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Abstract 
In this paper we consider spatially heterogeneous epidemic systems, in which pathogen spread 
occurs through a landscape comprising favorable (e.g. susceptible or untreated) and less 
favorable (e.g. resistant or treated) sites. An important example is the deployment of resistant 
crop varieties in mixed species populations. It is well recognized that heterogeneity arising from 
the presence of multiple species or spatial variation in the interactions between individuals can 
endow population processes with a far more complex range of dynamics than would be 
exhibited in homogeneous settings. However, even though stochastic models for heterogeneous 
systems can be readily formulated, these models can only inform our understanding of any 
particular system if they can be parameterized for that system. We focus on processes and 
models with short-range interactions using data describing the spatio-temporal spread of 
Rhizoctonia solani, a soil-borne fungal plant pathogen, in mixed species populations as a 
convenient experimental system in which heterogeneity can be controlled. Such epidemics are 
frequently driven by an external source of infection (primary infection, the initiator of an 
epidemic and often associated with inoculum present in the soil), and secondary spread between 
infected and neighboring susceptibles in a population (secondary infection). We develop 
Bayesian methods to fit spatio-temporal percolation-based models, incorporating such features, 
to biological processes that evolve in homogeneous populations.   
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1 Introduction  
There is a large body of literature dealing with mathematical spatio-

temporal models for biological or physical processes that evolve through 
spatially structured populations. Examples include forest fires (He and 
Mladenoff, 1999; Hargrove et al., 2000), soil-borne epidemics (Gilligan, 1987; 
Gilligan, 2002), social networks (Newman, 2003), and computer viruses 
(Newman et al., 2002). Many of these processes occur in heterogeneous 
environments where the heterogeneity arises from the presence of multiple 
species or spatial variation in the interactions between individuals.  It is well 
recognized that such heterogeneity can endow systems with a far more complex 
range of dynamics, relating to species and population persistence (Levin, 2000; 
Ettema et al., 2002; Gilligan, 2002; Park et al., 2002) or evolutionary processes 
(Shea et al., 2000), than would be exhibited in homogeneous settings. 
Therefore, even though stochastic models for heterogeneous systems can be 
readily formulated, these models can only inform our understanding of any 
particular system if they can be parameterized for that system. Sound 
parameterization of models is therefore essential if they are to be used, for 
example, in the development of control strategies such as the deployment of 
resistant varieties that minimize pathogen invasion with low risk of evolution of 
new virulent pathotypes.  

In this paper we consider spatially heterogeneous epidemic systems, in 
which pathogen spread occurs through a landscape comprising favorable (e.g. 
susceptible or untreated) and less favorable (e.g. resistant or treated) sites. An 
important example is the deployment of resistant crop varieties in mixed species 
populations which has been studied extensively both mathematically (Brachet et 
al., 1999; Garrett et al., 1999; Finckh et al., 2000; Jeger, 2000) and empirically 
(Burdon et al., 1977; Garrett et al., 2000; Zhu et al., 2000; Mundt, 2002). In 
such populations, the spatial distribution of sites of each type is important in 
determining the likelihood of invasion and persistence of disease (Gilligan, 
2002). Invasion of disease in such a landscape is affected by the dynamics of 
disease within each sub-population and the connectivity between favorable and 
unfavorable sites, which in turn is determined by the areas covered, the 
clustering of sites and the scale of dispersal (Perry, 2002).  As connected 
pathways between favorable sites are explored preferentially by an invading 
epidemic, the contacts between favorable and unfavorable may become 
progressively more important as the epidemic progresses.  

