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Abstract

Neutral dynamics occur in evolution if all types are ‘effectively equal’ in

their reproductive success. Population dynamics with selection imply that

the definition of ‘effectively equal’ depends on the population size and the

details of mutations. Genetic data for extremely large clonal populations

indicates that many genes evolve neutrally, which current models can

only explain if selection on those genes is completely absent. Such models

typically consider the case where mutations are rare, so that population

dynamics occurs at a different timescale to evolution and there are at

most two competing types. However, if the probability of a mutation in

∗Corresponding author.
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the population as a whole is large, then the whole distribution of types

must be considered. We show that this has important consequences for the

occurrence of neutral dynamics. In highly connected type spaces, neutral

dynamics can occur for all population sizes despite significant selective

differences, via the forming of effectively neutral networks connecting rare

neutral types. Biological implications include an explanation for the high

diversity of rare types that survive in large clonal populations, and a

theoretical justification for the use of neutral null models.

1 Introduction

The evolution of a population is influenced by both chance events and selec-

tion. Selection acts on a population via differential reproductive success brought

about by heritable differences. Chance events include mutations causing herita-

ble differences, and the random process of population dynamics. The perceived

relative importance of these various process has changed over time. Darwin

(1859) believed that selection with variation was paramount, but more recently

Kimura (1983) and many others (Tachida, 1991; Ohta, 2003; Nei, 2005a) have

demonstrated that chance in population dynamics best describes the fixation of

many mutations using the ‘nearly neutral model of molecular evolution’. Very

recently the relative importance of chance has again been challenged (Hahn,

2008). The current genetic inference framework (Felstenstein, 1988) measures

phylogenetic relationships in terms of the number of mutations and therefore re-

quires neutral evolution of at least some loci. It is therefore essential to address

the relevance of the neutral model as a null hypothesis.

By current methods it is estimated that 50% of loci in some bacterial genes

(Charlesworth and Eyre-Walker, 2006) are shaped by adaptation. This leaves

a huge proportion of the genome shaped by effectively neutral substitutions.
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Could undetected selection at these loci be relevant for evolution? Mutations

resulting in a small change to reproductive ability are common in both coding

and non-coding regions of the genome (Ohta, 1997), arising for example via

the stability of RNA folding (Aita et al., 2003), gene regulation (Ohta, 2002)

and increased efficiency of shorter genomes. Under the nearly neutral theory of

molecular evolution, each genetic component usually contributes independently

to reproductive success. Effectively neutral dynamics are observed for selection

less than some critical value which decreases inversely with increasing population

size. In bacterial populations, selective differences would have to be essentially

absent for neutral evolution to occur at large population sizes. Since (very)

small fitness differences are to be expected in all mutations, it is important

to address why neutral evolution should be appropriate at all for viruses and

bacteria.

The standard theoretical approach to evolution is to assign ‘fitness’ to genes

under given genetic and environmental conditions, which translates to a repro-

ductive ability for the individual. In a sexually reproducing organism, genes

are regularly recombined in different combinations and over evolutionary time

an average fitness may be assigned to each gene by averaging over all possible

genetic environments. However, in asexually reproducing organisms, recombi-

nation is rare and gene interactions are more important in determining long

term reproductive success. In this case a better model is to assign a ‘fitness’ to

a combination of genes, i.e. to the type of the individual. Using this approach

we demonstrate that effectively neutral evolution may occur at relatively strong

selection in large populations, when compared with the more frequently studied

model of independent contribution to fitness of each gene.

We find that neutral dynamics cannot be supported in a large population

when mutation rates are low, such that no mutations are expected during a
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generation. In this case population dynamics and evolutionary dynamics occur

on different timescales so at most two types will be present at a given time. At

higher mutation rates, trends or correlations in reproductive success through

type space of the order of
√
Npm mutations are relevant, where N is the pop-

ulation size and pm the mutation rate. When strong long distance trends in

reproductive ability are present (for example, when alleles contributes indepen-

dently), non-neutral dynamics are observed at smaller selection strength than

expected at low mutation rate. In this case small differences in fitness per mu-

tation lead to a large difference in fitness over the whole population. However, if

there are no long distance trends in reproductive ability, genetically very differ-

ent types may have similar reproductive success and neutral dynamics can still

be observed for much larger selection strength. An ‘effectively neutral’ network

of types is formed, in which nearest neighbour types need not be competitively

neutral. Competitively neutral types are connected by less fit types in a way

that does not affect the statistics of the evolution of the population as a whole.

