-hoc by visual inspection of the 
output).  The Markov chain tends to mix more efficiently if, for each Gibbs sample of 
the parameters we typically perform many iterations M > 1of the Metropolis-Hastings 
sampling of the missing events. 
  
 
4. Applications  
 
The examples used to illustrate the formulation and analysis of stochastic models in 
Section 2 focused on population level models with applications in ecology and 
epidemiology. Whilst there are many such applications of time-homogeneous Markov 
processes, these stochastic methods are remarkably flexible and can be employed 
across a wide spectrum of application.  To illustrate this we now describe two 
contrasting applications drawn from our recent research. The first example combines 
the development and analysis of an agent-based model describing grazing in 
heterogeneous environments, with parameter inference based on data generated using 
contact logging in a behavioural experiment on diary cows. The second example 
makes use of large-scale data describing bio-geographical features of the landscape 
and the spatio-temporal spread of an alien plant to estimate the parameters of a 
stochastic model of dispersal and establishment.  
 
4.1 Modelling individual grazing behaviour 
 
Marion et al. (2005) develop a simple stochastic agent-based model describing the 
grazing behaviour of herbivores in a spatially heterogeneous environment. The model 
reflects the biology in that decisions to move to a new location are based on visual 
assessment of the sward height (or some other proxy for nutritional value) in a 
surrounding neighbourhood, whilst the decision to graze the current location are based 
on the residual sward height and olfactory assessment of local faecal contamination. 
The model divides space into N discrete patches with ci animals and sward height hi in 
each patch i=1,…,N, and assumes that the agents (animals) either graze the current 
patch at rate βci(hi -h0) or move to one of z neighbouring patches j at rate  ν ci hj /z . In 



addition, the sward growth in each patch, i=1,…,N, is assumed to be logistic γ hi(1- hi/ 
hmax). The model is summarised in Table 3. 
 
 
 
 
 

Change in state space Event description 
δhi δci δcj 

Event Rate at time t 

Grass growth at patch i +1 0 0 γ hi(1- hi/ hmax) 
Animal bite at patch i -1 0 0 β ci (hi- h0) 
Movement of animal from 
patch i to a neighbouring 
patch j 

0 -1 +1 
z
ν  ci hj 

Table 3: Agent-based model of grazing behaviour defined in terms of the 
sward height hi and the number of animals ci at patch i=1,...,N. The sward 
grows logistically at rate γ hi(1- hi/ hmax), and the agents take bites from patch i 
at rate β ci (hi- h0) and move from patch i to j at rate νci hj/z. 
 
   

As was shown above for the SI model with immigration and death it is possible to 
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where the variance in sward height )]([ thVar = ])([ 2 >< thE - 2])([ >< thE  measures 
the spatial heterogeneity and the covariances )](),([ thtcCov = ])()([ >< thtcE -

])([])([ ><>< thEtcE  measures the strength of association between tall swards and 
the grazing animals. It is worth noting that this equation involves no approximation 
and that the first line represents the equivalent non-spatial deterministic model. The 
variance and covariance terms in the second line therefore measure the importance of 
stochastic and spatial effects in the system; if both terms are close to zero then these 
effects are negligible. Evolution equations for the second-order quantities )]([ tcVar , 

)]([ thVar and )](),([ thtcCov , depend on third-order spatial moments and also on 
correlations between nearest neighbours.  Marion et al. (2005) show how to close 
these equations using a variant of the log-normal approximation discussed in Section 
2. As before this becomes more exact as the movement rate increases in a similar 
manner to the previous example. 



