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Summary. We quantify the impact of climate model uncertainty upon predictions of future
vegetation carbon stocks, for the period up to 2100, generated by a dynamic global vegeta-
tion model under a particular emissions scenario (SRES A2). Deterministic simulations are
generated from the Lund-Potsdam-Jena (LPJ) model using climatic inputs derived from nine
general circulation models (GCMs). Simulated changes between 1961-1990 and 2070-2099
range from +26gtC to +133gtC, and are in broadly good agreement with those obtained in a
recent previous study using the LPJ model. Simulated values for the 20th century are also ob-
tained by running LPJ with observed climate data, and this provides a baseline against which
the other runs can be compared. Time series regression models are used to analyse the dis-
crepancies between each of the GCM-based simulations and the baseline simulation, and a
novel form of model averaging - in which we average not only across GCM-based simulations
but also across models for each discrepancy - is then used to combine these into a single
probabilistic projection for global stocks of vegetation carbon. Weights for the regression mod-
els are estimated in a simple post hoc way using BIC, and the weights for the GCMs are either
estimated in the same way or else fixed to be equal. Estimating the GCM weights leads the
predictions to be dominated by a single climate model and hence produces narrow predictive
distributions. If GCMs are weighted equally then the predictive distributions are much more
diffuse and span the full range of simulated values.

Keywords: Vegetation carbon ; Dynamic global vegetation model; General circulation model;
Bayesian Information Criterion; Extrapolation; Climate change

1. Introduction

Policy makers and scientists are becoming increasingly interested in assessing the potential
impacts of climate change upon physical, biological and socio-economic systems, and in
using statistical methods to quantify these impacts in a probabilistic way. Probabilistic
climate impact predictions enable users to account for scientific uncertainty and natural
variability when making decisions about mitigation or adaptation strategies, and form a
natural basis for risk assessment. They enable us, for example, to directly quantify the

†Address for correspondence: Adam Butler, Biomathematics & Statistics Scotland, James Clerk
Maxwell Building, The King’s Building, Edinburgh EH9 3JZ, United Kingdom; Telephone: +44
(0)131 650 4896; Fax: +44 (0)131 650 4901
E-mail: adam@bioss.ac.uk
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probability that a particular threshold of change will be exceeded, and, when combined with
an appropriate loss function, can provide a formal quantitative basis for decision making in
the face of uncertainty (Räisänen and Palmer, 2001).

Vegetation plays a key role in the global carbon cycle, but the relationship between cli-
mate and vegetation carbon is complicated: vegetation carbon stocks are influenced by net
primary production, heterotrophic respiration and plant mortality (Schaphoff et al., 2006;
Doherty et al., 2008), which are, in turn, influenced by temperature, water stress and ambi-
ent CO2 concentrations. In this paper we use a dynamic global vegetation model (DGVM)
to assess the effect of climate uncertainty upon predictions of future global vegetation car-
bon stocks. Multiple simulations of past (20th century) and future (21st century) annual
vegetation stocks are generated from the DGVM - these simulations are shown in Figure 1.
Eighteen of the runs are generated using climate inputs derived from a set of nine different
state-of-the-art General Circulation Models (GCMs) under a common emissions scenario
(SRES A2). Note that the number of runs is larger than the number of GCMs because
multiple runs are available for three of the GCMs (Table 1); the multiple runs (“ensem-
bles”) are obtained using different initial values or parameter values, and their inclusion is
design to allow - albeit in a very limited way - for the presence of intra-GCM uncertainty.
The final, “baseline”, simulation is generated using gridded observational climate data (the
CRU-TS-2.1 dataset; Climatic Research Unit, 2006; Mitchell and Jones, 2005), and hence
only covers the 20th century.

Statistical interest lies in combining the disparate deterministic predictions of future veg-
etation carbon into a single probabilistic prediction. We know that GCMs provide a biased
and noisy representation of the real climate, and so we begin our analysis by analysing the
dynamic statistical properties of the bias associated with each of the GCM-based simula-
tions. We do this by assuming - in the absence of observational data at appropriate temporal
and spatial scales - that the baseline simulation provides the best available description of
true vegetation carbon stocks for the 20th century, and using time series regression models
to analyse the discrepancy between this run and each of the GCM-based simulations. The
assumption that the baseline simulation provides an accurate description of 20th century
vegetation carbon stocks depends upon (a) the accuracy of observational data for climate,
soil type and atmospheric concentration of carbon dioxide during the 20th century and (b)
the ability of the LPJ model to accurately encapsulate the processes that determine levels of
global vegetation carbon; both of these issues have been extensively considered by previous
authors, and in Section 2 we briefly review these studies.

For future years, throughout the 21st century, we do not know

(a) which GCM to use as a basis for prediction; or
(b) which regression model to use in describing the relationship between this GCM-based

simulation and reality,

and both of these choices impact upon the predicted changes in vegetation carbon stocks.
In Section 3 we therefore use a relatively simple post hoc form of likelihood-based model
averaging (Buckland et al., 1997) to deal with these two sources of uncertainty. General
statistical methodology for model averaging is well developed (Hoeting et al., 1999), and
recent papers (Raftery et al., 2005; Berrocal et al., 2007; Sloughter et al., 2007) have shown
that it can be used to provide a rigorous probabilistic framework for combining the predic-
tions associated with a set of distinct deterministic models. The idea of averaging across
both deterministic and statistical models appears to be novel, however, and through this
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development we are able to simultaneously quantify two important elements of predictive
uncertainty.

The same methodological approach could also potentially be used in other environmental
and ecological applications - to combine predictions of climate variables generated directly
by GCMs, for example, or to assess the impact of climate uncertainty upon the output from
a rainfall-runoff model. Estimating weights post hoc can be less efficient than estimating
parameters and weights simultaneously (as in, for example, Raftery et al., 2005), but has
the substantial practical advantage that it extends easily to more complicated situations -
making it, for example, straightforward to deal with spatial, spatio-temporal or multivariate
data, and making it trivial to incorporate additional deterministic simulations into the
analysis.

2. Simulations of vegetation carbon

We use a dynamic global vegetation model to simulate values of global annual vegetation
carbon throughout the 21st century. We focus upon a specific socio-economic scenario,
SRES A2 (Nakicenovic and Swart, 2000), in which slow technological change, high popula-
tion growth and regionally orientated economic growth result in a large increase in anthro-
pogenic CO2 emissions.