If we assume strong linkage in sexually reproducing populations then our

model becomes an appropriate description. In this case we explain the ‘paradox

of variation’ (Hahn, 2008), that more variation is not observed in larger pop-

ulations under the neutral model. The same degree of neutrality is observed

regardless of population size. Thus recombination rate is likely to play a vital

role in the applicability of neutral models.

Our model predicts the conditions for emergence of neutral networks without

a-priori assuming neutral dynamics should occur. Neutral networks themselves

have found application to viral evolution (van Nimwegen, 2006) and have been

well studied previously (van Nimwegen et al., 1999; van Nimwegen and Crutch-

field, 2000). When mutations off a neutral network are deadly, a ‘holey fitness

landscape’ (Gavrilets, 1999; Bastolla et al., 2002) is instead formed, for which
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moving across non-neutral regions is impossible. Our work shows that both of

these models are valid when selection is present even for very large populations.

Our results support the argument (Nei, 2005b) that phenotypes and geno-

types will evolve qualitatively differently. This is because the dimensionality

of a genotype space is considered to be higher than that of a phenotype space

(Huynen et al., 1996), and therefore the connectively of the neutral network is

also higher. Genotypes (i.e. a very high dimension space of possible mutations)

may evolve neutrally even when population sizes become large. Hence geneti-

cally diverse asexual individuals in a large population may compete effectively

neutrally, and therefore a large number of cryptic species would be expected.

This cannot happen for simple phenotypes, or sexually reproducing individuals

if fast genetic exchange results in the emergence of a ‘fittest’ combination of

genes.

We consider a simple evolution model, to which we apply a combination

of simple semi-rigorous arguments and simulation. This allows a description

of the conditions required for fully neutral models to accurately represent the

evolution of a population in which small selective differences may be present.

2 A conserved population nearly-neutral evolu-

tion model

A simple Moran birth/death process (Moran, 1962) is considered with clonal

reproduction in a type space. The type of an individual is it’s position in type

space, which determines it’s reproductive probability using a ‘fitness landscape’

model to describe how reproductive success varies with type. Three possible

representative fitness landscapes are considered.

5
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2.1 Definition of the model

A conserved number of individuals N are considered, with each individual i

belonging to a given type xi = (x
(1)
i , x

(2)
i , · · · , x(D)

i ) in an infinite ranged D-

dimensional type space. Each type xi has a fitness F (xi) which determines

that types reproductive success. A generation consists of performing N of the

following timesteps:

1. Select an individual i uniformly from the population which will be killed

at the end of the timestep.

2. Select an individual j of type xj for reproduction with probability poff (xj) =

F (xj)/(
∑N

k=1 nkF (xk)).

3. Create an offspring of individual j with initial type xj . With probability

pm a mutation occurs in a single type dimension, say x
(α)
i , with α ∈ (1, D)

each chosen with probability 1/D. The mutation involves x
(α)
i changing

by +1 or −1 with equal probability.

It is simple to see that if all fitnesses F (xj) are equal then the dynamics are

fully neutral. We will now define the various fitness landscapes poff (x).

2.2 Fitness

To capture important qualitative features of the change in fitness with type, the

following three simple definitions of a fitness landscape are considered. Land-

scape 1: the random fitness landscape, and landscape 2: the ‘top-hat’ correlated

fitness landscape are considered as two extremes of fitness landscapes that are

globally bounded. In landscape 3: the linear fitness landscape the potential

fitness difference within a population is unbounded.

Landscape 1: The random uncorrelated fitness landscape is maximally rugged,

6
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and created by the following function:

F (x; s) = 1− sy(x), (1)

where y(x) is a random number generated uniformally in (0, 1) for each x. Hence

the fitness F (x; s) is uncorrelated between types and is in the range [1− s, 1].