 
Spatial heterogeneities play a significant role in this system, but the effects are 
typically quantitative as opposed to the qualitative differences between persistence 
and extinction we saw in Section 2. For example, Figure 2 plots the total intake rate 
against stocking density and shows that the optimal stocking density obtained from 
the spatial stochastic process is markedly different from that obtained from the non-
spatial deterministic model. The maximum intake obtained is also lower when spatial 
heterogeneity is taken into account. The log-normal approximation partially captures 
this reduction in intake, but fails to predict the correct optimal stocking density. 
Marion et al. (2005) introduce additional features and also discuss various other 
aspects of the behaviour of the system including the relative efficiencies of random 
and directed searching, and in particular the impact of faecal avoidance.  
 

 
Figure 2: The effect of fixed stocking density E[<c>] on the total intake rate 
per patch across all animals at equilibrium ( )[ ]>−< 0hhcEβ . The results show 
a marked difference in both the intake level and the optimal stocking rate 
obtained from the deterministic model (dashed line) and the stochastic spatial 
process (dot-dash with symbols). The fixed stocking density E[<c>] was 
varied between zero and 0.5 as shown. The equilibrium values were obtained 
for t∈[50,100] on a 10 by 10 lattice with z=4 nearest neighbours, and initially 
uniform sward with ])([ >< thE =2 and randomly distributed animals. The 
other parameter values were β=1, γ=0.1, ν=0.2,  hmax=10, an initially uniform 
sward with ])([ >< thE =2 and randomly distributed animals. 



 
If the level of faecal contamination of patch i is described by the variable fi ≥ 0 
avoidance behaviour can be accounted for by modifying the bite rate to 
be ( ) if

ii ehhc µβ −− 0 . Relative to the case of no avoidance the bite rate is progressively 
reduced as both the avoidance parameter µ ≥ 0 and the level of contamination 
increase.  Friend et al. (2002) conducted an experiment at the Scottish Agricultural 
College (Dumfries, UK) to investigate avoidance behaviour in dairy cows. Prior to 
releasing animals into the outdoor experimental arena certain areas, amounting to 
approximately 5% of the total area of the paddock were artificially contaminated with 
faeces. The four animals released into the paddock were retro-fitted with faecal 
collection bags to prevent further contamination of the paddock during the 
experiment. Moreover, a data-logging system composed of transponders worn by the 
animals and aerials buried under the faecal contamination produced a record of every 
visit to the contaminated areas for each animal for the four day duration of the 
experiment. These data were supplemented by the daily measurement of the sward 
height in the contaminated zones and at a sample of points across the uncontaminated 
region.  
 
If sward growth is discounted it is possible to regard the data produced by this 
protocol as a partial history (see Section 3) of the stochastic model whose rates are 
defined in Table 3. The transponder data can be considered as direct observation of 
move events into the contaminated areas, although it should be noted that in some 
cases the transponder system logged multiple contacts in a short space of time and for 
the purpose of our analysis here these are regarded as a single visit, with the move 
event corresponding to the first contact. In addition the measured sward heights 
provide some information about bite events even though these are not recorded 
directly. In Section 3 the calculation of the likelihood was discussed in terms of 
events, but the sward height data are observations on the state-space of the system, 
rather than direct observations of events in the model. Nonetheless it is straight-
forward to modify the event-based likelihood (9) described in Section 3 to account for 
such state-space observation by multiplying it with a noise model describing how 
state-space observations relate to the underlying state of the system. In this case 
assume that sward height measurements are subject to a Gaussian error with mean 
zero and standard deviation σ. Then if for a given event history the sward height of 
patch i at time t is hi(t) and the corresponding observation )(thobs  is available, then the 
likelihood will gain the factor  
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Using this modification, the parameter inference techniques described in Section 3 
have been applied to a variant of the with-avoidance foraging model described above. 
In particular, the paddock was divided into 20 patches of equal size one of which was 
considered to be the 5% contaminated area. The level of faecal contamination was 
described by fi = 1 in the contaminated patch and fi = 0 in the clean areas. Sward 
growth was ignored during the four day period of the experiment and for the 
movement the neighbourhood size was taken to be the entire paddock. In addition h0 

was assumed zero and σ=1. The data provided all the move events into the 



contaminated patch and sward height measurements in centimetres for clean and 
contaminated patches initially and at subsequent daily intervals. The initial values of 
hi for each patch were set equal to the initial sward height measurements. Flat Gamma 
priors (see e.g. O'Neill and Roberts, 1999) were chosen for each parameter β, ν, and 
µ, and a combination of Gibbs sampling of the parameters and reversible-jump 
MCMC sampling of the (reconstructed) missing move and bite events, was used to 
generate samples from the associated posterior as described in Section 3. 
 