We focus on processes and models with short-range interactions. Soil-
borne epidemics are exemplars of such processes. They are important 
determinants in the dynamics of plant populations in natural environments 
(Packer et al., 2000; van der Putten, 2000) and in epidemics in agricultural 
environments (Shea et al., 2000; Gilligan, 2002). Such epidemics are frequently 
driven by an external source of infection (primary infection, the initiator of an 
epidemic and often associated with inoculum present in the soil), and secondary 
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spread between infected and neighboring susceptibles in a population 
(secondary infection). Percolation-based modeling may be appropriate for 
epidemics with short-range contacts, as it can identify if disease is expected to 
invade in relation to the frequency and distribution of favorable and unfavorable 
sites in a population (Stauffer et al., 1991; Sander et al., 2002; Sander et al., 
2003).  In a recent paper, Gibson et al (2006) developed Bayesian methods to fit 
percolation-based, spatio-temporal models to biological processes that evolve in 
homogeneous populations. The method is based on a generalization of a 
standard epidemiological S-I model with primary and secondary infection 
transmission between nearest neighbors on a lattice married with a model for 
the time-varying susceptibility of the host.  This can be fitted to observations of 
disease spread through time and space in replicated populations using powerful 
statistical techniques such as Markov chain Monte Carlo.  
 
The model of Gibson et al. can be readily generalized to represent a mixed-
species population to give the following.  The heterogeneity of the population is 
described by assigning the covariate hj to each member j of the population, 
where hj is a binary variable representing sites in the population that are either 
favorable or unfavorable for disease transmission.  Let Yj(t)=1 if j is infected by 
time t and 0 if still susceptible.  In common with most stochastic 
epidemiological models (e.g. Bailey, 1975; Sellke, 1983; Renshaw, 1991; 
Gibson et al, 2004; Höhle et al, 2005), we assume that 

( )Pr ( ) 1 ( ) 0 ( )s s sY t dt Y t t dtφ+ = = =  as dt→0, where φs(t) is the rate of infection 

of s.  In the specific model used here, φs(t) is comprised of terms representing 
the rate of primary infection from inoculum at time t if s is inoculated, denoted 
α[hs](t); the rate of secondary infection from each infected neighbor i, denoted 
β[hi,hs](t); and the rate of tertiary infection from background sources, at rate 
γ[hs](t).  We restrict in our analysis the transmission of primary and secondary 
infection to nearest neighboring sites only, to accommodate for the limited 
dispersal commonly found for soil-borne pathogens and for which data for 
model testing were available. Using the indicator function 1{A} = 1 if A is true 
and 0 otherwise, this can be written: 

( ) [ ]( ) { } [ , ]( ) { ( ) 1} { } [ ]( )s s i s i s s
i

t h t s X h h t Y t i N h tφ α β γ⎛ ⎞
= ∈ + = ∈ +⎜ ⎟

⎝ ⎠
∑1 1 1  

where X and Ns are the sets of inoculated hosts and nearest-neighbors of s, 
respectively.  Various functional forms for the transmission rates can be used to 
represent how plants vary in their response to infective challenge with age.  The 
total rate of infection φs(t) of a host s therefore depends on the time-varying 
transmission rates as well as on localized conditions (presence of inoculum, 
neighboring infectious plants) which evolve with time and are different for each 
host (figure 1).  This complex interaction between transmission rates, host 
spatial structure, and the spatial pattern of disease presence means the behavior 
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of an epidemic cannot be predicted from a single component alone, but requires 
an integrated understanding of all three (see figure 1). 
 
This paper applies a framework for analysis of spread of epidemics in 
heterogeneous environments within which experimentation, mathematical 
modeling and statistical inference are integrated. Central to such a framework 
are methods for parameter estimation including uncertainty associated with 
these, as well as criteria for formal comparison of models, testing for 
differences of transmission rates and understanding the relative importance of 
each phase in driving the epidemic. We illustrate the methods for the spread of 
Rhizoctonia solani, a fungal plant pathogen, in mixed species populations as a 
convenient experimental system in which heterogeneity can be controlled. The 
methods, however, are readily generalized to other scenarios. Our specific 
objectives are: 
• to develop methods to fit percolation based, spatio-temporal models for the 

spread of epidemics that evolve in heterogeneous environments with local 
dispersal and time-varying transmission rates within and between species, 

• to use formal criteria to test for differences in transmission rates within and 
between species, 

• to infer the relative importance of different sources of infection for any 
particular combination of host spatial structure and transmission rates. 

