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Summary. Compositional data record the relative proportions of different components within
a mixture and arise frequently in many fields. Standard statistical techniques for the analysis
of such data assume the absence of proportions which are genuinely zero. However, real data
can contain a substantial number of zero values. We present a latent Gaussian model for the
analysis of compositional data which contain zero values, which is based on assuming that
the data arise from a (deterministic) Euclidean projection of a multivariate Gaussian random
variable onto the unit simplex. We propose an iterative algorithm to simulate values from this
model and apply the model to data on the proportions of fat, protein and carbohydrate in different
groups of food products. Finally, evaluation of the likelihood involves the calculation of difficult
integrals if the number of components is more than 3, so we present a hybrid Gibbs rejection
sampling scheme that can be used to draw inferences about the parameters of the model when
the number of components is arbitrarily large.

Keywords: Dietary composition; Euclidean projection; Gibbs sampling; Multivariate normal;
Nutrition; Unit sum constraint

1. Introduction

This paper is concerned with the analysis of compositional data that contain zero values. Moti-
vation is provided by data on the proportions of protein, fat and carbohydrate that are contained
in a range of food products. The proportions of the nutrients vary widely between products:
for example, ‘boiled leeks’ contain 9.4% fat, 2.3% protein and 88.3% carbohydrate, whereas
‘raw swordfish’ contain 83.2% fat, 16.8% protein and no carbohydrate. Proportions for four
particular food groups are plotted in Fig. 1 by using a ternary diagram—this is an equilateral
triangle whose vertices represent the three elements of the composition; points which lie close to
a vertex have high proportions of the element that is represented by that vertex, whereas points
lying in the centre of the triangle have equal proportions of all three elements. Our interest is in
attempting to describe the properties of the data for individual groups, and in comparing the
nutritional properties of food products in different groups, in particular, to test whether there
are significant differences in the composition of the four groups of meat products (beef, pork,
poultry and lamb), and between meat and fish products.

The data are compositional, in that they record information about the relative frequencies
that are associated with different components of a system—in this case the proportions that
are associated with different nutrients. Compositional data routinely arise in disciplines such
as geology, economics and ecology, and it has long been recognized that they should not be
analysed by using standard statistical methods because of the intrinsic constraints that
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Fig. 1. Proportions of protein, fat and carbohydrates in products belonging to four food groups that contain
a relatively large number of zero values (the data are taken from the US Department of Agriculture national
nutrient database for standard reference (Agricultural Research Service, 2006); compositional data are con-
strained to lie within the unit simplex, which is shown in grey): (a) beef; (b) pork; (c) fish; (d) beverages

(a) the proportions that are associated with each component must lie between 0 and 1 and
(b) the proportions that are associated with the various components must sum to 1.

In geometrical terms, a D-dimensional random variable Y is compositional if it is constrained
to lie in the unit simplex,

SD ={y ∈RD : yT1=1, y ∈ [0, 1]D}:

Aitchison (1986) demonstrated that compositional data could be treated in a statistically
rigorous fashion by analysing the log-ratios of the proportions, rather than the proportions
themselves, and proposed a suite of statistical methods that were based on assuming a multivar-
iate Gaussian distribution for these log-ratios. These ideas have subsequently been developed
into a comprehensive set of statistical tools (Aitchison and Egozcue, 2005), and the theoretical
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and practical aspects of compositional data analysis remain active fields of methodological
research (e.g. Egozcue et al. (2006) and von Eynatten et al. (2002)).

Certain food groups within the nutrition data contain a high proportion of products for which
one or more of the nutrients is absent—for example, the proportion of fat in ‘dried egg white’ is
0, and the proportions of protein and carbohydrate in ‘bacon grease’ are both 0. Similar issues
arise in data on seabird dietary intake (e.g. Bull et al. (2004)), in pollen data (Salter-Townshend
and Haslett, 2006) and in a wide range of other applications. The approach that was proposed
by Aitchison breaks down when the proportions that are associated with some or all of the
components may be 0, because it is no longer possible to calculate the log-ratios between the
different proportions. Rigorous methods for dealing with the situation in which zero values arise
solely through the rounding off of small values have been developed (Elston et al., 1996; Fry
et al., 2000; Martín-Fernández et al., 2000, 2003a,b; Fry and Chong, 2005; Palarea-Albalad-
ejo et al., 2007a,b). Models to deal with the possibility that zero proportions in the data may
correspond to genuine absences of the component concerned (‘structural zeros’) have also been
proposed (Aitchison and Kay, 2003; Bull et al., 2004) and, in a limited number of cases, used
(Bacon-Shone, 2003; Adolph, 2004). There is currently, however, no established methodology
for dealing with structural zeros.