The estimates obtained from the Markov chain sampler are shown in Figures 3-5 for 
the parameters, whilst Figure 6 shows the numbers of reconstructed missing events. 
The key difficulty in running the MCMC algorithm was obtaining a representative 
sample of the large number of missing movement events. The data recorded ~450 
moves into the contaminated areas whereas Figure 6 shows that the total number of 
move events (into all patches) is estimated to be ~ 8000. With the missing bite events, 
this requires a large number of nuisance parameters (event times) to be estimated 
alongside the more interesting model parameters β, ν, and µ and a large number of 
samples are required to ensure adequate mixing of the Markov chain. These 
difficulties are reflected in the time-series plots of the three parameters. Whilst those 
of  β and µ fluctuate rapidly around their mean value, the samples of the movement 
rate ν vary relatively slowly. Nonetheless all three parameters and the numbers of 
missing events seem to have converged to steady states indicating that the Markov 
chain has itself converged and the values obtained are representative of the posterior 
distribution. Moreover, numerical studies (not shown) based on simulated data 
mirroring those obtained in the Dumfries grazing experiment suggest that this 
procedure can reliably estimate model parameters. Although it might be possible to 
improve mixing of the Markov chain by some alternative parameterisation with 
respect to animal movement, it is difficult to see how this could be achieved without 
radically changing the model and whilst remaining faithful to the description of the 
underlying process. In addition, here we seek to develop a statistical treatment of an 
existing process-based model and demonstrate that progress can be made even with 
large amounts of missing data. However, it is clear that additional information on 
animal movements would greatly facilitate this analysis. 
 
The detection of avoidance behaviour was of key interest in terms of the original 
experiment Friend et al. (2002) and the estimates of the avoidance parameter shown 
in Figure 5 provide strong evidence that the animals are avoiding faecal 
contamination, with bite rates on contaminated patches being, on average, 20% of 
those on clean patches. Another interesting issue is how to design a new experiment, 
and it is possible to use the model and estimation framework outlined here to address 
such questions. Firstly, it should be noted that if data describing all movements were 
available, for example via GPS tracking then, as discussed above, far fewer nuisance 
parameters would be required and the estimation procedure would be much easier to 
implement.  Secondly the numerical experiments (discussed above) in which 
parameter estimates are obtained from simulated data suggest that the frequency of 
sward height measurements could be significantly reduced without serious effect on 
the parameter estimates obtained. Thus these methods can suggest how best to use 
novel technologies and point the way towards making better use of scarce resources.  
Moreover, confronting models with data in this manner often suggests ways in which 
they can be improved. For example, in the present study it may be more appropriate to 
estimate separate avoidance parameters for each animal. Thus, the techniques 



described here are potentially useful tools in linking empirical and theoretical 
developments more tightly. 
 
 

 
 
Figure 3 Estimates of the movement rate ν obtained by applying the Bayesian 
inference scheme described in the text to data from the SAC grazing experiment. Top 
graph shows samples of ν generated from 1 million parameter samples the Markov 
chain after an initial burn-in of 500,000. Note, for every proposed change to the 
parameters 10 changes to the event history were proposed. Lower graph shows the 
histogram with 100 bins obtained from the post burn-in samples. The ν samples have 
mean 1.90 and standard deviation 0.07. 
 