 
Finally, using parameter estimates, we quantify the effect of changes to 
environmental heterogeneity. Specifically we address the effect of large-scale 
(typified by the percentage of area covered by favorable sites) and small-scale 
heterogeneity (typified by the degree of clustering of favorable sites) on the 
connectivity within and between favorable and unfavorable sites, and how 
connectivity and transmission rates determine disease levels, by controlling the 
way an epidemic invades its environment.  



 5

2 Results  
 
Models with various functional forms for the time-varying transmission rates 
were considered, including constant with time. These were fitted to spatio-
temporal data (D) on the spread of damping-off epidemics through mixed 
populations of radish and mustard seedlings, hereafter referred to as favorable 
(F) and unfavorable (U) sites respectively. Formal comparison using the 
deviance information criterion (DIC), resulted in the following model: 

( )
( ){ } ( ){ }[ , ] [ , ]

[ ]( ) [ ]exp [ ] ,

[ , ]( ) [ , ] [ , ] / [ , ] exp / [ , ] / ,

[ ]( ) [ ].

i s i s

s s s

h h h h
i s i s i s i s i s

s s

h t a h r h t

h h t b h h h h t h h t h h t

h t h

κ κ

α

β κ µ µ

γ ε

= −

= −

=

 

in which the rate of infection from inoculum decays exponentially and the rate 
of neighbor-to-neighbor infection is proportional to a Weibull density function.  
Also included is background infection at a constant rate, which accommodates 
any infection that may have arisen from spread beyond nearest neighbor 
(Gibson et al., 2006).   

The joint posterior density of this model’s parameters has been sampled 
using MCMC whence a posteriori parameter means and 95% credible intervals 
are derived for the model’s parameters (table 2).  Posterior means and marginal 
95% credible intervals for the primary and secondary transmission rates were 
subsequently derived from the joint posterior distribution, further supporting the 
rise and fall dynamics in secondary transmission for all species combinations 
(figure 2). 

Comparison of transmission rates 
An important feature of our method is that it enables testing for differences in 
primary and secondary transmission rates between favorable and unfavorable 
sites. Both parameters governing primary infection differed between species 
(Pr(aU>aF|D)<0.0001, Pr(rU>rF|D)<0.01). As both species were challenged by 
the same source of inoculum, this indicates that although the unfavorable sites 
were initially more susceptible to inoculum, they became resistant quicker 
(figure 2a,b). 
 Interpretation of the individual parameters for secondary infection is 
more complicated, since each set of three parameters contributes jointly to the 
shape of the secondary transmission rate (figure 2c-f). All four within- and 
between-species transmission rates displayed similar temporal dynamics: the 
rate of transmission initially increased, followed by a decrease.  The absolute 
values for each of the four transmission rates were however different (figure 
2c-f). The statistical significance of these differences was confirmed by 
comparing DIC scores for aggregated models, in which some secondary 
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transmission rates were assumed to be identical so that, for example, they 
depend only on donor or recipient sites.  For all tested aggregated models, the 
DIC scores were substantially worse than those of the full model (table 1), 
showing that all four transmission rates were distinct. 
 The largest of the secondary transmission rates was found to be 
transmission between two favorable sites, followed by the transmission of 
infection from unfavorable to favorable. The rate at which unfavorable sites 
became infected was lower, in particular for transmission between two 
unfavorable sites. Overall, however, there was an appreciable rate for between-
species transmission of infection (figure 2d,e).  Note the difference in ranking: 
unfavorable hosts are more resistant to secondary infection but less to primary 
infection than the favorable species. 
 

Goodness of fit 
We plot the predicted and measured daily distribution of new infections as a 
measure of goodness of fit (figure 3). It is striking that with a single set of 
parameters, the prediction of the number of new infections for each day agrees 
well with the measured data for all population structures, representing a wide 
range of heterogeneity.  Although the predicted distributions follow the central 
trend of the observations, the amount of variability in the number of new 
infections is under-estimated.  This may indicate environmental differences 
between replicates that we have not modeled.  Possible remedies are addressed 
in the discussion. 