Latent Gaussian models provide a general approach for the analysis of data that are con-
strained to lie on a subset of the real space RD. They are based on the idea that the observed data
Y are related, via a transformation g, to a latent variable Z that has a (univariate or multivariate)
Gaussian distribution with unknown parameters. The form of the function g may or may not
depend on the values of additional unknown parameters. Latent Gaussian models have been
successfully used to deal with the presence of zero values in a range of applications (Tobin, 1958;
Allcroft and Glasbey, 2003a,b), and in this paper we argue that an analogous approach can be
used for the analysis of compositional data that contain zero values.

We introduce our proposed model in Section 2, outline an iterative algorithm for simulat-
ing realizations from this model and present the likelihood function that is associated with the
model. In Section 3 we apply the model to data on the proportion of fat, protein and carbo-
hydrate in different food products. We show (Section 4) how Bayesian methods can be used
to draw inferences about the parameters of the model when the number of components D is
relatively large. In the discussion (Section 5) we outline some of the theoretical limitations of
our model and discuss situations in which the latent Gaussian approach will or will not be
appropriate, before outlining some possible ways in which this work could be extended.

2. Proposed latent Gaussian model

We propose to model the distribution of Y by using a latent Gaussian model. More specifically,
we assume that

Y =g.Z/,

where Z is a multivariate Gaussian distribution with mean vector μ and covariance matrix Σ,
and where g is a deterministic function.

The components of Y must sum to 1, and we therefore impose the constraint that the com-
ponents of the latent variable Z must also sum to 1. In geometric terms, this implies that Z must
lie on the unit hyperplane

HD ={z ∈RD : zT1=1}:

Imposing such a constraint on the random variable Z is equivalent to imposing sum constraints
on the parameters μ and Σ, such that μT1 = 1 and ΣJ = 0, where J denotes the D×D matrix
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that consists entirely of 1s. The covariance matrix Σ is singular, by definition, and it follows
that the distribution of Z is degenerate. Overall, the model proposed contains D−1 unknown
parameters within the mean vector μ, and a further .D − 1/D=2 unknown parameters within
the covariance matrix Σ.

2.1. Choice of transformation function
The function g determines the relationship between a value z of the latent variable Z, and a
value y of the observed variable Y. Throughout this paper, we take g to be the function which
minimizes the (squared) Euclidean distance .y − z/T.y − z/ between z and g.z/ = y, subject to
the constraints yT1=1 and y �0. In geometric terms, g performs a Euclidean projection from
the unit hyperplane HD onto the unit simplex SD. This constrained optimization problem can be
solved by introducing Lagrangian multipliers, λ and γ, and seeking to minimize the Lagrangian

L= 1
2 .y − z/T.y − z/− .yT1−1/λ−yTγ

with respect to y. Differentiation gives

@L

@yT = .y − z/−1λ−γ,

which will be equal to 0 if y=z+1λ+γ. By theorem 9.4.2 of Fletcher (1981) this will be a solu-
tion to the constrained optimization problem under conditions of primal feasibility (yT1 = 1,
y �0), dual feasibility (γ �0) and complementary slackness (yTγ =0).

If we can find a set E⊆{1, . . . , D} which satisfies

j ∈E if and only if zj +λ< 0, where λ=

∑
k∈E

zk

D−|E| , .1/

then these conditions will be satisfied by taking the elements of y and γ to be

yj =
{

0 if j ∈E,
zj +λ if j =∈E,

γj =
{−zj −λ if j ∈E,

0 if j =∈E:

.2/

If the observed variable y lies on the interior of the unit simplex—i.e. if none of the compo-
nents of y is equal to 0—then it is trivial to show that the latent variable must be equal to the
observed variable (so that z =y).

2.2. Simulation of data
Simulation of data y from the model proposed involves

(a) simulation of z from a multivariate Gaussian distribution with mean μ and variance
matrix Σ by using standard methods (note that the distribution is degenerate, and hence
we simulate only the first D−1 components—the final component is computed by sub-
traction),

(b) identification of the set E and
(c) calculating the elements of y by using equation (2).

A simple algorithm can be used to evaluate the set E, which indexes the values of z that will
be transformed by g to be 0. Let z.k/ denote the element of z with rank k, and assume that
z.1/ < 0 (since otherwise E is null and y = z).
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(i) Let k =2.
(ii) If

z.k/ + 1
D−k +1

k−1∑
l=1

z.l/ �0

then set E={j : zj <z.k/}.
(iii) Otherwise set k =k +1 and return to step (ii).