Stocks of vegetation carbon - the amount of above ground carbon, excluding litter -
reflect the annual assimilation of Net Primary Productivity (NPP) by different plant types.
Levels of NPP are, in turn, influenced by atmospheric CO2 concentrations and temperature,
with rising temperatures and CO2 concentrations promoting plant growth. Rising temper-
atures also increase evapotranspiration and reduce soil water availability, however, and can
thereby induce plant water stress (excessive atmospheric demand and/or low soil water
availability). Plant uptake of CO2 and loss of water are regulated through the leaf stom-
ata, and in times of water stress plants will act to prevent water loss by reducing stomatal
opening, thereby reducing rates of photosynthesis and (hence) plant growth. Changes in
assimilated vegetation carbon in response to climate change are therefore potentially com-
plicated, since they depend upon the combined effects of temperature change, precipitation
change and baseline climate.

2.1. The LPJ model: description and validation
The Lund-Potsdam-Jena (LPJ) dynamic global vegetation model (Sitch et al., 2003; Gerten
et al., 2004) is a process-based biogeography-biogeochemistry model which simulates the
spatio-temporal dynamics of terrestrial vegetation, together with land-atmosphere carbon
and water exchanges. We use Version 1.2 of LPJ, which simulates potential natural vege-
tation and does not account for agricultural use.

The LPJ model inevitably provides a simplified and imperfect representation of the
global ecosystem (in particular it is known to have difficulties in describing the roles of
disturbance and nitrogen deposition; Magnani et al., 2007). This version of the LPJ model
has, however, already been extensively validated for terrestrial carbon and hydrological ex-
changes and vegetation distribution (e.g. Sitch et al., 2003, Gerten et al., 2004, Zaehle et al.,
2005, Hickler et al., 2006, Schaphoff et al., 2006), and the effects of structural uncertainty
(Cramer et al., 2001; Smith et al., 2001) and parameter uncertainty (Zaehle et al., 2005)
have also been explored. Comparisons of net ecosystem exchange against observational data
from EUROFLUX sites have been found to give reasonable agreement (Sitch et al., 2003;
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Zaehle et al., 2005). Hickler et al. (2006) found that modelled variation in NPP across a
large number of sites - spanning several biomes - showed a strong correlation with estimates
obtained from field measurements, although LPJ tended to simulate higher NPP than given
in the EUROFLUX EMDI dataset for grasslands. Crucially, LPJ was found to realistically
simulate the dominant plant functional types in most regions (Sitch et al., 2003; Schaphoff
et al., 2006), and simulations of total vegetation carbon are therefore based on a realistic
global distribution of vegetation types. Historical data on global vegetation carbon stocks
simply do not exist - the only available data are of limited temporal and spatial extent - so
it is not possible to directly assess the ability of LPJ to accurately reproduce real trends in
vegetation carbon stocks at the global level.

2.2. Generation of simulated runs
The LPJ model requires input data on atmospheric CO2 concentrations and soil texture,
together with climatological data on temperature, precipitation and fractional cloud cover.
In this paper we use the model to generate nineteen sets of simulations; each of these runs
is generated using a different set of climate inputs, but the same CO2 and soil texture data
are used in all cases. Annual CO2 concentrations are based on the Mauna Loa observational
records up to the year 1990 (as in Schaphoff et al., 2006) and on predictions generated by the
Bern-CC global carbon model under scenario SRES A2 for the period 1990-2100 (Houghton
et al., 2001, Appendix II). Soil texture data are grouped into eight discrete classes, as in
Gerten et al. (2004).

Eighteen of the runs are generated using nine different state-of-the-art General Cir-
culation Models (GCMs; Table 1). GCMs are based on a fundamental set of physical
equations, and represent current best understanding of the physical behaviour of the cou-
pled atmosphere-ocean system. The simulations which we use were created as part of the
Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2007)
and are available through the Program for Climate Model Diagnosis and Intercomparison
(PCMDI, 2006). We consider only simulations generated under scenario SRES A2‡; under
this scenario CO2 concentrations are 836 ppmv in 2100 and mean global annual temper-
atures for the period 2070-2099 are equal to 16.2oC (based on averaging across the nine
GCMs; Table 2). Multiple runs are available for some of the GCMs: each of these so-called
ensemble runs is based on a different set of initial conditions and/or parameter values, and
the use of ensembles is designed to quantify the effects of intra-model uncertainty (which is
often called “natural variability” or “internal model variability” in the climate literature).
The number of available ensemble runs is small, however, so we are only able to do this in
a very limited way. Soil and CO2 data are interpolated to the appropriate spatial resolu-
tion for each GCM, and LPJ simulations are thereby generated at the native spatial scale
associated with that climate model.

The remaining (“baseline”) run from the LPJ model is generated, for the period 1900-
2001 only, using observational climate data interpolated from individual weather station
onto a 0.5o × 0.5o grid. These gridded data come from the CRU-TS-2.1 dataset (produced
by the Climatic Research Unit; Climatic Research Unit, 2006; Mitchell and Jones, 2005;

‡Note that GCM simulations of future climate are contingent on a particular scenario for fu-
ture emissions of greenhouse gases and are, consequently, referred to as “projections” rather than
“predictions” in the applied literature. We use the term “prediction” throughout this paper, in
keeping with the standard statistical terminology, but stress the importance of appreciating that
these predictions are conditional upon a particular set of socio-economic assumptions.
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New et al., 2001); previous versions of the same dataset were used by previous authors
in assessing the validity of simulations generated by LPJ (Sitch et al., 2003; Zaehle et al.,
2005; Schaphoff et al., 2006; Hickler et al., 2006). A number of studies have been concerned
with quantifying the accuracy of gridded climate data, but this is not a straightforward
task because coverage varies substantially and irregularly across both space and time (e.g.
Jones et al., 1997; Folland et al., 2001).

For each run of the LPJ model, a spin-up period of one thousand years is used to
ensure that the initial values are in equilibrium; climatic inputs for this spin-up period
are based on repeated use of climate data/simulations for the period 1850-1880. The LPJ
model is run on a daily basis: vegetation carbon stocks represent the accumulated sum
of daily NPP, and the modelled values therefore need to accurately reflect day-to-day and
month-to-month variations in productivity - the ability to capture these variations will be
important even when, as here, interest is solely in aggregated annual values. Daily values of
the climate variables are generated from monthly values via linear interpolation; alternative,
more realistic approaches, to temporal disaggregation could also be used (e.g. Gerten et al.,
2004, Fowler et al., 2007).

