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Abstract

If data are available from a series of quantitative sensory experiments on the same type of

product, and the assessors in these experiments are drawn from a common pool, then it is

possible to combine information from the experiments on the relative biases and variability of

individual assessors, and to examine the influence of possible temporal effects over the series.

Such a combination of information is illustrated using a series of apple-tasting experiments

conducted with the main aim of monitoring assessor performance over time. Models which

include random effects and multiplicative interaction terms have been used for modelling

heterogeneous interaction between assessors and products in individual sensory experiments.

Such models are extended here to analyse data from series of experiments. A Bayesian

approach is used that allows for adjustment for missing observations and for the use of

information on assessors’ previous performance when analysing future experiments. This use

of previous information leads to a reduction in the average variance of product differences.

Key Words: Assessor performance; Bayesian inference; Multiplicative model; Sensory stud-

ies.
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1 Introduction

Sensory experiments are widely used by the food industry for reasons such as establishing con-

sumer preferences for different food and drink varieties on the market and in product devel-

opment. Usually, series of tasting experiments are conducted with a panel of trained assessors

who give their scores or rankings on food products. The performance of the assessors may be

evaluated regularly over time, and one might omit from the panel those assessors whose per-

formance is not consistent. The literature has a wide range of methods for evaluating assessor

performance: see for example, Naes (1998) , Rossi (2001) and McEwan, Hunter, van Gemmert

and Leah (2002).

This paper considers the analysis of data from quantitative sensory studies in which the perfor-

mance of assessors over a sequence of experiments can be examined. The models and methods

proposed are illustrated on a series of apple-tasting experiments, which are described in Section

2. Heterogeneity of assessors’ responses to products, and of error variance between assessors, are

modelled with a Bayesian multiplicative model, and the individual-specific parameters in this

model are used to measure assessor performance relative to others in the panel. Multiplicative

models are discussed in Section 3, and extended to series of experiments in Section 4. The apple

data are analysed in Section 5. Section 6 discusses the analysis of a future experiment given

information about assessor performance from previous experiments, and this is followed by a

general discussion.

2 Apple-tasting data

The data studied here were obtained from the Hannah Research Institute in Ayr, Scotland. A

series of apple-tasting experiments was conducted over several years with the aim of monitoring

assessor performance over time. Data sets from 45 of the experiments spanning the period March

1996 to April 1998 were available for analysis. For these studies, 14 trained female assessors

were involved: the number of assessors attending individual experiments varied from 9 to 14 per

experiment, and the number of experiments attended from 11 to 43.

In each experiment, several apple varieties were tasted, the choice of varieties depending on the

availability in the local market at the time of the experiment. Varieties were sometimes tasted in

several versions, with different countries of origin or methods of packaging, and there were some
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inconsistencies in recording this information. Thus for consistency we treat the combinations of

varieties and versions as unique to every experiment, and refer to them as products. This results

in between 4 and 16 products per experiment (most often 8), corresponding to between 4 and

11 varieties. The order followed for presenting products to assessors within a tasting session

was based on the rows of Williams Latin-square designs (Williams (1949), MacFie, Bratchel,

Greenhoff and Vallis (1989)). A Williams Latin square is such that every product occurs equally

often in every position, and is preceded by every other product equally often; also each assessor

receives every product the same number of times. The last of these conditions is satisfied even

when the number of assessors is not a multiple of the number of products, as in most of the

experiments considered here. The allocation was replicated 3 times for each assessor (with a few

exceptions), and the replicates were separated by break periods the lengths of which were not

reported.

Each assessor was allocated a private booth in which to do the tasting, and she entered the

scores by dragging a mouse pointer along a bar marked from 0 to 100 on a computer screen.

Each product was scored on 11 attributes: fruitiness, sweetness, acidity, bitterness, presence

of perfumed smell, floral sensation, after-taste, persistence, hardness, crunchiness and overall

acceptability of the product. We present analyses only for the sweetness scores which appear to

be roughly normally distributed: some of the other attributes had scores with high proportions

of zeros, for which an assumption of normality would not be appropriate.

A combined analysis of the sweetness attribute from the 45 experiments was carried out in order

to

• model assessor performance across experiments

• adjust mean product effects within experiments for missing assessors

• incorporate information on assessors’ use of the sweetness scale to improve precision in the

analysis of future experiments which include the same assessors.
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3 Multiplicative models for assessor performance in individual

experiments

Yates and Cochran (1938) and Finlay and Wilkinson (1963) introduced multiplicative models

which are widely used in agricultural trials to model heterogeneity of variety variance between

growing environments. Brockhoff and Skovgaard (1994) drew an analogy between variety trials

and sensory experiments in which a panel of assessors evaluate products, and proposed the use

of multiplicative models for sensory studies.