It can be shown that this leads to a set which satisfies the condition that is given in equation
(1). If

φ.j, k/= z.j/ + 1
D−k +1

k−1∑
l=1

z.l/

then we need to show that φ.j, k/<0 for j<k and φ.j, k/�0 for j �k. We know that φ.k, k/�0
and it is true by definition that φ.j + 1, k/ � φ.j, k/ for all j, so it is sufficient to show that
φ.k −1, k/< 0. Now

φ.k −1, k/= D−k +2
D−k +1

z.k−1/ + 1
D−k +1

k−2∑
l=1

z.l/ = D−k +2
D−k +1

φ.k −1, k −1/:

We know that φ.k − 1, k − 1/ < 0, since the algorithm failed to terminate at the .k − 1/th step,
and it follows that φ.k −1, k/< 0, as required. Note that

z.D/ + 1
D−D+1

D−1∑
l=1

z.l/ =1,

so the algorithm will always terminate for some k �D.

2.3. Special cases
If D=2 then the proportion that is associated with the second component depends in a deter-
ministic way on the proportion that is associated with the first component, and our model
reduces to assuming that we have a univariate random variable Y ∈ [0, 1] that is defined by

Y =
{0 if Z< 0,

Z if 0�Z �1,
1 if Z> 1,

where Z ∼N.μ, σ2/.
Now consider the case D=3. We can assume, without loss of generality, that the elements of

Z are arranged in ascending order, so that Z1 �Z2 �Z3. Then

Y =
{Z if Z1 �0,

.0, Z2 +Z1=2, Z3 +Z1=2/ if Z2 +Z1=2�0 and Z1 < 0,

.0, 0, 1/ otherwise,

where Z∼MVN3.μ, Σ/ and ZT1=1.

2.4. Likelihood
Let y1, . . . , yn denote n independent and identically distributed realizations from a random
vector Y whose distribution is given by the proposed latent Gaussian model with unknown
parameters θ= .μ, Σ/. The log-likelihood function is of the form
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n∑

i=1
log{P.Y =yi;μ, Σ/}=

n∑
i=1

log{P.Z∈Δi;μ, Σ/},

where Δi ={zi ∈HD :g.zi/=yi}.
If D = 2 then the log-likelihood that is associated with a set of independent and identically

distributed observations y1, . . . , yn is

|L| log
{

Φ
(−μ

σ

)}
+|U| log

{
1−Φ

(1−μ

σ

)}
−|M|

{
log.σ/+ log.2π/

2

}
− 1

2

∑
i∈M

(yi −μ

σ

)2
,

where L={i :yi =0}, U ={i :yi =1} and M ={i : 0<yi <1}, and where Φ denotes the cumulative
distribution function of the standard Gaussian distribution.

It is non-trivial to calculate the likelihood function in higher dimensions (D>2), because the
covariance matrix Σ is singular and the region Δi over which we need to integrate is complicated.
The log-likelihood for the case D=3 is given in Appendix A.

3. Nutritional composition of food products

Publicly available data from the Agricultural Research Service, US Department of Agricul-
ture (Agricultural Research Service, 2006), record the nutritional composition of 7270 individual
food types or products, classified into 25 different food groups. The database aims to provide a
relatively comprehensive coverage of currently available food products, and to achieve this by
collating information that is derived from the widest possible range of published and unpublished
sources. The selection of food types is consequently dependent primarily on data availability,
rather than on any systematic attempt to sample from the set of all food products. Sampling
methodologies for the collection of nutrient data also differ between food types, leading to
heterogeneity in data quality and precision.

We do not address these issues here but focus on comparing the relative proportions of protein,
fat and carbohydrate between different food groups. We concentrate on the eight groups—beef,
beverages, ethnic, fats, fish, lamb, pork and poultry—that contain zero values in at least one
nutritional component for more than 25% of the foods within that group; the remaining food
groups contain either a low proportion of zero values (e.g. spices and babyfood) or contain no
zero values whatsoever (e.g. vegetables and snacks). The ‘ethnic’ group refers to foods that are
traditionally eaten by native American Indians or native Alaskans, such as acorn stew, walrus
meat and mashu roots.