Identification of transmission pathways and dominant 
pathways of infection 
A further novel feature of our approach is that it enables the identification of the 
posterior distribution of how many plants in a mixed population became 
infected by primary infection, how many by secondary infection from the same 
sites (e.g. favorable-favorable or unfavorable-unfavorable), and how many from 
transmission between-sites (table 3) . For example, that in the pure favorable 
populations, the majority of sites (58%) became infected by secondary 
infection, compared with 5% by primary infection. In a pure unfavorable 
population, the origin of infection is more balanced, with 6% and 8% of plants 
infected by primary and secondary infection, respectively. In heterogeneous 
mixed populations, doubling the fraction of the unfavorable sites from 25% to 
50% of the total population significantly increased the infections caused by 
unfavorable hosts (table 3).  Only through fitting of spatial models is it possible 
to obtain estimates of the most likely pathways of transmission of infection. 

Effect of heterogeneity 
Heterogeneity can vary at the large scale (e.g. the area covered by favorable 
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sites) or at the small scale (e.g. the clustering of favorable sites within an area).  
We used our model with the estimated parameters to understand the effect of 
environmental heterogeneity upon dynamics of epidemics, and in particular to 
test how this is affected by presence or absence of transmission between 
favorable and unfavorable sites.  Presence or absence are selected here as 
examples to demonstrate the importance of knowledge of the four transmission 
rates.  The predicted levels of disease changed substantially with an increase in 
area of favorable sites in the population (and concomitantly reduction in area of 
unfavorable sites). Not surprisingly, as the connectivity between favorable sites 
increases with the proportion (figure 4a) or clustering (4c), the disease level 
increased.  As transmission involving unfavorable sites occur at a lower rate 
(figure 3), this pattern was the same regardless of whether transmission 
between favorable and unfavorable sites can occur.  

For unfavorable sites the results are perhaps surprising. The response to 
an increase in area covered or an increase in clustering depended on the absence 
or presence of transmission between favorable and unfavorable sites (figures 4b 
and 4d). For example, as the proportion of unfavorable sites in the population 
declines, the expected disease level decreases if no transmission occurs 
between favorable and unfavorable sites, but increases if transmission can 
occur. The reason for this is apparent from figures 4e and 4f, which show that 
with increasing proportion of favorable sites, the unfavorable sites no longer 
form a connected network, but do have more contacts with neighbors that are 
favorable for spread. Additional simulations (not shown) showed that this 
pattern does not depend on the level of primary infection, or on the time-
dependency of the transmission rates, but does depend on the relative value of 
these. The contrasting response to heterogeneity can therefore only be 
understood if all transmission rates that can occur within a heterogeneous 
population are known. 



 8

3 Discussion 

Approach:  Stochastic spatial models combined with recent advances in 
computational methods for statistical inference provide a powerful tool to 
analyze and understand epidemics in heterogeneous environments. We have 
presented and tested a framework within which experimentation, parameter 
estimation and modeling are integrated with implications for analysis of spatio-
temporal data. We demonstrated the framework on damping-off epidemics and 
showed how it enables:  (i) estimation of multiple transmission rates from 
spatio-temporal data of disease presence in heterogeneous environments, (ii) 
formal comparison of models and tests for significant differences between 
transmission rates, (iii) identification of the main sources and pathways of 
infection, (iv) analysis, using parameter estimates, of how epidemics evolve in 
response to changes to the heterogeneity of their environment. The framework 
is an essential tool in optimizing the deployment of various control strategies to 
prevent invasion of epidemics in heterogeneous environments. 
 
Contact structure: The effect of spatial contact patterns of homogeneous hosts 
on epidemics has been the subject of considerable research effort in recent 
years, in response to the growing recognition that spatial structure plays a 
critical role in understanding and predicting the risk of disease outbreaks.  
Much of this research has been theoretical, and has shown how models of 
epidemics behave differently when spatial structure is accounted for (Dushoff 
and Levin (1995), Keeling and Eames (2005)) with important implications for 
disease management and control (Smith et al (2004), Watts and Strogartz 
(1998), Pastor-Satorras and Vespignani, 2001 & 2002; Dybiec et al, 2004) and 
the evolution of virulence in pathogens (Buckee et al (2004), Read and Keeling 
(2003)).  Other work has involved describing the effects of heterogeneity in 
contact structures using moment closure (Bolker and Pacala, 1997; Keeling, 
1999; Boots and Sasaki, 1999), or time-delays and functional responses 
(Keeling et al. (2000)). 
 