This fitness landscape can also be related to simple correlated (i.e. smoothly

varying but random) fitness landscapes by rescaling. Consider a correlated

random fitness landscape with correlation length η, such that 〈F (x)F (x′)〉 ∝

exp(−(x − x′)/η). By rescaling mutation size and mutation rate (i.e. ‘coarse-

graining’ the fitness landscape) the correlated fitness landscape can be reduced

to an uncorrelated fitness landscape. Mutation at rate pm creates a random walk

in type space for a given lineage (Yi-Cheng Zhang et al., 1990) in which the mean

population position ‖µ‖(t) =

√∑N
i=1

∑D
d=1(xdi )

2 ∝ √pmt at time t. Therefore

scaling space as x′ = x/η requires scaling mutation rate as p′m = pm/η
2. The

correlated fitness landscape in the unprimed variables is described statistically

by the random fitness landscape in the primed variables.

Sufficiently large random correlated landscapes require a great amount of

care to construct (Laird and Jensen, 2006) and are therefore not considered

here. The random landscape is generated by using a pseudo-random number

generator with seed given by the location in type space x.

Landscape 2: The ‘top-hat’ correlated fitness landscape is an extreme exam-

ple of a correlated landscape, given by:

poff (x; s) = 1, if all |x(α)| < L,

= 1− s, if any |x(α)| ≥ L. (2)

As before, the label α ∈ (1, D) refers to directions in type space. Equation 2

7
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describes a ‘top hat’ function such that fitness decreases by an amount s outside

a square (in D dimensions) of side 2L. This represents type spaces with a single

well defined fit area. As before the maximum fitness gradient is s.

Landscape 3: The linear fitness landscape has fitness increasing linearly in

all dimensions:

poff (x; s) = 1 + s
D∑

α=1

x(α). (3)

Again the maximum fitness gradient is s between neighbouring types, but the

maximum fitness difference over the whole population is unbounded.

3 Theory

The nearly-neutral case with high mutation rates is difficult to approach analyti-

cally, and so we use simple semi-rigorous but informative ‘mean-field’ arguments

which are backed by numerical simulation. The size of the ‘neutral regime’ is

considered, i.e. the range of selection strengths for which effectively neutral

dynamics are observed.

3.1 Characterisation of neutral dynamics

Since neutral evolution is itself dynamically rich, a careful characterisation is

necessary. The neutrally evolving population distribution can be accurately de-

scribed (Lawson and Jensen, 2007) as a ‘cloud’ of individuals forming a number

of distinct clusters in type space moving in a correlated manner. This can be

described statistically as a ‘peak’: i.e. a single entity with a given mean posi-

tion and width, both of which change in time. However the distribution is not

continuous as in e.g. (Schuster, 1997). A correct model of neutral dynamics is

useful for calculations when selection is small but significant, which are usually

expanded around the neutral case (e.g. (Traulsen et al., 2006)).

8
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A neutrally evolving population is described as a statistical distribution with

a mean position µ(t) (i.e. centre of mass) and a standard deviation w(t) (referred

to as a width to avoid confusion with the standard deviation of the width). The

mean position and the width evolve as random variables with known behaviours.

The mean position performs a simple random walk (Bailey, 1964) characterised

by:

‖µ‖(t) ∝ tβ (4)

with β = 1/2. The width fluctuates around the time-averaged width w∗ given

by:

w∗ = lim
Tm→∞

1

Tm

∫ Tm

t=0

w(t)dt. (5)

There are two possible statistically relevant effects of weak selection on the

neutral population distribution. The first is a change in effective diffusion rate

of µ(t) via either pinning, i.e. a reduced velocity of the mean population type, or

an active selection gradient, i.e. an increase in velocity. The second effect is that

selective forces alter either the population distribution size w or the magnitude

of its fluctuations compared with the neutral case.

The time-averaged width w∗ takes a different value to the ‘equilibrium’ width

wequil, for which the expected change of width in time is zero:

〈dw
dt
〉w=wequil = 0. (6)

Therefore reduced fluctuations of w(t) produce a contraction of 〈w〉 towards

wequil, and conversely for increased fluctuations. A change in wequil will likewise

produce a change in the time-averaged width 〈w〉. Thus 〈w〉 is an accessible

measure characterising neutral dynamics and together with ‖µ‖(t) characterises

neutral evolution.