We estimate the parameters of the model by numerical maximization of the likelihood func-
tion using the Nelder–Mead algorithm, and we use the inverse of the observed information
matrix as an approximation to the associated covariance matrix. The observed information is
found by evaluation of the Hessian matrix at the maximum likelihood estimates. All computa-
tions are performed in R (R Development Core Team, 2006), version 2.1.1, and optimization
is performed by using the optim function. For the five groups that are of most interest (the
meat and fish groups) we have verified that the results that are obtained by maximum likelihood
are close to those that are obtained by using the Bayesian approach that we shall introduce in
Section 4.

Maximum likelihood estimates are given in Table 1, and the probability contours of the model
fitted are presented in Fig. 2 for four of the food groups; for each group we also show a simulated
data set, which was generated by setting the parameter values equal to the maximum likelihood
estimates. Note that the maximum likelihood estimates for μ lie outside the unit simplex for
seven of the eight food groups, reflecting the fact that the data for each group contain a high
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Table 1. Maximum likelihood estimates for the five parameters of the latent Gaussian model, as fitted (sep-
arately) to data for eight food groups in the US Department of Agriculture data set†

Food group μ1 μ2 Σ11 Σ22 Σ12

Beef 0.833 (0.032) 0.505 (0.032) 0.0337 (0.0042) 0.0292 (0.0034) −0.0159 (0.0030)
Lamb 0.844 (0.038) 0.473 (0.039) 0.0309 (0.0050) 0.0507 (0.0090) −0.0228 (0.0045)
Pork 0.669 (0.011) 0.358 (0.011) 0.0319 (0.0008) 0.0365 (0.0010) −0.0318 (0.0002)
Poultry 0.771 (0.013) 0.334 (0.011) 0.0410 (0.0037) 0.0239 (0.0021) −0.0214 (0.0022)
Fish 0.930 (0.025) 0.302 (0.022) 0.0623 (0.0090) 0.0261 (0.0045) 0.0086 (0.0058)
Fats 0.010 (0.005) 1.088 (0.037) 0.0012 (0.0002) 0.1717 (0.0268) −0.0063 (0.0021)
Ethnic 0.553 (0.037) 0.273 (0.027) 0.1640 (0.0228) 0.0862 (0.0123) −0.0014 (0.0013)
Beverages 0.064 (0.015) −0.010 (0.011) 0.0445 (0.0052) 0.0166 (0.0023) 0.0048 (0.0023)

†Standard errors are also given, in parentheses.

proportion of zero values in one or two of the three components but a low proportion of zero
values in the remaining components. For example, the four meat groups—pork, poultry, lamb
and fish—tend to contain a high proportion of fat and protein but a low or zero proportion of
carbohydrates.

Using Table 1 we compare the distribution of the maximum likelihood estimates for the five
groups which relate to meat or fish products. We can see by eye that there are differences between
the parameter estimates of the various groups. In particular, estimates for the ‘fish’ group differ
markedly from those which are associated with the other four groups. Model selection proce-
dures based on likelihood ratio testing and the Akaike information criterion reach the same
conclusion—that the best model retains separate parameters for each of the five groups, rather
than attempting to pool parameters across two or more of the groups.

In Table 2 we assess goodness of fit by comparing the observed frequencies with which partic-
ular patterns of zero values occur against the corresponding values that we would have obtained
from the fitted model. A comparison of these frequencies provides an important indicator of
the extent to which the model provides a reasonable description of the data. We see that the
‘observed’ and ‘fitted’ frequencies are typically very similar for the groups that relate to meat and
fish products: lamb, fish, beef, pork and poultry. For these groups, the observed data indicate
that foods either contain only protein and fats or else contain all three nutrient types, and the
model performs well in distinguishing the frequency with which the data belong to these two
groups. The only discrepancy is that the fitted model suggests that there should be a small num-
ber of food products containing ‘only protein’, and, for pork and fish, an even smaller number
containing ‘protein and carbohydrate’, whereas there are no such products in the real data.

There are discrepancies between observed and modelled frequencies for the remaining three
groups—‘fats’, ‘beverages’ and ‘ethnic’—indicating lack of fit: in particular, the model tends
to underestimate the proportion of points that lie on the interior of the simplex, and to over-
estimate the proportions that lie on the vertices. The poor performance of the model reflects
the fact that these are heterogeneous groupings of food products, and that the data for these
groups show evidence of multimodality. Our model could be adapted to deal with multimodal
data by regarding Z as a mixture of Gaussian distributions, but we have not attempted such an
extension here.