Consider first unreplicated sensory data in which yij denotes the attribute score of assessor

i for product j, and there is no standard measure of attribute intensity to which the scores

can be compared. It is often found that there is heterogeneity of product and error variances

between assessors. When that is the case, a model which takes this heterogeneity into account

by including a multiplicative term may be used. This is given by

yij = αi + βi θj + εij , (1)

where αi is the additive effect of assessor i, θj is the effect of product j, βi is a coefficient for

assessor i reflecting her use of the measurement scale and εij is a random error term, assumed

to be normally distributed with zero mean. Thus, the interaction between assessor and product

is modelled by a regression on the unknown product effects with coefficients βi. This model can

allow for unequal residual variances for assessors, so that var(εij) = σ2
i . Theobald and Mallinson

(1978) considered model (1), with normally distributed θj and unequal residual variances, in the

context of comparative calibration of measuring instruments. They noted a connection with

factor analysis models having a single common factor, and emphasised precision, defined as

πi = βi/σi, as a measure of the performance of instrument i.

The βi were interpreted by Brockhoff and Skovgaard (1994) as measures of assessors’ discrimi-

nating ability, and called assessor expansiveness by Mead and Gay (1995). If assessor i is good

at discriminating she will have low residual standard deviation σi relative to βi, and thus a large

value of πi.

Brockhoff and Skovgaard (1994) also suggested how this multiplicative model may be generalised

to account for the whole design structure when each product is tasted more than once, that is,
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in a replicated experiment. Thus, when replication effects are given index r, their model has

the form

yijr = αi + βi(θj + γr) + εijr , (2)

where γr is a replication effect and this, like the product effect, is realized through the assessors’

use of the scale.

Frequentist methods for fitting such multiplicative models were explored by Digby (1979), Oman

(1991), Gogel, Cullis and Verbyla (1995) and Nabugoomu, Kempton and Talbot (1999).

Smith, Cullis, Brockhoff and Thompson (2003) extended model (2) to allow for more general

designs and unbalanced data. Their models may include fixed effects in addition to assessor

effects, and random effects other than those for products. The single multiplicative term in (1)

is generalised to a sum of such terms, corresponding to a factor analysis model with several

common factors. Model fitting is by REML. When the error variances σ2
i of assessors are

allowed to differ, methods such as REML and maximum likelihood have the disadvantage that

some variance estimates may be zero. For example, the data presented in Smith et al. (2003)

lead to many zero estimates and to very dissimilar estimates of assessor expansiveness.

Our interest is in extending model (2) to apply to series of experiments on products of the same

type, and then to future experiments. We seek also to avoid unstable estimates of error variances

and assessor expansiveness.

4 A multiplicative model for series of experiments

Plots of mean sweetness scores over replicates versus products for four of the experiments are

shown in Figure 1. The different lines do not correspond to the same assessors in all four plots

because attendance was not the same for all experiments. The plots show general consistency

between assessors within experiments in terms of the ordering of products on the scale from 0

to 100, but there appear to be differences in mean scores over products and in expansiveness.

Within experiments, a model with multiplicative interaction effects, like (1) or (2), is therefore

more suitable than an additive model. A combined model for all experiments may also be

considered, with common values over experiments for some parameters, such as error variances.

6



0296

0297

0298

0299

0300

0301

0302

0303

0304

0305

0306

0307

0308

0309

0310

0311

0312

0313

0314

0315

0316

0317

0318

0319

0320

0321

0322

0323

0324

0325

0326

0327

0328

0329

0330

0331

0332

0333

0334

0335

0336

0337

0338

0339

0340

0341

0342

0343

0344

0345

0346

0347

0348

0349

0350

0351

0352

0353

0354

We want to make inferences about product effects in future experiments, so it is necessary

to treat these effects as random, as in Smith et al. (2003). We go further and adopt the

Bayesian approach which considers all model parameters as randomly sampled from probability

distributions. This approach is intended to

• avoid unreasonable estimates of error variances and expansiveness

• avoid the use of large-sample approximations for inferences

• permit the inclusion of expert knowledge into the analysis.

Expert knowledge of similar sensory studies is incorporated by specifying prior distributions for

variance components, and for the overall expectation of the responses.