9

Page 9 of 27 Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

3.2 Two competing types

It is instructive to recap the well understood case of low mutation rates, such

that only two types compete at a given time. The higher mutation rate cases

will be compared to this simple case.

Consider a population of size N at a good type with F = 1. A single

mutation occurs to a poor type i on which F (i) = 1 − s. For no selection

(s = 0), the population size ni(t) of type i would do a random walk starting

from 1. Type i typically becomes extinct (ni = 0) but after N attempts it is

expected to succeed, i.e. ni reaches N (Fraser, 1976). A less fit type that can

succeed in O(N) attempts is called effectively neutral. For this reason neutral

evolution occurs more slowly in larger populations when mutation rates are

small.

This problem is solved under the name of ‘Gambler’s Ruin’ (see e.g. (Ash,

1970)), when a time step is defined as waiting until the population of the unfit

type ni(t) changes. The ratio of the probability of ni increasing to the proba-

bility of decreasing is 1− s+O(s2), with s considered small. By comparison to

the Gambler’s Ruin problem with this ratio, a population of the poor type i of

initial size ni(0) = 1 in a total population of N will eventually reach population

size N with probability:

ppoor =
s

(1 + s)N − 1
. (7)

The neutral case with s = 0 succeeds with probability p0 = 1/N . The ratio

ppoor/p0 is ‘exponential like’ in s with the characteristic scale:

s∗ =
2

N
, (8)

or equivalently, effectively neutral evolution is observed for s < s∗ = 2/N . s∗ is

called the critical selection value.
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When only two types ever compete, selection acts via pinning, i.e. long

waiting times at high fitness types. In this case the above argument can be

extended to fitness landscapes with multiple high and low fitness areas. Ref.

(Aranson et al., 1997) performs such an argument mathematically in a slightly

different fitness landscape to ours. By analogy to pinning in anomalous diffusion

(Bouchaud and Georges, 1990; Ralf Metzler and Joseph Klafter, 2000), if there is

some maximum to the time the population can spend at fit sites then a rescaling

of the mutation rate will recover standard mutation-drift dynamics. In this case

fitness variation is irrelevant over long times. However, if the time taken to leave

fit types is unbounded then the motion of the population becomes subdiffusive in

type space. This means that the average root-mean-square position ‖µ‖(t) ∝ tβ ,

with β < 1/2 and the dynamics are not statistically neutral.

As pm increases a range of types can coexist. We will address whether the

existence of a population distribution around a high fitness type allows faster

escape, or if the low fitness of the surrounding types prevents the establishment

of a wide population distribution.

In summary, if mutations are rare (Npm � 1) and selection is weak (s� 1),

fully neutral behaviour of the peak is expected for s < s∗ ∝ N−1.

3.3 Predictions for a large population in a fitness land-

scape

When mutation rates are high, analytical techniques become difficult and we will

resort to simulation. However, some predictions can be made by making strongly

simplifying assumptions, which are explained here without mathematical detail.

Landscape 1: the random uncorrelated fitness landscape represents a corre-

lated landscape upon rescaling pm. The critical selection s∗ ∝ N−α must follow

α → 1 as pm → 0, but for large pm the population contains a number of types

11
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and therefore the distribution of distances between fit types will play a role. As

D → ∞ the probability of high fitness types being close increases and hence α

may decrease. This is not simple to model theoretically and is the main target

of the simulation study.

Landscape 2: the top-hat fitness landscape can be understood theoretically

as described mathematically by van Nimwegen et al. (1999) for a more general

case. This can be considered as a single fit type consisting of the whole fit region

competing with a single less fit type consisting of the whole unfit region. The

dynamics between regions are related to the two-type case with mutation rate

across the fitness boundary depending on the specific population distribution.

Within a single region the dynamics are neutral. Since there are effectively only

two types competing regardless of D, the dynamics follow the low mutation

rate case above with the upper bound in selection strength for neutral dynamics

s∗ ∝ N−1.