 
  
 

 
 
Figure 4 As above but for the bite rate β. The β samples have mean 0.06 and standard 
deviation 0.004. 
 



 
  
 
 
 
 

 
Figure 5 As above but for the avoidance parameter µ. The µ samples have mean 1.59 
and standard deviation 0.5. 
 
 
 

 
 
 

 
 
Figure 6 The total number of move (upper graph) and bite (lower graph) events in the 
reconstructed event history obtained by applying the Bayesian inference scheme 
described in the text to data from the SAC grazing experiment. The graph shows total 
number of each event type generated for 1 million parameter samples of the Markov 
chain after an initial burn-in of 500,000.  Note, for every proposed change to the 
parameters 10 changes to the event history were proposed. 



 
 
 
 
 
4.2 Modelling the spread of an invasive species across a landscape 
 
Parameter estimation for fully spatio-temporal stochastic models is an area of ongoing 
development which forms a bridge between complex systems models and spatial 
statistical regression. As discussed in Section 3, the increasing capabilities of 
computational statistics in recent years, most notably the development of MCMC 
techniques (see Gilks et al., 1996, for a review), and their application to population 
processes such as epidemics (Gibson, 1997; Marion et al., 2003; Hohle et al., 2005; 
Gibson et al., 2006), means that it is now possible to fit ever more realistic models to 
observational data in a statistically rigorous fashion. Moreover, estimation in 
stochastic spatio-temporal models has the advantage over more traditional statistical 
techniques, such as logistic and autologistic regression (Collingham et al., 2000; 
Huffer and Wu, 1998; Beerling, 1993), of explicitly modelling change over time 
rather than assuming that the species' distribution (or other spatial pattern) has already 
reached equilibrium. However, one area in which the statistical treatment of spatio-
temporal models is currently deficient is in its handling of covariate information. To 
date most applications have made little or no use of such data, largely focusing on 
estimating dispersal kernels and other key processes. On the other hand regressive 
techniques excel in their ability to estimate the effects of large numbers of covariates. 
Moreover, Hastings et al. (2005) suggest that the realistic incorporation of 
environmental spatial heterogeneity into models of spatio-temporal spread is a key 
challenge.  
 
Such issues are of practical significance to the spread of a disease or an alien species 
across a landscape. Non-indigenous species can cause substantial economical losses, 
and are recognised as one of the largest threats to native biodiversity and ecosystem 
functioning (Kolar and Lodge, 2001; Sala, 2001) and increasing globalisation has 
promoted the intentional and accidental spread of species through their natural 
dispersal barriers. Considerable research effort has therefore focused on this issue, 
and mathematical and statistical approaches have contributed to our understanding of 
the ecological processes underlying biological invasions (Kolar and Lodge, 2001).  
Cook et al. (2006) attempt to bridge the gap between complex systems models and 
spatial regressions by developing a time-homogeneous Markov process to model the 
spread of an invasive species across a landscape in terms of a contact process, 
describing both natural dispersal and human interventions such as transportation 
(deliberate and accidental), and the variations in bio-geographical features described a 
range of covariates such as habitat type and climate which cause spatial heterogeneity 
in local suitability for colonisation. This approach necessarily balances model 
parsimony, computational tractability and the desire for realism, for example by 
describing varied and complex transport processes by means of a single dispersal 
kernel.  Within a Bayesian framework MCMC techniques are applied to estimate the 
parameters of this model from data describing the spread of the riparian weed 
Heracleum mantegazzianum (Giant Hogweed) in Britain in the 20th Century.  A key 
advantage of the Bayesian approach is that model predictions can reflect both inherent 
variability and the estimated parameter uncertainty. In this case the risk of future 



spread is calculated by repeatedly re-running the model for a large number of 
parameter samples from the posterior distribution.   
 