Fitting models with heterogeneous host structure: In contrast, relatively little 
research has been done on fitting process-based models that take account of the 
spatial structure of environmental or host heterogeneities to observed disease-
incidence data. Exceptions include the spread of rabies in a spatially 
heterogeneous Connecticut raccoon population (Smith et al (2002)). Similarly, 
Cook et al (to appear) show that the predicted spread of the alien weed 
Heracleum mantegazzianum in Great Britain is grossly overestimated if 
landscape heterogeneities are not taken into account.  A key difficulty in fitting 
these models to data is that the contact-network structure is often unknown. 
Assumptions need to be made, and techniques for formal model selection 
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presented in this paper form an essential step in this process. The structure of 
heterogeneity also has implications for experimental design, with spatial 
arrangements differing in the information yielded from the system. 

 
Distinguishing transmission rates: We developed our methods for a generic 
model for plant epidemics (Gilligan, 2002) where plants are classified as either 
susceptible (S) or infected (I). The model does not include any hidden classes, 
such as latently infected plants, that would have complicated considerably the 
estimation of the transmission parameters (Gibson et al., 2004). An important 
feature of the model is that the transmission rates from inoculum and infective 
plants are allowed and found to vary with time.  Transmission rates are 
notoriously difficult to quantify (Dwyer et al., 1993). Time-dependency of 
transmission rates is often not known a priori, yet plays a crucial role in the 
dynamics of epidemics (Kleczkowski et al., 1996; Filipe et al., 2003) especially 
when it leads to rapid quenching of disease spread. In this paper we described a 
method that through parameter estimations will enable formal comparison of 
models to identify appropriate functions for time-dependency of transmission 
rates. In our specific example, the infection rate of both species from inoculum 
declined with time, while plant-to-plant infection rose and fell as the plants 
aged. This is consistent with analysis of epidemics in similar systems, and 
biological grounds for this have been described elsewhere (Otten et al., 2003). 
We used the DIC to test for further model simplification relating to specific 
biological hypotheses, in particular this allowed us to reject the hypotheses that 
inter-specific transmission rates depended only on donor or recipient type in 
favor of an interaction between the two.  A range of simpler, commonly-used 
functional forms including a priori constant rates of infection were similarly 
rejected by means of the DIC (not shown).  
 
Model selection: Use of a post-hoc measure of relative model goodness of fit, 
such as the DIC, allows additional candidate models to be considered in a 
convenient, modular fashion.  Alternatives to the DIC for model selection within 
a Bayesian framework were considered, but do not have this flexibility.  For 
example, models as well as priors can be assigned prior probability distributions 
and the model with highest a posteriori support used for analysis (see Green, 
1995 and King et al, 2006), but in practice this requires the use of reversible 
jump MCMC to sample the space of all candidate models, increasing 
computation times substantially, and requiring the routine to be rerun each time 
new models are devised.  Another post-hoc alternative is to extend the analysis 
of the distribution of stochastic residuals (Gibson et al, 2006) to multiple host 
types, which would have the benefit of giving an absolute rather than relative 
measure of model goodness of fit. 
 
Future work: Although the fitted model characterized the observed pattern of 
new infections well, there was additional variability in the data (figure 3), in 
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common with studies in homogeneous populations (Gibson et al, 2006).  
Adapting the model used here to characterize such additional variability 
requires more complexity in the structure of the model than is used here; further 
work is underway to assess the feasibility of such analyses. For example, 
hierarchical modeling, in which parameters vary between replicates according 
to a hyper-distribution, would inflate the variance and allow any small 
environmental differences between replicated epidemics to be quantified.  A 
further generalization is to incorporate synergism, or non-independence of 
multiple sources of infection, which has been observed in simpler systems.  In 
both cases, the apparent simplicity of the model would be lost, and 
interpretation would become abstruse. 
 The model and approach readily generalize to multiple phases or host 
types.  If hj, the heterogeneity covariate of host j, remains categorical, the 
extension is obvious, although the number of parameters increases quadratically 
with the number of phases.  If hj represents a continually varying trait, then 
some functional form must be imposed for the rate β[hi,hs](t) of infection from i 
to s: for example, that β[hi,hs](t) is proportional to hs and constant with time 
(O’Neill and Becker, 2001). 
 