Landscape 3: the linear fitness landscape can also be understood theoretically

at large mutation rates, as discussed in detail by Kessler et al. (1997) for the

more general case of large selection. The width of the population distribution

w ∝ (pmN)1/2 for all selection s. Therefore the effective fitness difference

of individuals within the population sdiff ∝ s(pmN)1/2. The best and worse

types compete with small effective mutation rate as in the two type case with

s∗diff ∝ N−1. Therefore s∗diff ∝ s∗(pmN)1/2 and by rearrangement the upper

bound in selection strength for neutral dynamics s∗ ∝ N−3/2. Additionally, the

peak position performs a biased random walk in the usual way (e.g. (Bailey,

1964)), with deterministic drift component v ∝ pmsdiff and variance component

D2 ∝ 1/N2. Deterministic drift dominates the random walk if v > D, or sdiff >

s∗diff ∝ (Npm)−1 and again s∗ ∝ N−3/2. This holds for arbitrary dimension D

as all mutations have an equal chance of increasing or decreasing fitness.
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4 Results

Since the theoretical predictions for landscapes 2 and 3 correctly describe the

simulation results, we focus on the case of landscape 1, the random fitness

landscape. Results for all landscapes are presented in summary form. Non-

neutral dynamics are observed for s > s∗, where s∗ = min(s∗w, s
∗
µ) is the critical

selection found by observing changes to either the average width (observed for

s > s∗w) or mean position (observed for s > s∗µ).

The general simulation approach is to perform ensemble averaging over a

large number (100+) of runs at a range of parameters, and use statistical boot-

strapping techniques (Davison and Hinkley, 1997) to provide accurate standard

errors. The focus is the relationship between population size and effectively neu-

tral dynamics. To avoid repetition, detailed results are given for the case of low

dimension which is well understood theoretically under truly neutral dynamics

(Lawson and Jensen, 2007). It is important to stress that the general features

discussed extend to arbitrary dimension, including the genetically relevant infi-

nite dimension limit.

4.1 Effects on the width

As discussed, the average width of the population distribution provides a strong

indicator of neutral dynamics in a population. Fig. 1 (left) shows the average

width of the population distribution as a function of selection s. Each pop-

ulation size displays a different region s < s∗w(N, pm, D) for which the width

w(s) = w(0), i.e. selection is not effecting the observed average width. As selec-

tion is increased above s∗w the average width decreases as selection suppresses

fluctuations.

Considering only the effect of N on s∗w, the neutral data can be collapsed

as s′ = s/s∗w(N) and w′(s) = w(s)/w(s = 0) shown in Fig. 1 (right), with
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s∗w shown as a vertical line. Accurate confidence intervals for s∗w are found by

statistical bootstrapping; see Appendix. For D = 1 the critical selection is

s∗(N) = 8N−0.94 (see Fig. 2 for error margins). The data collapse is intended

only for s < s∗, though in this case holds over the whole parameter region.

The region s > s∗ corresponds to non-neutral dynamics. The critical selection

observed via a change in the average width is of the general form:

s∗w = aN−α(D,pm)Dβ(pm), (9)

where a is a constant, β is an exponent for the dimension dependence and α for

population size dependence. We focus on the case of constant D and pm such

that s∗w ∝ N−α and measure α.

The data for landscape 2 (the top-hat fitness landscape) is fit similarly to the

Random Landscape. For landscape 3 (the linear fitness landscape), the fitting

procedure is more difficult since a general nonlinear form must be used for w(s),

so averages and plausible ranges of s∗ are estimated by eye for this case only.

The details for all cases and dimensions are summarised in Fig. 2. Theoret-

ical predictions for the scaling of the critical selection s∗ ∝ N−α are supported.

For landscape 2: the top-hat landscape theory suggested α = 1, and for land-

scape 3: the linear landscape the prediction was α = 3/2. For landscape 1: the

random fitness landscape there is a clear relationship with dimension, starting

in D = 1 at a value away from α = 1 and decreasing (close to linearly) with

dimension towards α = 0 where it remains for D → ∞. The gradient of the

decrease is mutation-rate dependent.