The model describing the spread of an alien species across the landscape is defined as 
follows. Firstly the landscape is divided into N patches and the presence of the alien 
species in patch i is defined by σi   =1 (σi   = 0 denotes an absence). The H. 
mantegazzianum data were recorded on 10x10km grid squares (hectads) which sets 
the patch scale, requiring N~3000 to model the UK. The rate of colonisation of any 
empty patch j by a colonised patch i is given by λλβ 22 −

ijj d , where jβ  represents the 
suitability of site j for colonisation, ijd  the Euclidean distance between sites i and j, 
and λ  is a parameter characterising the decay of the power-law dispersal kernel 
which determines the range of spread. For computational reasons the spread was 
limited to patches j for which 150≤ijd km. Spatial heterogeneity in the local 
environment is assumed to affect only the colonisation suitability jβ  via covariates 
describing the altitude jA , the temperature jT , and the proportion of land occupied by 
habitat class k in patch j, kjH ,  as follows, 
 

( ) ( ) kjkkjjj HbTTaA ,

9

0
)(expexp

−
Σ−−= τβ  

 
The parameter a measures how colonisation suitability decays with altitude, T  
measures the mean temperature across Britain 1920-1999, the sign of τ determines a 
preference for high or low temperature and the magnitude of τ defines the sensitivity 
to deviations from T , and ),0[ ∞∈kb  measures the suitability of habitat type k.  
 
 
All the covariate information were obtained from the Countryside Information System 
(www.cis-web.org.uk © Crown copyright 2006). The land-use classification and data 
were from the United Kingdom, Department for Environment, Food and Rural Affairs 
and Natural Environment Research Council (NERC) Land Cover Map 2000 GBv7 
data set © NERC (2006). This comprises the proportion of each hectad covered by 
each of 10 land-cover types: sea, coastal, arable, broadleaf forest, built-up, conifer 
forest, improved grassland, open water (rivers, lochs, etc), semi-natural and upland. 
The temperature used was taken to be the annual temperature per hectad averaged 
over the period 1920-1999, derived from the Met Office's UK 5km x 5km gridded 
monthly data set © Crown copyright (2006), (published by the Met Office in 
association with UK Climate Impact Programme and the Department for 
Environment, Food and Rural Affairs), and the mean altitude per hectad, from the 
Ordnance Survey Altitude and Slope Data: 1995 version 2 © Crown copyright (2006).   
 
The H. mantegazzianum distribution data were obtained from the UK National 
biodiversity network (www.nbn.org.uk) and represent a collation of data from a 
number of sources including surveys and reported presences. The data used records 
presences in 10x10km grid squares (There are approximately N~3000 such hectads in 
the UK) along with a time window during which the observation was made. The 
minimum length of a time window was a year, but many were considerably longer.  
Some sites had multiple observations (i.e. more than one time window), and since the 



weed is extremely persistent we make the assumption that once a site is colonised it 
remains colonised forever; therefore, for the model considered here, subsequent 
observations provide no further information about the colonisation process. In this 
example we also make the simplifying assumption that the colonisation of a site 
occurs at the earliest end-point of all of the observation windows recorded at that site, 
since this is the first time we can be certain the plant has reached that site. In reality 
there is uncertainty in the colonisation time which could in principle be accounted for 
in the inference scheme described in Section 3, by specifying an observation model 
and treating colonisations as unobserved events. However, this may lead to problems 
of parameter identifiability and in any case will dramatically increase the 
computationally complexity of the problem. This is a reasonable compromise since 
the focus here the treatment of spatially explicit covariate information.   
 