Importance of approach: The main feature of the framework is that it allows 
for analysis of epidemics in heterogeneous environments whilst accounting for 
two crucial aspects underlying the epidemics, namely (i) the contact between 
sites in the population, and (ii) real estimates of multiple transmission rates that 
operate in heterogeneous systems. We have shown that both factors affect the 
dynamics of epidemics and hence the effectiveness of disease control strategies. 
Such strategies could include a spatial distributions of control by shielding 
susceptible hosts or fields, for example by a spatial deployment of resistant 
varieties, or a local deployment of a chemical or biological control agent 
(Brophy et al., 1991; Garrett et al., 1999). The effectiveness is largely 
determined by the relative magnitude of the transmission rates. If transmission 
rates between favorable and unfavorable sites are intermediate or high, we 
showed that the levels of disease in sites that are less favorable for spread are 
dominated by the disease pressure from the favorable sites in the population 
(figure 3). Hence the heterogeneity of the population determines the underlying 
landscape within which contacts between infected and susceptible sites, either 
favorable or unfavorable, are subsequently dynamically generated by the 
pathogen as it explores specific contacts preferentially. The latter is mainly 
determined by the relative magnitude of the transmission rates. Knowledge of 
multiple transmission rates as estimated in this paper is therefore essential in 
addressing epidemiologically important questions such as: ‘what is the 
minimum spatial coverage of a resistant variety required to reduce the risk of 
invasion?’; or ‘can we safely introduce a susceptible crop or cropping system 
(e.g. organic farms) without enhancing the risk of invasive spread at the 
regional scale?’. These questions can only be addressed within spatial models. 
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Our method ensures that answers to such questions are statistically sound, and 
fully integrated with experimental trials. 
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4 Theory and approaches  

Bayesian model fitting 
Following Gibson et al. (2006), we fit the model by deriving the form for the 
likelihood function of the parameter vector (call this θ) conditioned on the sets 
of non-observed infection times ( { }min : ( ) 1s st Y tτ= = =t ) and sources of 
infection (σ). The posterior distribution for θ given the observed replicate data 
(D) is ( ) ( ) ( ),f D f f d d∝ ∫∫θ θ t σ θ σ t  with the region of integration being 
limited to the set of (t, σ) consistent with D.  The f (t, σ | θ) term is defined by 
the model and a result in Cox and Isham (1980) to be: 

 
( )

: ( ) 1 : ( ) 00 0

, ( ) exp ( ) exp ( )
s end

s end s end

s s s s
s Y t s Y t

f u du u du
τ τ

λ τ φ φ
= =

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= − −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∏ ∏∫ ∫t σ θ
 

where λs is the rate of infection exerted on s by the infecting source, σs.  Details 
for a related model with homogeneous hosts can be found in Gibson et al. 
(2006).  It is preferable to use functional forms for φs(t) that have analytical 
integrals.  The prior, f(θ), is a subjective description of how likely different 
parameter values are before the experiment is undertaken. We take relatively 
broad, independent priors, namely exponential with mean 10 for all parameters 
except those for tertiary infection, which are exponential with mean 0.1. 
Evaluation of the posterior is hampered by the presence of the integrals over the 
space of parameters and the unknown times and natures of events. The integral 
has over 10 000 dimensions. Nonetheless, Markov chain Monte Carlo 
techniques (see Gilks et al., 1996, for a review) are capable of drawing a sample 
from the joint distribution of (θ, t, σ) that then provides an estimate of the 
posterior distribution of θ from which summary statistics can be made (e.g. 
Gibson and Renshaw, 1998, 2001; O’Neill and Roberts, 1999). The sample also 
allows the distribution of any function of the parameters to be inferred, such as 
β[hi,hs](t).  Posterior distributions of times and sources of infection can also be 
inferred, the latter allowing us to find average proportions of infection by 
transmission pathway. 