4.2 Mean Position in type space

In the neutral case, the mean position of the population distribution in type

space (i.e. the average type) is a random variable performing a random walk.
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Deviations from this pattern are of interest. Using Eq. 4 a simplistic method

to find the diffusion exponent β is as the regression coefficient when plotting

the root-mean-squared distance from the origin ‖µ‖ as a function of time t on

double logarithmic axes. This is β = 1/2 in the fully neutral case. When there

is pinning to a particular type with high fitness then β should decrease. When

there is a fitness gradient, a velocity should be induced and β should increase.

The evolution of a population in a random fitness landscape is related to

the behaviour of a random walker in a random potential. Studying this nu-

merically is notoriously difficult (Bouchaud and Georges, 1990) and the above

method poorly captures the asymptotic behaviour often considered mathemat-

ically. However, in this case it is the short and medium time scales that are of

relevance to biological evolution which are captured in β as measured by the

above regression method.

As expected from Eq. 4, β = 1/2 is observed for neutral dynamics as seen

for all selection strengths s < s∗µ (not shown). The critical selection observed

s∗µ in the mean position has the form

s∗µ = bDγ(pm), (10)

for some constant b and exponent γ, with no dependence on population size N

for all N ≥ 500.

4.3 Width as the important measure

Using the definition of s∗ = min(s∗w, s
∗
µ) and Equations 9 and 10, the mean

position dynamics provide an important constraint on neutral dynamics if s∗µ <

s∗w. By rearrangement:

α log(N) + (γ − β) log(D) < [log(a)− log(b)]. (11)
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Therefore the signs of (γ − β) and [log(a)− log(b)] determine which constraint

holds as N and D become large. From the results it is found that both are

positive using simple regression in the dimension variable D. For example,

at pm = 0.05 in the random landscape (γ − β) = 4.5 ± 0.7 and [log(a) −

log(b)] = 6.9 ± 0.8. The signs of the combined constants (which hold for all

tested mutation rates) imply all terms in Equation 11 are positive. Therefore

pinning is important (i.e. observed at smaller selection than distribution width

fluctuation changes) only when both N and D are small. Therefore, at low

N and D a change in the mutational drift rate can be observed before the

population distribution changes shape. If N →∞ or D →∞ then s∗w < s∗µ and

s∗ = s∗w, i.e. we need only observe the average width.

4.4 Interpreting the results

A statistical description of neutral evolution was used to characterise the effect

of selection on a population distribution. This defined a ‘neutral regime’ in

which the population as a whole evolved effectively neutrally.

For low mutation rates Npm � 1 all individuals are distributed over a

maximum of two types that compete with each other. In this case neutral

dynamics are observed for s < s∗ ∝ N−α with α = 1, as is found in classical

models. This occurs regardless of the distribution of fitter types in the fitness

landscape.

For high mutation rates Npm ≥ 1 the population forms a distribution over

many types. The relevant selection parameter s measures the maximum range

of fitnesses experienced by the population. Fitness landscapes with a single

maxima (Eq. 2), or with long range trends (Eq. 3, s is redefined as sdiff) also

have critical selection s∗ ∝ N−α with α = 1. However, fitness landscapes with

large fluctuations but no long distance trend (Eq. 1) allow neutral dynamics
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to be observed for a larger range of population sizes N . In suitably connected

fitness landscapes such as that of genotypes (D → ∞) there is no effect of

population size on the critical selection strength s∗. When selection is below

s∗, taking the limit N → ∞ results in a neutral model. The studied case

of a random landscape is important because large populations N → ∞ have

distribution width w ∝ √pmN so cover a wide range of types. Therefore short

or medium sized correlations in fitness will be irrelevant - there may be no

important trend in fitness for large populations. The counter-intuitive result of

neutral dynamics occurring in a large population with a range of fitnesses can

be understood as follows.

In the neutral regime for high mutation rates, the population will contain

a large number of types with differing fitness. The fitness difference may be

large enough to be measured as selectively important at the level of single mu-

tations, but at the population distribution level the fitness of these types will

be effectively ignored. Fig. 3 illustrates how distinct fit neutral types may be

connected by less fit types. Neutral types do not have to be adjacent, but only

within the fluctuation region of order
√
pmN . It is only when selection strength

s > s∗ (of order 1) that crossing unfit regions becomes unlikely.