In order to extend model (1) to a multiplicative model for a series of experiments, we allow

the product effects and the additive and multiplicative effects of assessors to depend on the

experiment. Thus model (1) is generalized to

yijk = αik + βik θj(k) + εijk , (3)

where αik is the effect of assessor i in experiment k, βik is assessor i’s expansiveness in experiment

k, θj(k) is the effect of product j within that experiment and the error terms εijk are assumed to

be distributed as N(0, σ2
i ) independently. The effects αik for the ith assessor are assumed to be

normally distributed about her mean effect αi, and similarly the βik for any i are taken to be

normal with mean βi. Product effects are nested within experiments, so for any k the θj(k) are

are assumed to be normally distributed about a mean product effect φk for experiment k. The

experiment effects are thus realized via the assessor’s expansiveness, like the replicate effects γr

in (2).

An alternative notation might express αik as the sum of αi and an interaction effect δik, say, of

mean zero, with similar decompositions for the βik and θj(k). The parametrization chosen for

(3) is an example of hierarchical centring (Gelfand, Sahu and Carlin (1995)), which has been

shown to hasten convergence when fitting Bayesian linear models.

Table 1 shows the structure assumed for the parameters in model (3), and also includes the prior

distributions. Greek and Roman letters indicate respectively unknown parameters and values
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specifying prior distributions. The subscripts A, B, P, E refer to the populations of assessor ef-

fects, assessor expansiveness, product effects and experiment effects, while ∼ means ‘distributed

as’ or ‘distributed independently as’, according to the context. The unknown parameters in

the model are assumed to be statistically independent a priori unless the dependence is made

explicit in Table 1.

The first two entries in the top row of Table 1 express the αik and αi as normally distributed

random effects with expectations αi and µA respectively and variance components σ2
AE and σ2

A.

The third entry defines the prior distribution for µA as normal, and the entries in the second row

define those for σ2
AE and σ2

A. Various choices could be made for the latter distributions, but the

most convenient mathematically is that the reciprocals of all the variance components are given

gamma or equivalently scaled-χ2 distributions. Following Theobald, Talbot and Nabugoomu

(2002), these distributions are conveniently specified using a prior estimate of the variance and

a corresponding degrees-of-freedom parameter, larger values of this parameter indicating greater

confidence in the estimate. For example, σ2
A is given a prior estimate denoted by s2

A with degrees

of freedom dA, and the notation σ2
A ∼ IC(s2

A, dA) means that dAs2
Aσ−2

A has the distribution

χ2(dA), so that s−2
A is interpretable as the expectation of σ−2

A in the prior distribution.

The third and fourth rows in Table 1 relate to the expansiveness parameters, and are similar

to the first two rows, except that the βi are centred around a value of 1. This is necessary in

order to fix the scale of these parameters, since in models (1) and (3) multiplying all the βs by

a positive constant and dividing the θs by the same constant would leave the right hand side

unchanged. The product effects are similarly made identifiable by centring their means φk on

zero. The final entry in Table 1 specifies a common prior distribution for the assessors’ residual

variances.

5 Combined analysis of apple-tasting experiments

The data on the sweetness of apples from the 45 experiments were combined using means over

replicates within combinations of assessor and product rather than using raw scores directly.

This simplification causes a slight loss of efficiency because of missing values, but it is the usual

procedure for combining data for meta-analysis, such as in analysis of variety trials in the UK.

We note, though, that Smith, Cullis and Thompson (2001) advocate analysing individual plot
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yields for such trials. From now on, we treat these means as our responses.

To apply the model of Section 3 to these data, we specify the prior mean mA and variance r2
A of

µA in Table 1 as 33 and 30. The prior estimates of the variance components and their degrees of

freedom are given in Table 2. These values were obtained from an expert who had been involved

in the programme of sensory studies carried out at the Hannah Research Institute (E A Hunter,

personal communication). The few degrees of freedom for some of the variances indicate his lack

of experience with analysing series of experiments rather than individual ones.

The Bayesian analysis was carried out using the WinBUGS program, which is freely avail-

able from http://www.mrc-bsu.cam.ac.uk/bugs. Using an iterative process known as Markov

Chain Monte Carlo (Gilks, Richardson and Spiegelhalter (1996)), it generates long sequences

of values drawn from the joint posterior distribution of the unknown parameters, that is their

distribution given the prior distribution and the information in the data. These sequences can

then be used to approximate the posterior distributions of individual parameters.