The sample was also used to generate a posterior predictive distribution 
of the stochastic process through Monte Carlo simulation to explore 
hypothetical scenarios such as the effects of varying heterogeneity. 
Additionally, the predictive distribution of the daily increment in infection 
conditional on the existing (observed) pattern of disease was used to assess the 
goodness-of-fit of the model. 

Model selection 
The DIC was used to select the best model from a set of competing models with 
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varying functional forms for primary and secondary infection; it was also used 
to test for differences in secondary infection rates within and between species. 
The definition of the DIC used here was given by Celeux et al. (2006) (DIC8), 
and is obtained by first sampling the posterior before using the parameter means 
to estimate the augmented variables and hence the effective number of 
parameters of the model. Following the logic in ref (Spiegelhalter et al, 2002; 
Burnham and Anderson, 1998), we reject models with a DIC greater than 2 of 
the model with the lowest DIC score. 

Experimental data 
We demonstrate our model for epidemics in heterogeneous plant populations in 
replicated microcosm experiments. Details can be found in Otten et al. (2005). 
In summary, dynamics of damping-off epidemics were recorded in populations 
comprising 414 seedlings of a favorable (radish, Raphanus sativus L., Cherry 
Belle) or an unfavorable species (mustard, Sinapsis alba L.), planted in a square 
lattice. At the densities used, spread of disease occurs predominantly between 
nearest neighbors. Populations comprised either 100% favorable, 100% 
unfavorable, a mixture with 75% favorable and 25% unfavorable, or a 50–50% 
mixture, with up to 6 replicates per treatment. The host species at each point on 
the lattice was randomly selected, and in each tray 32 randomly selected plants 
were challenged by inoculum of the soil-borne fungal pathogen Rhizoctonia 
solani. The position of damped-off plants was recorded daily for 16 days 
following inoculation.  The model was fitted to all replicates jointly. 

Analysis of environmental heterogeneity 
Once the posterior distribution of the parameters has been estimated, we 
simulate the role of environmental heterogeneity.  Large-scale heterogeneity is 
investigated by changing the proportion of favorable and unfavorable sites in 
the population, allocating these randomly. For a selected large-scale 
heterogeneity (50% of each), small-scale heterogeneity is investigated by 
dividing the population into square sub-plots of side {1,…,6,9} (plus 
remainders at edges) and allocating these equiprobably to the two favorable or 
unfavorable sites.  A measure of clustering K is defined to be the proportion of 
neighboring pairs of hosts of the same type.  For each scenario, the estimated 
parameters are used to analyze the effect of heterogeneity on disease level. To 
demonstrate the importance of the transmission rates, we consider an alternative 
scenario in which between-species infection is not possible (representing for 
example specialized pathogens). In all cases, 10 000 simulations of each 
scenario and spatial arrangement are used to generate the posterior predictive 
distribution of disease levels.   
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 Tables: 
 
Table 1: Difference in deviance information criteria (DIC) relative to the best-
fitting model, used to confirm absence of common parameters for secondary 
transmission rates, associated with the donor, the recipient, or both. 
 

Model DIC 
Full 0 
Donors same β[FF](t)=β[UF](t); β[FU](t)=β[UU](t) 25 
Recipients same β[FF](t)=β[FU](t); β[UF](t)=β[UU](t) 482 
Cross-infection same β[FU](t)=β[UF](t) 50 
All rates same β[FF](t)=β[FU](t)=β[UF](t)=β[UU](t) 921 
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Table 2: Posterior means and 95% credible intervals for the model parameters, 
fitted to 19 replicates of population comprising different ratios of hosts 
favorable (F) and unfavorable (U) for damping-off infection caused by the soil-
borne fungal plant pathogen R. solani.   
 

posterior Θ mean 95% CI 
a[F]  0.16 (0.11 , 0.17) Primary 

scale a[U]  0.26 (0.20 , 0.32) 
r[F]  0.06 (0.01 , 0.12) Primary 

resistance r[U]  0.16 (0.11 , 0.22) 
b[FF]  1.4 (1.3  , 1.4) 
b[FU]  0.5 (0.4  , 0.6) 
b[UF]  1.2 (0.9  , 1.6) 