2.3. Key features of the simulations
The nineteen simulations of global annual vegetation carbon stocks are shown in Figure 1.
The global mean values are calculated by averaging across space, using weights proportional
to the cosine of the latitude of each grid cell, after restricting attention only to those cells
that contain at least 50% land. Table 2 summarises Figure 1 by comparing mean vegetation
carbon stocks between the present day (as represented by a thirty period from 1961-90) and
the end of the 21st century (2070-2099) for each GCM, and comparing these changes against
corresponding changes in mean temperature and daily precipitation.

Using the gridded CRU climate data we simulate the mean level of global vegetation
carbon to be 789.9 gtC over the thirty year period 1961-90 (Table 2). This is in agreement
with the value (779 gtC) obtained by Schaphoff et al. (2006) for 1971-2000 using the same
climate data, although both of these values are higher than those suggested by earlier
studies: 466-654 gtC (Houghton et al., 2001) and 640 gtC (Cao and Woodward, 1998). The
true global value is not very well known (Benjamin Smith, Pers. Comm, 2008).

It can clearly be seen (Figure 1) that predicted future trends in vegetation carbon stocks
differ in both direction and magnitude between the GCMs. All of the simulation runs exhibit
increases in the period up to 2050, but two of the GCMs (HadCM3 and HadGEM1) show
subsequent decreases during the second half of the 21st century whilst simulated values from
another (CNRM-CM3) are relatively stable from around 2080 onwards. Simulated changes
in global mean vegetation carbon stocks from 1961-1990 to 2070-2099 range between +26gtC
and +133 gtC.

In a previous study, Schaphoff et al. (2006) generated simulations from LPJ using five
GCMs. All simulations were generated under the Is92a emissions scenario, in which ambient
CO2 concentrations reach 703 ppmv in 2100 (Houghton et al., 2001) and the average global
annual mean temperature in 2071-2100 is equal to 17.9oC (based on averaging across the five
GCMs that they consider). Schaphoff et al. (2006) ran a similar version of LPJ to that used
in this paper, and four of the same GCMs were used in both studies (although Schaphoff
et al., 2006 generally used earlier versions of these models). They reported changes in
global mean vegetation carbon stocks from 1971-2000 to 2071-2100 that ranged between
-8gtC and +151 gtC. Of the GCMs that were common to both studies Schaphoff et al.
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(2006) reported changes of +151 gtC (CSIRO), +51 gtC (ECHAM5), +5 gtC (HadCM3)
and -8 gtC (CGCM1), whilst we have identified changes of +108 gtC (CGCM3), +107 gtC
(CSIRO), +89 gtC (ECHAM5) and +29 gtC (HadCM3). Previous studies using different
DGVMs have suggested vegetation increases of 150-340 gtC between the present day and
2100 (Cramer et al., 2001; White et al., 1999). Finally, mean vegetation carbon totals for
the period 1961-90 are rather lower that the 1971-2000 values given by Schaphoff et al.
(2006).

3. Model averaging

Let the vector y = (yO ,yP ) denote the baseline simulation of annual global vegetation
carbon. The values, yO , for the period of observation (1900-2001) are known (non-missing),
whilst the values yP for the period of prediction (2002-2100) are unknown (missing). Let
Y denote the corresponding multivariate random variable, from which y is assumed to be
a realisation.

The aim of our analysis will be to draw inferences about the predictive distribution of
YP |(YO = yO). It is important to note that we are therefore concerned with predicting the
level of vegetation carbon that the LPJ model will simulate given future climate (or, to be
more precise, given imperfect observations of future climate), rather than with predicting
the actual level of vegetation carbon. It is only possible to draw inferences about the latter
quantity if we are prepared to make the additional assumption that the LPJ model provides
an accurate representation of the processes that determine levels of global vegetation carbon.

3.1. Methodology
3.1.1. Prediction using a single GCM-based simulation

Let f = (fO , fP ) denote a single GCM-based simulation of annual global vegetation carbon,
covering the same period as above. All values of f are known (non-missing).

We assume that f is related to the expected value of Y through the formula

µ := E(Y) = f + ε(x;θ)

where ε is a vector-valued function whose output depends upon the values of a known
covariate x and one or more unknown parameters θ. The vectors x and µ are of the same
length as f and y, and we assume here, and throughout this article, that all arithmetic
operations of vectors are performed pointwise.

The function ε quantifies the systematic bias between the GCM-based simulation run
f and the baseline simulation run y. If the GCM-based run were unbiased, relative to the
baseline run, then we would have ε(x;θ) = 0 and E(Y) = f . An assumption of constant
but non-zero bias would imply that ε(1;α) = α1, where α is an unknown parameter whose
value determines the sign and magnitude of the bias term. Alternatives might be to assume
that the bias is a linear function of the model signal f (Raftery et al., 2005) or of time t, or
that it has a more complicated parametric form.

We further assume that the joint distribution of the residuals,

Z := Y − E(Y) = Y − µ = Y − f − ε(x;θ)

can be described by a probability density function g whose form depend upon the values of
one or more unknown parameters ψ, so that

Z ∼ g(•;ψ),
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and E(Z) = 0. Under this model, the predictive distribution for YP |(YO = yO) is equal to

P(YP = yP |YO = yO) = P(ZP + µP = yP |ZO + µO = yO)

= P(ZP = yP − µP |ZO = yO − µO)

= gP |O (yP − fP − ε(xP ;θ)| yO − fO − ε(xO ;θ)) ,

where gP |O denotes the relevant conditional distribution of g.
In many situations it will be appropriate to assume that the residuals Z have a multi-

variate normal distribution,
Z ∼ MVN(0,Σ),

whose covariance matrix

Σ =

[

ΣOO ΣOP

ΣPO ΣPP

]

depends upon the values of unknown parameters ψ. In this case, standard Gaussian theory
tells us that

YP |(YO = yo) ∼ MVN(µP + ΣPOΣ−1

OO(yO − µO),ΣPP − ΣPOΣ−1

OOΣOP ).