Fig. 3 illustrates the importance of connectivity and hence the dimensional

dependence for neutral dynamics to be observed. Percolation theory (Grimmett,

1999) may be an appropriate description, but is difficult to apply because the

population forms a wide distribution. As N → ∞ the proportion of truly neu-

tral types tends to zero but the number of types within the fluctuation region

increases. The fluctuation region of a good type contains intermediate fitness

types (grey in Fig. 3) for which the extinction time is critically determined

by the number of mutations onto the type. Therefore the threshold for ‘good

enough’ types is not well defined, but depends on the distance from a fit type.
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Hence this simple percolation argument should not be taken beyond an illus-

trative ‘cartoon’, although the simple linear relationship of α with dimension

in Fig. 2 is indication that an analytical approach may be fruitful. Using an

alternative argument, van Nimwegen and Crutchfield (2000) evaluate the time

taken to cross variable sized fitness barriers, but the argument does not extend

easily to the case of a random fitness landscape.

5 Discussion

5.1 Relation to other works

We have described a mechanism by which a neutral network may form for

large clonal populations when fitness variation can occur on every mutation.

This provides theoretical support to models representing large populations with

neutral networks (van Nimwegen, 2006) and holey fitness landscapes (Gavrilets,

1999; Drossel, 2001). Our work adds to previous models by demonstrating how

a neutral network can form without a-priori assuming that neutral dynamics

should be observed.

Other authors consider the case when the number of possible types is rel-

atively low. The deterministic ‘quasi-species’ model (Jain and Krug, 2007)

provides a good description when taking N → ∞ whilst the number of possi-

ble types remain finite. Distant fitter types are populated by rare long ranged

mutations which grow until they become a dominant species and provide the

source for new expansions until a fittest population is reached. Evolution oc-

curs deterministically along a specific path towards the most fit type. Our work

contrasts this by considering an infinite type space, whereby the behaviour in

the infinite population limit remains stochastic.

Our model applies primarily to clonal populations but could apply to all
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organisms in principle. The conceptual basis for neutral dynamics in large

populations is the formation of an effectively neutral network via a rugged fitness

landscape produced by gene interactions. The NK model for gene interactions

(Kauffman and Levin, 1987) provides one theoretical framework in which very

rugged fitness landscapes can occur in sexually reproducing organisms, which

has been studied (Ohta, 1997) in the nearly neutral model of molecular evolution

for low mutation rates.

In many other theoretical studies a large population N → ∞ is assumed.

This limit is not consistent with the assumption of small mutationNpm � 1 and

therefore a distribution of types must be considered. Under weak selection, we

found stochastic evolution models are more typically appropriate to genotypes

(justifying the Coalescent (Donnelly and Tavare, 1995)) or perhaps complex

ecological traits (relating to Ecological Neutral Theory (Hubbell, 2001)). Deter-

ministic evolution models such as Adaptive Dynamics (Waxman and Gavrilets,

2005) are more appropriate to simple phenotypic traits or when selection is

strong or directed. Our model therefore provides important links between pre-

viously unrelated models.

5.2 Biological implications

The reproductive ability of real organisms is not well described by a static fitness

landscape over evolutionary time. Reproductive success is caused by a wide

range of features including environmental effects and interaction of individuals.

However, each of the landscapes discussed may qualitatively describe individuals

in a population for a time. The linear fitness landscape describes directional

selection, the top-hat fitness landscape describes stabilising selection, and the

random fitness landscape is appropriate when there is fitness variation without

long range trends. We would therefore expect to observe each behaviour only
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in a subset of type space for a given evolutionary environment.

The important contribution from our model is a theoretical justification for

the widespread use of stochastic models of genetic evolution for large popula-

tions. Neutral or nearly neutral evolution can be a reasonable assumption for

large clonally reproducing populations even when there is fitness variation be-

tween types. It is important to integrate the effects of large mutation rates and

high population sizes into the current theoretical frameworks. Although pop-

ulation size cannot be inferred from genetics data alone (Stephens, 2007) our

model demonstrates that the qualitative nature of dynamics need not change

with population size. Hence stochastic models for changing population sizes are

also reasonable. Our model is not directly applicable to genetics data, but does

translate conceptually to problems involving mutation of DNA. Neutral dynam-

ics may naturally occur under different selective conditions for recombining and

non-recombining areas, which may be important to inference about mitochon-

drial DNA (William et al., 1995; Rand et al., 1994) and the Y chromosome (e.g.