Secondary 
scale 

b[UU]  0.4 (0.4  , 0.6) 
κ[FF]  3.5 (3.3  , 3.8) 
κ[FU]  3.8 (2.9  , 4.6) 
κ[UF]  2.9 (2.1  , 3.6) 

Secondary 
variability 

κ[UU]  2.4 (1.7  , 2.9) 
µ[FF]  9.3 (9.1  , 9.5) 
µ[FU]  9.5 (9.0  ,10.0) 
µ[UF] 10.2 (9.0  ,13.1) 

Secondary 
timing of 
peak 

µ[UU]  9.4 (8.3  ,12.1) 
ε[F]  0.012 (0.011, 0.014) Tertiary ε[U]  0.004 (0.003, 0.005) 
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Table 3: Identification of the most likely pathways and sources of transmission 
of infection in mixed populations, estimated by fitting the model to replicated 
epidemics of mixed populations with different ratios of favorable (F) and 
unfavorable (U) plants. The values show the posterior mean (expressed as % of 
F or U present in the population) of plants that became infected by primary 
infection, secondary infection from favorable plants, or secondary infection 
from an unfavorable plant. Tertiary infection accounted for the infection of a 
further 11–15% of favorable and 4–5% of unfavorable. Standard deviations in 
parentheses. 
 
 100% F 75% F 50% F 100% U 
species F F U F U U 
Primary infection 4.6 (0.2) 4.5 (0.3) 5.8 (0.3) 4.2 (0.3) 5.8 (0.2) 5.7 (0.2) 
Secondary 
infection from F 

58.4 (0.5) 45.4 (0.7) 27.1 (0.9) 25.7 (0.7) 14.5 (0.6) - 

Secondary 
infection from U 

- 5.0 (0.5) 2.0 (0.5) 13.1 (0.6) 9.3 (0.5) 7.9 (0.3) 



 18

Figures: 

  
Figure 1:  Dynamics of infection in a heterogeneous host population comprising 
unfavorable (U, grey squares) and favorable (F, white) sites.  The state of an 
epidemic is shown for two time points, with solid circles indicating infected and 
hollow circles susceptible hosts.  The arrows represent transmission routes 
between infected and neighboring uninfected sites.  The figure shows how the 
localized conditions change with time, and how the disease load depends on the 
relative strength of each of the four possible transmission rates.  In the left 
picture, the total infective challenge on F is 4β[F,F] and 3β[F,U] on U.  As 
more hosts become infected (right), this changes to 3β[F,F]+β[U,F] on F and 
2β[F,U]+2β[U,U] on U.  Even though the number of transmission pathways 
has increased from seven to eight, the combined effective challenge may be 
greater or less than in the left-hand picture depending on the exact relative 
strength of each of the four transmission rates. 
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Figure 2:  posterior mean and 95% credible interval for primary (α[F](t), 
α[U](t)) and each of the four secondary transmission rates (β[FF](t), β[FU](t), 
β[UF](t), β[UU](t)) against time. 
 
 
 

 
Figure 3:  Posterior predictive new infections of daily increments (shaded 
region) with observations (points, area of symbols are proportional to the 
number of observations) for various global heterogeneity schemes.  Predictions 
take the form of mixture distributions with each component conditional on the 
previous spatial observation of disease presence in an experimental replicate. 
Predictions take account of both parametric uncertainty and population 
stochasticity.  Denote by IF(t) and IU(t) the number of infected favorable and 
unfavorable hosts at time t, respectively. 
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Figure 4:  Effect of proportion of favorable (A) or unfavorable (B) sites in the 
population and the proportion of neighbors of the same type (measure of 
clustering) on the levels of disease (C&D), with (continuous lines) or without 
(dashed lines) inclusion of transmission of disease between favorable and 
unfavorable sites in the population. At 75% of unfavorable sites in the 
population (E, white squares), they form a well connected network. At 25%, the 
unfavorable sites form isolated patches, and the fraction of contacts with 
neighboring sites favorable to spread (F, grey squares) has significantly 
increased, leading to an increased disease pressure. 
  

F 

E 

Global heterogeneity Local heterogeneity 