The simplest special case occurs if the components of Z are independent and normally
distributed with common variance σ2, so that Σ = σ2I . Often, however, we might expect the
residuals to exhibit temporal dependence; for an autoregressive time series model of order
one - an AR(1) model - the covariance matrix will have elements of the form Σkl = σ2ρ|k−l|

and depend upon the values of two unknown parameters ψ = (σ2, ρ).
Overall, the selection of an appropriate statistical model for the discrepancy term Y− f

consists of choosing a parametric form for ε and a joint distribution for Z. The discrepancy
term is driven by all processes that are not contained in the simulation run f - that is,
by the climatic processes that are not included within the GCM used to create f . As
such, there will typically be little prior information regarding the properties that this term
should have, and so we suggest selecting an appropriate model using statistical rather than
mechanistic criteria. Statistical model selection can proceed along standard lines by, for
example, selecting the model with the lowest value of the Bayesian Information Criterion
(BIC; Schwarz, 1978) or Akaike Information Criterion (AIC; Akaike, 1973). Both criteria
are defined to be equal to the deviance minus a penalty term: the penalty for BIC is equal to
the product of the number of unknown parameters and the log of the number of datapoints,
whereas for AIC it is equal to twice the number of unknown parameters.

3.1.2. Model averaging across simulation runs

Recall that in our application there are eighteen GCM-based simulation runs, taken from
nine different GCMs. It is not clear which of the simulation runs should be used as a basis
for prediction; model averaging provides a formal statistical mechanism to account for this
uncertainty. This approach is also able to deal in a balanced way with the fact that some
GCMs have ensemble runs whilst other do not, if the prior weights are chosen in such a way
that each of the GCMs is given equal weight a priori (1/9, in our case).

Let fi denote the LPJ simulation of vegetation carbon that was generated using the i-th
GCM run, where i ∈ Ω and where Ω denotes the set of all GCM runs that have been used.
For each i ∈ Ω we assume, as above, that

Zi := Y − µi = Y − fi − ε(xi,θi) ∼ g(•;ψi)
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where µi := E(Y) = fi + ε(xi,θi) (and hence E(Zi) = 0).
Any of the simulation runs i ∈ Ω could, potentially, be used as a basis for drawing infer-

ences about the missing (future) values of Y, and each would lead to a different predictive
distribution. Assume that one of these runs, I ∈ Ω, leads to the best predictive distribution
for Y, but that the value of I is unknown. It follows (Raftery et al., 2005) that

P(Y = y) =
∑

i∈Ω

P(I = i)P(Y = y|I = i) =
∑

i∈Ω

P(I = i)P(Zi = y + µi|I = i)

=
∑

i∈Ω

wig(y − µi;ψi) =
∑

i∈Ω

wig (y − fi − ε (xi,θi) ;ψi) ,

where wi := P(I = i) denotes the probability that simulation run i provides the best basis
for prediction. The expected value of Y is equal to a weighted sum of the bias-corrected
simulation runs,

E(Y) =
∑

i∈Ω

wiµi =
∑

i∈Ω

wi{fi + ε(xi, βi)}.

This highlights the fact that the interpretation of wi is subtle; the value of wi is not directly
related to the distance between the GCM-based simulation fi and the baseline simulation y,
but rather to the distance between the bias-corrected GCM-based simulation fi + ε(xi, βi)
and y. As such, the relative weights w1, . . . , w|Ω| that are allocated to different GCMs are
contingent upon the parametric form that is used to describe the bias term ε.

3.1.3. Model averaging across parametric forms for the bias term

In many situations, including our application to vegetation carbon simulations generated by
LPJ, it will unclear which parametric form should be used to describe the bias term ε(x,θ).
We therefore propose using model averaging to account for the uncertainty associated with
this choice, as well as the choice of simulation run; this appears to be a novel methodological
development.

Let εj denote the j-th possible parametric form for the bias term, where j ∈ B and where
B denotes the set of all parametric forms that are under consideration (in our application
there will be four such forms: constant, linear, quadratic and sinusoidal). Also let

Zij := Y − fi − εj(xi,θi) = Y − µij ,

and assume that Zij ∼ g(•;ψij) and E(Zij) = 0.
It follows that

P(Y = y) =
∑

i∈Ω

∑

j∈B

P(I = i, J = j)P(Y = y|I = i, J = j)

=
∑

i∈Ω

∑

j∈B

wijg
(

y − µij ;ψij

)

=
∑

i∈Ω

∑

j∈B

wijg
(

y − fi − εj (xij ,θij) ;ψij

)

,

where wij := P(I = i, J = j). If we let wi := P(I = i) =
∑

j∈B wij denote the marginal
probability that simulation run I provides the best basis for prediction, then

E(Y) =
∑

i∈Ω

∑

j∈B

wijµij =
∑

i∈Ω

∑

j∈B

wij{fi + εj(xij ;θij)}

=
∑

i∈Ω

wi

(

fi +

∑

j∈B wijεj(xij ;θij)
∑

j∈B wij

)

.
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3.1.4. Estimation of parameters and weights

For each choice of simulation run i ∈ Ω and bias model j ∈ B, we (simultaneously) esti-

mate the parameters (θij ,ψij) by numerical maximum likelihood estimation; let (θ̂ij , ψ̂ij)

denote the resulting estimators. The variance of (θ̂ij , ψ̂ij) is approximately equal to the
inverse of the observed information matrix (which is, in turn, equal to the negative of the
hessian of the log-likelihood function evaluated at the maximum likelihood estimate), and
an approximation to var(µ̂ij) can then easily be computed via the delta method.

We consider the effects of increasing the variance of g from var(Zij) to var(Zij)+var(µ̂ij),
as an approximate (conservative) means of assessing the degree of uncertainty associated
with the estimation of µij when drawing predictive inferences. Note, however, that this

does not account for the uncertainty associated with estimating ψ̂ij .
The relative performance of different simulation runs and bias models is assessed using

either BIC or AIC; let Λij denote the BIC (or AIC) values associated with simulation run
i ∈ Ω and bias model j ∈ B. We can use these to obtain approximate estimates for the
weight wij , through Equation 18 of Buckland et al. (1997):

wij =
φij exp(−Λij/2)

∑

l∈B

∑

k∈Ω
φkl exp(−Λkl/2)

. (1)

φij denotes the prior weight associated with fitting bias model j ∈ B to simulation run
i ∈ Ω. Note that the basic weighting scheme is also similar to that used by Murphy et al.
(2004) in averaging across climate predictions, except that they use a statistic known as the
“Climate Prediction Index” (CPI) in place of BIC.