Estimation of the model parameters under these assumptions reveals that the habitat 
with the highest posterior mean colonisability is broadleaf. This is in contrast to 
reports (Clapham et al., 1985; Tiley et al., 1996; Stace, 1997) that the weeds primary 
habitats include waste-lands, and rivers and canals which are included in the land-use 
classes built-up (estimated to be second most colonisable) and open-waters (fourth, 
just behind improved grasslands) respectively. There is evidence that hectads with a 
lower mean altitude are more suitable to H. mantegazzianum than higher areas. 
Interestingly, however, this is countervailed by the weed's preference for lower 
temperatures (evinced by posterior support for negative values of a). This is especially 
surprising since altitude is negatively correlated with temperature, and indeed we 
might have expected confounding of these two effects. Both results are, however, 
supported to some extent by the literature: Pysek et al. (1998) found that H. 
mantegazzianum was represented less in areas of the Czech Republic with warm 
winters than cold; Willis and Hulme (2002) found experimentally that survival and 
biomass were lower for H. mantegazzianum at high altitudes.   
 
We can also combine the effects of all covariates in the full model to evaluate which 
areas are more suitable for the weed. Figure 7 shows the posterior mean 
colonisability jβ  for each hectad in Britain, with darker areas being more suited to the 
plant. There are considerable differences across sites, with the areas that have been 
colonised (most of England, the lowlands of Scotland) for the most part having 
high jβ . To evaluate where future colonisations are likely to occur 3000 simulations 
were performed, using parameter values sample from the posterior, for the time period 
2000-2025 (the data extend to the end of 1999).  Figure 7 maps the probability of sites 
being colonised by 2010, obtained by recording against time the proportion of 
simulations resulting in the colonisation of sites uncolonised at the start of 2000.  The 
model predicts that upland areas are likely to remain uncolonised over this time scale. 
Cook et al. (2006) show that the exclusion of covariates describing local suitability 
not only  produces biased estimates of the dispersal kernel, but also leads to the 
unlikely conclusion that upland areas will become colonised over this period.  The 
inclusion of land-use and temperature covariates means that the model described here 
could be used to produce similar risk maps under future land use and climatic 
scenarios.  
 
 

 



 

 
 

Figure 7 Risk maps for H. mantegazzianum. The left-hand map shows the 
posterior mean value of the potential colonisability Njj ,...1: =β  of every 
hectad in Britain. The right-hand map shows hectads colonised by 1999 in red 
whilst the other colours indicate the probability of colonisation by 2010 as 
described in the text. 
 

 
5. Conclusion 
 
In this chapter we have presented a range of tools which enable closer integration of 
model development and data collection for complex biological systems. The methods 
presented relate to dynamic stochastic process based models, and in particular we 
have focused on time-homogeneous Markov processes.   The framework can account 
for spatio-temporal heterogeneities and individual variability which are often crucial 
in understanding the properties of biological systems. Unfortunately, the non-linear 
nature of such phenomena typically leads to models which are analytically intractable. 
However, a number of analytic approximations are available which help to verify 
simulation results and provide valuable insights into model behaviour. The 
applications considered revealed that such approximations often perform well in some 
parameter regions, but rather poorly in others. Therefore the development of 
improved approximations and analytic approaches to such models is an area of 
ongoing research. Computational statistical methods such as MCMC can be applied to 
infer model parameters even when observations are incomplete. Moreover, in a 
Bayesian framework this enables uncertainty in parameters, and in principle even in 
models, to be estimated.  We described two applications in which parameter 
estimation was carried out using MCMC methods. In the first, incomplete 



observations of animal behaviour were used to estimate the parameters of an agent-
based model, and the framework used to improve the design of any future experiment. 
In the second, covariate effects on local establishment and parameters describing 
spatial spread were jointly estimated, and the resulting parameter uncertainty 
incorporated into projections of the future spread of an alien plant species across 
Britain. In practice such statistically correct parameter inference can be too 
computationally demanding to apply to complex models, or when there are too many 
missing observations.  Therefore computationally efficient, and possibly in-exact, 
methods for parameter inference are required. Moreover, whilst there is a wide 
literature on model selection per se, model selection with respect to stochastic 
process-based models is poorly understood and further research is required. 
Nonetheless the applications discussed demonstrate that currently available methods 
are already useful tools in developing understanding of complex biological 
phenomena. 
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