Summaries of the posterior distribution may include expectations and standard errors for in-

dividual parameters: such summaries are given for the parameters specific to the assessors in

Model (3) in Table 3. The posterior expectations for the mean effects αi of assessors have a

range of about 50, suggesting large differences in the perception of sweetness. Thus the absence

of certain assessors from a particular experiment could substantially influence the mean scores

for products. The large standard error for assessor 12 is due to the fact that she left the panel

of assessors after the first 16 experiments. The estimates of precision for assessors 1, 2, 5, 6,

7, 8 and 13 suggest that they have high discriminating abilities. Using the estimates of expan-

siveness or standard deviation alone leads to different judgements about which assessors are the

best discriminators.

Systematic effects of experiment number might arise from changes in the source or composition

of products. Such effects for apple sweetness may be investigated by plotting the posterior

expectations of the mean product effects within experiments φk against the experiment numbers

k, which are in date order. Considering these effects rather than the simple mean scores for

experiments corrects for the absence of particular assessors from some of them: the posterior

expectations of the individual product effects θj(k) are corrected in the same way. The plot is
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given in Figure 2. A downward trend from the first experiment is followed by a sharp increase

around the twentieth, and then a slight decline to the last. No firm explanation can now be

found for the sudden increase, but it occurs at the start of a set of seven experiments in each

of which only four products were tasted. A partial auto-correlation plot revealed no significant

auto-correlation between the posterior expectations of the φk.

6 Analysis of future experiments

By using the knowledge gained about the assessors from a combined analysis of data from

several experiments, as described in Sections 4 and 5, it should be possible to make more precise

comparisons of product effects in future experiments which use the same product type and pool

of assessors, and to correct estimated product effects for missing assessors. To adapt model (3)

for future experiments, the product effects are assumed to have the same structure as those for

the past series, with mean product effects drawn from the same population as the past ones.

We use f to replace the index k identifying the experiment and e to replace j as the product

index, so that the future responses by assessor i, denoted by yief , satisfy

yief = αif + βif θe(f) + εief . (4)

By analogy with the fifth row of Table 1, future product effects θe(f) are then assumed to be

drawn from a Normal population N(φf , σ2
PE), where φf is itself drawn from N(0, σ2

E).

It would also be possible to extend this model further to a future experiment that included

some assessors who did not take part in the past experiments, so long as their mean effects,

expansiveness and variances could be assumed to be drawn from the same distributions as for

the existing assessors.

To illustrate the possible benefit from including information provided by the analysis of previ-

ous experiments with the same assessors, we compare analyses of data from a single experiment

(treated as a future one) first ignoring information on model parameters from the other exper-

iments and then including this information. Since the main interest in sensory experiments is

likely to be to establish differences between products, we measure the reduction in the average

variance (over all pairs of products) of product differences in the posterior distribution. If a
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and b denote any two of p products assessed in the future experiment then the average posterior

variance of the p(p− 1) product differences is given by

1
p(p− 1)

∑

a6=b

var(θa(f) − θb(f)) , (5)

where the variance relates to the posterior distribution. Theobald et al. (2002) show that (5)

may be simplified to

2
p− 1

{
p∑

e=1

var(θe(f))− p var(θ̄f )

}
, (6)

where θ̄f denotes the mean of the θe(f). Thus the inclusion of past information on assessors is

measured by examining the reduction in (6).

For the data on the sweetness of apples, the effect of including past information is illustrated by

using the entire series as past data and one experiment which all 14 of the assessors happened

to attend as the future experiment. The data from this experiment are thus used twice, but

their influence on the posterior distribution from the combined analysis is slight since it arises

from only one of 45 experiments.

The comparison under the heading ‘Expert prior distribution’ in Table 4 was made assuming the

prior distribution specified in Section 5. In order to examine the robustness of this comparison to

changes in the prior distribution, a second comparison was made after dividing by 5 the degrees of

freedom corresponding to all the variance components: this is shown under the heading ‘Diffuse

prior distribution’. As expected, the latter prior distribution gives a higher average posterior

variance of product differences, but in both cases including information from other experiments

results in a reduction of over 50% in the average variance of the product differences.

7 Discussion

We consider a situation in which quantitative sensory data are available from several experiments

on similar products with overlapping sets of assessors. In such a situation, it should be possible

to extend the usual analysis of individual experiments by combining the information they contain

on assessor effects and variance components. Such extensions include
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• examining any pattern in the scores over time

• adjusting estimates to account for missing assessors

• using the information gained on assessors in the past to obtain more precise analyses of

future experiments.