Equation 1 allocates weight to simulation run i ∈ Ω based on the performance of that run
during the 20th century, but this approach is open to criticism on the grounds that the past
performance of climate models does not necessarily provide a reliable basis for determining
their predictive ability (see Section 4). An alternative approach is to keep the weights
associated with simulations i ∈ Ω fixed at their prior values, so that

∑

j∈B wij =
∑

j∈B φij .
This leads to the formula

wij =
φij exp(−Λij/2)

∑

l∈B exp(−Λil/2)(
∑

k∈Ω
φkl)

, (2)

in which the BIC/AIC values are only used to determine the weights associated with po-
tential models j ∈ B for the bias within the context of a particular deterministic simulation
run i.

3.2. Application to LPJ simulations of vegetation carbon
Explanatory analyses motivated us to consider four possible models for the bias term,

ε(1;α) = α1;

ε(t; (α, β)) = α1 + βt;

ε(t; (α, β, γ)) = α1 + βt + γt2; and

ε(t; (α, β, a, b)) = α1 + β sin(a1 + bt),

which correspond, respectively, to constant, linear, quadratic and sinusoidal trends over
time.
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All unknown parameters are estimated via numerical maximum likelihood, and multiple
sets of overdispersed initial values are used to ensure that the optimisation algorithm has
converged to a global maximum.

For each of these choices of ε, and for each simulation run i ∈ Ω, there is strong evidence
(in terms of BIC/AIC) against the use of uncorrelated errors Zij and in favour of models
that include autocorrelation. Different time series models for the correlation structure -
AR(1), AR(2), AR(3) and ARMA(1,1) models - had broadly similar performance, with the
AR(1) generally having similar or better (lower) BIC values than those associated with the
other three models. We therefore proceeded under the assumption that the errors were
described by an AR(1) model with unknown variance and correlation.

The BIC values associated with the different simulation runs and choice of bias model ε
are shown in Table 3; note that low values of BIC indicate good performance. The overall
differences in performance between deterministic models (GCMs) are markedly greater than
those between models for the bias term, but the relative performances of the four bias
models still vary substantially: the no trend model has lowest BIC for eight of the GCM-
based simulations, the linear model has lowest BIC for six, and the sinusoidal model has
lowest BIC for four.

We also explored the performance of a wider set of models for ε, before deciding upon the
set of four that we have shown here. Models which included higher order polynomial trends
in µit, or which included the model signal fit as a covariate rather than an offset, generally
did perform better, in terms of AIC/BIC, than any of the models that we have used. We
chose to exclude these models from our analyses on the grounds that they seem to provide a
particularly unreliable basis for long-range extrapolation - levels of estimation uncertainty
associated with the parameters of cubic or higher order polynomial models appeared to be
extremely high, whilst LPJ simulations of vegetation carbon for the 20th century (expressed
as anomalies relative to the reference period 1961-1990) cover a very narrow range of values
relative to those that are simulated for the 21st century. Note that the decision of which
statistical models to include in the set B is fairly subjective, and can have a substantial
impact upon the results of the model averaging; there is also subjectivity in the selecting
the set of GCMs and GCM ensembles Ω.

3.3. Results of model averaging
Model weights wij are calculated using Equation 1 or 2. In the absence of any other
information, we assign equal prior weight to each of the nine GCMs, and, for GCMs with
more than one ensemble run, assign equal prior weight to each member of the ensemble.
This allows us to deal with the nine GCMs in a balanced way, despite the fact that some
GCMs have multiple ensembles and others do not. We assume that the four bias models
are all equally plausible a priori . Hence φij = 1/36mI , where mi denotes the number of
ensembles associated with the GCM that was used to generate run i ∈ Ω.

We find that Equation 1 lends virtually all weight (more than 99.9%) to be concentrated
on just two of the GCM runs, both of which originate from the same GCM (ensembles 3
and 5 from CGCM). The associated predictive distributions for future vegetation carbon
stocks are consequently very precise (Figure 2; top), but will also be highly sensitive to
the assumption that past performance of a GCM is indicative of future performance. In
contrast, Equation 2 produces much more diffuse predictive distributions (Figure 2; bottom)
that span the full range of responses associated with the different GCMs, and so lead to
less precise but perhaps more robust predictions of future change.
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Predictive distributions from Equation 2 are actually moderately precise in the years up
to 2050, but become much more diffuse during the second half of the century. In particular,
predictions from 2050 onwards reflect the possibility that the trend in carbon may be either
increasing or decreasing. From about 2080 onwards there is a non-negligible probability
that vegetation carbon stocks will be lower than in 2002, and by the end of the twenty-first
century the predictions of vegetation carbon stocks are, unsurprisingly, highly uncertain.

In Figure 3 we compare the predictive distributions (PDFs) for 2095 that are generated
either by model averaging across both bias models and GCMs, or by averaging across
GCMs using a particular bias model (e.g. sinusoidal or “no trend”). Model averaging
using BIC gives a median predicted anomaly in 2095 of 116.5 gtC, and an associated 95%
credible interval of [0.4,161.8] gtC. Note that this interval spans the range of the GCM-
driven simulations from LPJ, reflecting the fact that Equation 2 applies equal weight to
each GCM. The predictive distributions obtained by averaging across bias models using
BIC or AIC are fairly similar to those obtained by selecting the model with the lowest
BIC/AIC, but do show differences from those obtained using by the same bias model for
each GCM-based simulation. Most notably, the predictive distribution associated with
the no trend model differs markedly from the other three models models in which the
discrepancy Y − f is allowed to show systematic variation over time. These results suggest
that, for our application, it is crucial to allow the parametric form for ε to depend upon
which simulation run i is being considered is, but that it is less important to account for
the uncertainty associated with the choice of parametric form (i.e. model selection and
model averaging over candidate models j ∈ B give similar results; note that the same is
emphatically not true in the case of the simulation runs i ∈ Ω).

3.4. Assessment of past performance
We can partially assess the performance of our model averaging approach by predicting
values of Y for periods in which the baseline simulation is already available - in Figure 4,
for example, we compare the predictive distributions for the year 2001 that we obtain using
Equations 1 and 2. These predictions are based on estimating the values of the parameters
and weights (θij , ψij and wij) using values from a restricted period only - either 1900-60,
1900-70, 1900-80 or 1900-90.