(Handley et al., 2006)).

The most useful model of biological evolution will differ from situation to

situation, particularly depending on the speed of recombination. Our model

best describes low recombination rates and therefore asexual populations. It

predicts that neutral dynamics can persist for much larger selection strength

and population sizes than standard models for sexual species predict. This

explains the existence of cryptic asexual species. The fundamental mechanism

is simply that mutation rates are large, and not all genes will be good for all

types but instead interact to determine fitness. We found that a surprisingly

‘large’ selective advantage may be present in a population and neutral dynamics

can still be observed.

[Data collapse]
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The data are collapsed to a single curve for s < s∗ by normalising the width

and selection. The width is normalised to 1 at zero selection, for which truly

neutral dynamics are observed. Selection is normalised to s′ = s/Nα, where α

is a dimension dependent constant to be determined.

To determine α we fit a broken-stick model to the data, i.e. a piecewise

linear function with two pieces. This is defined by log(w) = c1 for s < s∗, and

log(w) = c2 + c3 log(s) for s > s∗. This is fit by maximum likelihood of the

model parameters given the datapoints.

To determine confidence intervals for s∗ and α we use a ‘bootstrap’ method.

Since observations were taken at specific values of selection si there is uncer-

tainty in the values of w for the s in between. Sample si are obtained by perturb-

ing each si by an amount xi, with a ‘tent’ distribution of mean si and extension

(si+1 − si−1)/4 (i.e. the mean halfway point to its neighbouring points). Sam-

ple widths wi for each value of selection si are obtained via a bootstrapping

of the n runs (that is, the average of resampling n values with replacement).

This provides a distribution of wi and si. These are once again bootstrapped,

so that each wi is sampled and a maximum likelihood s∗ is obtained, giving

a distribution for s∗. A linear regression is obtained for log(s∗) as a function

of log(N), giving −α as the slope. Confidence intervals are obtained via the

regression variance.
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Figure 1: Ensemble average width against selection for fitness landscape 1
(random and uncorrelated) as described by Eq. 1 with mutation probability
pm = 0.5, for a range of population sizes N . Left: Ensemble averaged width
against selection. Each curve is flat for s < s∗w(N) i.e. w(s < s∗w) = w(0). Right:
The normalised width against normalised selection for the same data, collapsed
using the method from the Appendix. The critical selection s∗w ∝ N−0.94 is
shown as a vertical line as an aid to the eye. Each datapoint is the time average
(over 50000 generations) of a simulation after it has reached equilibrium, en-
semble averaged over 200 independent runs with standard deviations calculated
using statistical bootstrapping.
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Figure 2: Exponent α for the population size dependence s∗w ∝ N−α as a
function of dimension. Error bars are 95% confidence intervals for the regression
fit for α (linear regression on a log-log scale for selection s against population
N). Shown are the data the for random fitness landscape (Eq. 1) at pm = 0.5
and pm = 0.05, the ‘top-hat’ correlated fitness landscape (Eq. 2), and the
linear fitness landscape (Eq. 3). Dashed lines correspond to theoretical values.
Horizontal perturbations to the dimension have been made for visibility and do
not reflect fractal dimensions.
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Figure 3: Illustration of ‘connectivity’ in the random landscape model (Eq. 1)
for D = 2 and N = 100. The fitness landscape itself is shown. Selection values
are (left) s = 0.02, (middle) s = 0.04 and (right) s = 0.08. Types with fitness in
the range (0.99, 1) compete truly neutrally and are shown in black. Types in grey
have fitness in the range (0.98, 0.99) which is high enough to survive by chance
for moderate times at low population levels. The low mutation rate neutral
regime (left) is characterised by a connected network of neutrally competing
types (coloured black). However, the neutral regime considered in this paper
(middle) allows linking of neutrally competing types by slightly less fit types
(coloured grey). At higher selection, connectivity breaks down into isolated
clusters and non-neutral dynamics are observed (right).

27

Page 27 of 27 Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