We have shown how these extensions can be achieved in the context of a multiplicative model

for normally distributed scores. Such models can be expected to fit better than additive ones

when the assessors differ in how much of the recording scale they use, but fitting multiplicative

models in the usual frequentist framework can lead to zero estimates of variance components

and unstable estimates of assessor expansiveness. The Bayesian framework offers a solution to

these problems while incorporating expert knowledge into the analysis, and it deals with missing

data and prediction for future experiments.

The effects of missing assessors on product means can be corrected by using assessors’ responses

in the experiments that they did attend. Incorporating information from past analyses into

future ones is also seen to increase precision by reducing the average variance of product differ-

ences.

One objection to Bayesian modelling is that choosing appropriate prior distributions may be

difficult. In cases where prior information seems unreliable, it may be given a low weight by

using small degrees of freedom for the variance parameters, and this is better than ignoring prior

information completely.
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Figure captions

Figure 1: Plots of mean sweetness scores against apple varieties for four experiments

Figure 2: Plot of posterior expectations of mean product effects within experiments against

experiment number
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Figure 1: Plots of mean sweetness scores against apple varieties for four experiments
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Table 1: Structure of the parameters in multiplicative model (3) for combined data. The notation
σ2 ∼ IC(s2, d) means that d s2 σ−2 has the distribution χ2(d).

αik ∼ N(αi, σ
2
AE) αi ∼ N(µA, σ2

A) µA ∼ N(mA, r2
A)

σ2
AE ∼ IC(s2

AE , dAE) σ2
A ∼ IC(s2

A, dA)

βik ∼ N(βi, σ
2
BE) βi ∼ N(1, σ2

B)

σ2
BE ∼ IC(s2

BE , dBE) σ2
B ∼ IC(s2

B, dB)

θj(k) ∼ N(φk, σ
2
PE) φk ∼ N(0, σ2

E)

σ2
PE ∼ IC(s2

PE , dPE) σ2
E ∼ IC(s2

E , dE) σ2
i ∼ IC(s2, d)
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Table 2: Values defining the prior distributions of variance components for model (3) applied to
the apple-tasting data.

Variance Estimate Degrees of freedom
σ2

A 264 7
σ2

B 0.14 9
σ2

E 30 5
σ2

AE 66 4
σ2

BE 0.0225 5
σ2

PE 40 15
σ2

i 50 30
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Table 3: Expectations and standard errors of the posterior distributions for the parameters of
model (3) that relate to individual assessors in the apple-tasting data.

Assessor Mean effect Expansiveness SD Precision
i αi (SE) βi (SE) σi (SE) πi (SE)
1 48.6 (2.29) 1.26 (0.15) 9.92 (0.46) 0.127 (0.017)
2 26.6 (2.14) 1.01 (0.14) 7.18 (0.38) 0.141 (0.020)
3 30.1 (2.39) 1.31 (0.16) 13.48 (0.64) 0.097 (0.013)
4 47.8 (2.13) 1.31 (0.16) 12.46 (0.56) 0.106 (0.014)
5 65.1 (2.32) 1.19 (0.15) 8.18 (0.43) 0.146 (0.021)
6 57.2 (2.15) 0.78 (0.14) 5.41 (0.28) 0.146 (0.027)
7 40.4 (2.44) 1.03 (0.15) 7.69 (0.43) 0.135 (0.022)
8 35.8 (2.10) 1.44 (0.16) 10.17 (0.51) 0.142 (0.015)
9 28.1 (2.22) 0.80 (0.14) 9.66 (0.43) 0.083 (0.015)
10 60.8 (2.16) 0.65 (0.13) 6.49 (0.29) 0.101 (0.021)
11 15.6 (2.05) 0.82 (0.14) 9.58 (0.49) 0.085 (0.016)
12 22.2 (4.16) 0.54 (0.21) 6.68 (0.53) 0.081 (0.032)
13 53.2 (2.04) 0.81 (0.12) 5.19 (0.26) 0.156 (0.025)
14 47.9 (2.23) 0.93 (0.15) 9.19 (0.45) 0.102 (0.018)
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Table 4: Average posterior variances of product differences from analysing a single apple-tasting
experiment ignoring or including data from the other experiments: two prior distributions are
assumed

Expert prior Diffuse prior
distribution distribution

Analysis ignoring other experiments 9.51 12.41
Analysis including data on other experiments 4.49 6.09
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