We see that predictive distributions based on values from the shortest period (1900-60)
are highly uncertain, whether we use Equation 1 or 2. Equation 1 yields a distribution with
two widely separated modes, with all intervening values - including the true value - having
low or very low probability densities. Equation 2, in contrast, generates a highly diffuse
prediction, and assigns non-negligible densities to a much wider set of values - including
the true value. Similar but less diffuse results are obtained using data from 1900-1970,
with the crucial difference that one of the modes in the predictive distribution generated
by Equation 1 now lies close to the actual value of y, so that a relatively high density
is assigned to this value. Predictive distributions based on the longest periods (1900-80
or 1900-90) are substantially more precise - less diffuse - than those based on 1900-60
and 1900-70. Crucially, the distributions obtained using Equation 1 no longer appear to be
bimodal, and now assign a relatively high probability density to the true value. Qualitatively
similar results are obtained by using other periods (1900-1965, 1900-1970 and 1900-1975;
not shown), and by considering years other than 2001 - the predictive distributions obtained
via Equation 1 are always relatively precise but sometimes highly inaccurate (i.e. assign a
very low density to the true value of y), whereas the predictions obtained using Equation
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2 are relatively diffuse but always assign a moderate density to the true value of y.

4. Discussion

The substantial differences between the simulated levels of vegetation carbon obtained using
different GCMs (in Section 2) reflect the sensitive balance between the effects of temper-
ature, precipitation and ambient CO2 concentration: concomitant increases in tempera-
ture and precipitation will lead to increased vegetation growth, whereas increases in CO2

concentrations and temperature that are not associated with any substantial increase in
precipitation will lead to declining stocks of vegetation carbon.

The largest relative temperature increases between 1961-90 and 2070-2099 are shown
by the HadCM3, HADGEM1 and CNRM-CM3 models (39%, 44% and 39% respectively).
For the HadCM3 and HadGEM1 models these increases are not accompanied by any sub-
stantial change in precipitation (+1.5% and -0.4% respectively), with the result that plant
water stress is the dominant effect on vegetation carbon stocks after 2050 and that there
are consequently only minimal increases in overall vegetation carbon over the course of
the 21st century (+3.3% and +3.7%, respectively, between the periods 1961-90 and 2070-
2099). Precipitation increases in CNRM-CM3, in contrast, are moderately large (+5.3%),
leading to a more prolonged, but still relatively slow, increase in vegetation carbon stocks
(+7.6%): in this simulation the effects of increasing temperatures and CO2 on plant growth
are presumably balanced by reduced growth resulting from plant and soil water stress.
The NCAR-CCSM3 and CCCMA-CGCM3.1 models are associated with relatively large
increases in both temperature (+35% and +38%) and rainfall (+13.3% and +8.1%), lead-
ing to sustained and relatively large increases in levels of vegetation carbon (+17.1% and
+15.8%).

The results for the remaining models are somewhat less straightforward to interpret.
The overall temperature and precipitation changes for ECHAM5 are similar to those for
the NCAR-CCSM3 and CCCMA-CGCM3.1 models, for example, but this model shows
only relatively modest increases in vegetation carbon (+13.0%). This may relate to the fact
that ECHAM5 exhibits the lowest levels of baseline rainfall, during 1961-1990, and so may
experience relatively high levels of water stress; however, the CNRM-CM3 model exhibits
even smaller increases in vegetation carbon despite having the highest level of baseline
rainfall. A more detailed regional evaluation may be required in order to fully understand
the causes of inter-GCM differences in simulated values of global vegetation carbon.

There is generally good agreement between the simulated values of vegetation carbon
that we have presented and those that were reported by Schaphoff et al. (2006). Values
for three of the GCMs that were used in both studies are similar (ECHAM, CSIRO and
HadGCM3), and exhibit the same ordering, although the results that we obtain using
CGCM3 are very different to those which were obtained by Schaphoff et al. (2006) using
CGCM1. We might actually have expected to see larger increases in vegetation carbon over
the 21st century than those reported by Schaphoff et al. (2006), since atmospheric CO2

concentrations for the end of the 21st century are much higher under the SRES A2 emissions
scenario than under the Is92a scenario (19% higher). Despite the higher CO2 concentrations,
however, the overall mean global annual temperature for 2070-2099 is substantially lower -
by 1.7oC - for the set of GCMs that we used than for the set used by Schaphoff et al. (2006).
This difference may be due to a reduced range of variability amongst the newer versions of
GCMs (as noted by Meehl et al., 2007), and probably compensates for the differences in
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CO2 concentrations.
Note that the total amount of stored carbon will depend upon levels of soil and litter

carbon as well as the level of vegetation carbon. Higher temperatures increase heterotrophic
respiration, and soil carbon stocks therefore have the potential to decrease in the future.
Several of the GCM-driven simulations in Schaphoff et al. (2006) simulate soil carbon de-
creases that are equal in magnitude to vegetation carbon increases. Note that our results
also do not account for future changes in land-use, which could potentially alter distributions
of Plant Functional Types.

We have combined the simulations of vegetation carbon into a single predictive distri-
bution using a form of model averaging in which the model weights are estimated post hoc.
We have found that the results of the model averaging procedure are strongly dependent
upon the procedure used to estimate the weights (Section 3.3). When the weights associ-
ated with the different GCMs were estimated based on past performance, using Equation
1, then we found that a large amount of weight tended to be allocated to a small num-
ber of the climate models (one, in this case). Similar, although less extreme, phenomenon
were reported by Min et al. (2007) in the context of surface air temperatures, by Fowler
et al. (2007) in an analysis of temperature and precipitation at the catchment scale, and by
Fowler and Ekström (2008) in an analysis of UK precipitation. GCM predictions of the far
future relate to climatic conditions that have no analogue in the observational record, so
it seems questionable as to whether we can robustly assess the relative accuracy of future
GCM-based predictions solely on the basis of their performance during the historical period.
One approach to dealing with these difficulties is to keep the marginal weights associated
with the different GCMs fixed at their prior values, using Equation 2, allowing us to deal
with the effect of predictive uncertainty in a more conservative - and, in this particular
application, probably more plausible - fashion. Fixed model weights have been adopted by
a number of authors in the context of climate prediction (e.g. Palmer and Räisänen, 2002,
Räisänen and Palmer, 2001).

The key advantage of estimating the weights post hoc, using BIC/AIC, lies in the fact
that this approach is straightforward and quick to implement: we can fit a separate model εj
to each simulation run fi using maximum likelihood, and then combine the results in a triv-
ial and instantaneous way. The current methodology could, therefore, easily be extended
to more complicated situations in which the predictions have spatial, spatio-temporal or
multivariate structure. There are some limitations, however. Equations 1 and 2 only pro-
vide approximate estimators for the weights wij , and the fact that we fit separate models
for each simulation run fi prevents us from obtaining more efficient inferences by pooling
some elements of the parameter vector θij across models (as in Raftery et al., 2005). Some
of these difficulties could be avoided through the use of a fully Bayesian approach (using
Reversible Jump Markov chain Monte Carlo; Green, 1995), or by estimating parameters
and weights simultaneously using the EM-algorithm (Raftery et al., 2005), but, for compu-
tational reasons, these approaches would generally be less straightforward to generalise to
more complicated situations.

Model averaging does not provide the only statistical methodology for combining a set
of deterministic predictions into a single probabilistic prediction - see Tebaldi and Knutti
(2007) for a recent review of methods that have been used in the context of climatology and
Fowler et al. (2007) for a review of methods used in climate impact prediction. Alternative
approaches for analysing runs drawn from a set of different models - so-called “ensembles of
opportunity” - involve treating the predictive runs {fi : i ∈ Ω} as explanatory variables and
the baseline run y as the response variable in the context of a regression model (e.g. Allen
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and Stott, 2003 - optimal fingerprinting; Gneiting et al., 2005 - EMOS; Greene et al., 2006),
or treating y and {fi : i ∈ Ω} as mutually independent sources of data about the true,
latent, process in the context of Bayesian hierarchical model (Tebaldi et al., 2004, 2005;
Smith et al., 2008; Furrer et al., 2007). Lopez et al. (2006) compared the results obtained
using these approaches when analysing global temperature. It is important to be aware
that there are fundamental difficulties associated with generating probabilistic predictions
using ensembles of opportunity (Stainforth et al., 2007), since the models are not drawn
from any meaningful population, are not selected either systematically or at random, and
are far from independent (Knutti et al., 2008). These issues inevitably afflict all studies
that use outputs obtained from multiple GCMs, and cannot - with the possible exception
of the final issue (dependence) - be corrected for within the statistical analysis. Analyses of
ensemble runs that have been generated from a single common model (e.g. a single GCM)
rest on a firmer conceptual basis, and statistical methods for this purpose are relatively well-
developed (SACCO methods: “statistical analysis of computer code output”; e.g. Kennedy
and O’Hagan, 2001; Goldstein and Rougier, 2006).

5. Conclusions

Using state-of-the-art climate models and a dynamic global vegetation model we have simu-
lated trends in future global vegetation carbon stocks under a particular emissions scenario,
SRES A2. The simulated values suggest a reasonable consensus amongst GCMs about both
the direction and magnitude of change in the period up to 2050, but indicate substantial
uncertainty beyond that point; they are generally in good agreement with those obtained in
an earlier study by Schaphoff et al. (2006). Simulated values for vegetation carbon stocks
in 2095 (relative to 1961-1990) range from +0.7gtC to +151.4gtC.

There are substantial advantages in using statistical approaches to combine these deter-
ministic simulations into a single probabilistic prediction/projection (Räisänen and Palmer,
2001; Collins, 2007), but there is currently little agreement on how this should be done
(Fowler et al., 2007; Tebaldi and Knutti, 2007). In this paper we have adopted a simple
form of model averaging in which the model weights are estimated post hoc using BIC or
AIC values (Buckland et al., 1997). The novel aspect of our statistical approach is that
we account for two distinct sources of uncertainty: lack of knowledge about which GCM
provides the best basis for prediction, and lack of knowledge about the form of the rela-
tionship between each of these GCM-based simulations and the simulation run obtained
using observed climate data (which we treat as being equivalent to the “truth”, given the
lack of any actual data on global vegetation carbon stocks). The statistical methodology is
generic, so that it could be used to combine long-term deterministic simulations generated
by other environmental models, and ought to generalise easily to situations in which these
simulations are multivariate or exhibit spatial structure.

The BIC/AIC values can either be using to estimate the weights associated with both
the simulation runs themselves and with the models that we use to describe the discrepancy
associated with each of these runs, using information obtained from the period for which ob-
servational climate data are available, or can just be used to estimate the weights associated
with the discrepancy models whilst assign equal weight to each GCM. The former approach
leads the vast majority of weight to be attributed to a single GCM (CCCMA-CGCM3.1),
and therefore produces narrow predictive distributions for the change in vegetation carbon
stocks from 1961-1990 until 2071-2099: a median of 118.6 gtC and a 95% credible interval
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of [115.0,122.5] gtC. These results seem implausibly precise, and, because they concentrate
so much weight on a single GCM, will be highly sensitive to the assumption that past per-
formance provides a good indicator of future performance. The latter approach produces a
much more diffuse predictive distribution that spans the full range of simulated responses
- a median of 116.5 gtC, a 95% credible interval of [+0.4,+161.8] gtC, and a probability of
0.022 that the values will be lower than the average for 1961-90. The latter values suggest
that, under the SRES A2 emissions scenario, (a) vegetation has the potential to sequester
more carbon in the future, as indicated by previous studies; (b) the quantity of carbon that
could be stored in this way is highly uncertain; and (c) there is a small but non-negligible
probability that vegetation carbon stocks will actually fall slightly over the course of the
21st century. These findings are contingent upon the set of GCMs that were selected, the set
of statistical models for ε that were considered, and the dynamic global vegetation model
that was used, and should be interpreted alongside concurrent changes in soil and litter
carbon.
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Table 1. Description of the nine GCMs which are used to provide climate inputs to the LPJ model
Model name Institution Spatial resolution # runs

NCAR-CCSM3 National Centre for Atmospheric 1.4065o × 1.4065o 5
Research, USA

CCCMA-CGCM3.1 Canadian Centre for Climate 3.7500o × 3.7500o 4
Modelling and Analysis, Canada

CNRM-CM3 Centre National de Recherches 2.8125o × 2.8125o 1
Meteorologiques, France

CSIRO-MK3.0 CSIRO Atmospheric research, Australia 1.8750o × 1.8750o 1

ECHAM5 Max Planck Institute 1.8750o × 1.8750o 3
for Meteorology, Germany

GFDL-CM2.1 Geophysical Fluid Dynamics 2.5000o × 2.0000o 1
Laboratory, USA

HadCM3 Hadley Centre for Climate 3.7500o × 2.5000o 1
Prediction and Research, UK

HadGEM1 Hadley Centre for Climate 1.8750o × 1.2410o 1
Prediction and Research, UK

MRI-CGCM2 3 Meteorological Research Institute, Japan 2.8125o × 2.8125o 1

Table 2. Comparison of daily mean global surface temperature and precipitation values generated by
different GCMs for 1961-1990 and 2070-2099, together with % change between these two periods. Obser-
vational climate data (CRU) are shown for the period 1961-1990. Corresponding results are also shown for
simulations of global vegetation carbon stocks from the LPJ model. For NCAR-CCSM3, CCCMA-CGCM3.1
and ECHAM5 values are obtained by averaging across the available ensembles (but with ensemble 5 for
NCAR-CCSM3 excluded, since this run terminates in 2089).

GCM Surface temperature Precipitation LPJ vegetation carbon
(daily mean, oC) (daily, mm) (annual, gtC)

1961- 2070- Change 1961- 2070- Change 1961- 2070- Change
1990 2099 (%) 1990 2099 (%) 1990 2099 (%)

CRU data 13.5 • • 2.14 • • 790 • •

NCAR-CCSM3 12.9 17.4 +35 2.25 2.55 +13.3 780 913 +17.1

CCCMA-CGCM3.1 11.5 15.8 +38 2.04 2.21 +8.1 681 789 +15.8

CNRM-CM3 11.8 16.3 +39 2.57 2.71 +5.3 763 821 +7.6

CSIRO-MK3.0 12.1 15.6 +29 2.01 2.02 +0.6 618 725 +17.3

ECHAM5 13.2 18.1 +37 2.00 2.15 +7.4 692 781 +13.0

GFDL-CM2.1 12.2 16.5 +35 2.26 2.24 -0.6 580 649 +12.0

HadCM3 12.4 17.3 +39 2.27 2.31 +1.5 798 827 +3.7

HadGEM1 11.4 16.4 +44 2.40 2.40 -0.4 798 824 +3.3

MRI-CGCM2 3 12.4 15.6 +26 2.08 2.17 +4.1 886 1013 +14.3
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Table 3. Relative BIC values associated with each combination of GCM-based simulations fi and
statistical models for the bias term εj , based on model fit during the period 1900-2001. Values
are relative to those of the combination with lowest BIC. For each GCM we also list the associated
bias model εj with best fit (lowest BIC).

Simulation run, fi Model for bias, εij

GCM Ensemble No trend Linear Quadratic Sinusoidal Best fit

NCAR-CCSM3 1 69.07 64.23 70.85 67.00 Linear
NCAR-CCSM3 2 49.39 50.51 54.99 54.93 No trend
NCAR-CCSM3 3 39.27 38.87 45.46 41.61 Linear
NCAR-CCSM3 4 64.08 60.18 65.49 72.08 Linear
NCAR-CCSM3 5 65.35 63.35 68.37 69.63 Linear

CCCMA-CGCM3.1 1 40.49 45.10 44.78 58.38 No trend
CCCMA-CGCM3.1 3 25.58 28.36 31.03 9.79 Sinusoidal
CCCMA-CGCM3.1 4 46.13 48.16 53.05 59.66 No trend
CCCMA-CGCM3.1 5 8.40 11.42 17.40 0.00 Sinusoidal

CNRM-CM3 111.13 112.77 118.96 120.52 No trend

CSIRO-MK3.0 51.67 56.88 59.00 54.67 No trend

ECHAM5 1 50.24 53.07 54.86 51.37 No trend
ECHAM5 2 130.23 128.40 134.49 130.18 Linear
ECHAM5 3 73.91 79.76 86.32 80.91 No trend

GFDL-CM2.1 116.52 112.19 117.23 123.89 Linear

HadCM3 85.98 89.75 95.32 91.15 No trend

HadGEM1 78.51 80.85 87.11 75.53 Sinusoidal

MRI-CGCM2 3 55.47 50.01 55.80 46.96 Sinusoidal
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Fig. 1. LPJ simulations of global annual vegetation carbon stocks for the 20th and 21st centuries.
Carbon stocks are measured in gigatonnes of carbon (gtC), and are reported as anomalies relative
to the mean value for a thirty year reference period (1961-1990). Climate inputs to the baseline
simulation run are based on the CRU-TS-2.1 gridded observational climate dataset, with inputs to
the remaining eighteen runs provided by outputs from nine different General Circulation Models. For
GCMs with more than one ensemble run these are shown as dotted lines.
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Fig. 2. Predictive distributions for global vegetation carbon stocks during the twenty-first century,
based on model averaging using Equation 1 (top) or Equation 2 (bottom). 2.5%, 50% and 97.5%
quantiles of the predictive distribution are shown (thin black lines), together with the baseline sim-
ulation (thick black) and GCM-based runs (grey). Stocks are reported as anomalies relative to the
mean value for the period 1961-1990. We account for estimation error by replacing var(Zij) with
var(Zij) + var(µ̂ij).
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Fig. 3. Predictive distributions for global vegetation carbon stocks in 2095, based on averaging
across simulation runs using fixed weights φi (i.e. using Equation 2). The bias term ε is dealt
with in six different ways: a) always using a sinusoidal model (whichever GCM run i ∈ Ω is being
considered); b) always assuming that the bias is constant over time; c) by selecting the model for
ε that has lowest AIC for each i ∈ Ω; d) by selecting the model for ε that has lowest BIC; e) by
averaging across the set of possible models for ε using AIC and f) by averaging across this set using
BIC. Results are shown with (black) and without (grey) accounting for uncertainty in the estimation
of µ̂ij .
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Fig. 4. Predictive distributions for global vegetation carbon in the year 2001, based only on data up
to 1960 (dotted), 1970 (dashed), 1980 (thin solid) and 1990 (thick solid). Predictions are produced
by model averaging across simulation runs and parametric forms for the bias using either Equation
1 (top) or Equation 2 (bottom). We account for estimation error by replacing var(Zij) with var(Zij) +
var(µ̂ij). The actual value of the baseline run in 2001 is also shown, for comparison (large circle).
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