Our analysis should be regarded as exploratory rather than definitive, since we have assumed
here that the nutritional data for products within a particular food group are independent and
identically distributed. In reality, methods of sampling and levels of intraproduct variability
will differ markedly between individual food products, and the data are probably subject to
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(a) (b)

(d)(c)

Fig. 2. Latent Gaussian model fitted to four food groups in the US Department of Agriculture data set by
maximum likelihood (contours of the fitted latent distribution (i.e. z) are shown (shaded), together with sim-
ulated data from the fitted model (+), i.e. y D g .z/; simulated data sets are of the same size as the original
data set for that group): (a) beef; (b) pork; (c) fish; (d) beverages

residual dependence at the level of products within groups. In addition, the products are not of
equal importance in terms of human consumption and would ideally be weighted according to
data on intake. It should, at least in principle, be possible to deal with each of these issues by
adapting or extending the latent Gaussian model.

4. Inference in higher dimensions

The integrals that are involved in calculating the log-likelihood function (2.4) are straightfor-
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Table 2. Observed and expected patterns of zero values in the US Department of Agriculture data for eight
individual food groups†

Food group Value Number of individual foods containing the following:

p f c pf pc fc pfc

Beef Observed 0.0 0.0 0.0 767.0 0.0 0.0 22.0
Expected 11.3 0.0 0.0 755.8 0.3 0.0 21.6
SE 3.3 0.1 0.0 5.6 0.5 0.0 4.6

Lamb Observed 0.0 0.0 0.0 327.0 0.0 0.0 16.0
Expected 12.2 0.0 0.0 315.2 2.2 0.0 13.4
SE 3.4 0.1 0.0 5.1 1.5 0.0 3.6

Pork Observed 0.0 0.0 0.0 184.0 0.0 0.0 105.0
Expected 6.0 0.0 0.0 185.1 4.0 0.0 93.9
SE 2.4 0.2 0.0 8.2 2.0 0.1 8.0

Poultry Observed 0.0 0.0 0.0 254.0 0.0 0.0 84.0
Expected 14.0 0.0 0.0 242.6 1.4 0.0 79.9
SE 3.7 0.0 0.0 8.3 1.2 0.2 7.8

Fish Observed 0.0 0.0 0.0 193.0 0.0 0.0 56.0
Expected 19.4 0.0 0.0 170.8 6.2 0.0 52.5
SE 4.2 0.0 0.1 7.3 2.5 0.1 6.4

Fats Observed 0.0 107.0 0.0 8.0 0.0 4.0 85.0
Expected 0.0 114.7 0.4 7.9 0.4 19.8 60.8
SE 0.0 7.1 0.7 2.7 0.7 4.2 6.5

Ethnic Observed 0.0 4.0 1.0 41.0 1.0 1.0 84.0
Expected 6.6 0.1 3.9 41.9 18.0 8.3 53.2
SE 2.5 0.3 1.9 5.3 3.9 2.8 5.6

Beverages Observed 4.0 0.0 49.0 3.0 63.0 10.0 101.0
Expected 0.0 0.0 79.3 0.0 57.5 20.4 72.8
SE 0.0 0.0 7.2 0.2 6.6 4.3 7.1

†We tabulate the number of products that contain only protein (p), only fat (f), only carbohydrate (c), only protein
and fat (pf), only protein and carbohydrate (pc), only fat and carbohydrates (fc) and all three nutrients (pfc).
Expected values are calculated by numerical integration, based on the maximum likelihood estimates. The cor-
responding standard errors SE are calculated as

√{np.1−p/}, where n is the number of products in the food
group and p is the expected proportion of values having that pattern of zero values.

ward when D=2 or D=3, for the choice of g that we have adopted, but become difficult once D
is moderately large (e.g. D�4) because the sets {z∈HD :g.z/=y} become increasingly complex
and difficult to define. Numerical maximum likelihood estimation does not, therefore, provide
a viable approach to statistical inference for general D. An alternative, Bayesian, approach is
to assign a prior distribution π.θ/ to the parameters θ= .μ, Σ/, and to draw inferences about θ
by simulating values from the posterior distribution of θ|y.

A standard method for simulating the posterior distribution of θ|y is to generate values
from a Markov chain whose equilibrium distribution is equal to θ|y (Markov chain Monte
Carlo (MCMC) sampling; Gilks et al. (1996)), and the simplest way to do this is via Gibbs
sampling (Casella and George, 1992). For our model, we suggest the use of a hybrid Gibbs
rejection sampling algorithm that alternates between two steps following initialization of the
parameters θ.

Step 1: simulate z|.y, θ/ by using the rejection algorithm that is presented in Appendix B.
Step 2: simulate parameter values from θ|.z, y/=θ|z.

The algorithm generates a series of dependent realizations from the posterior distribution of
θ|y, once convergence to the equilibrium distribution of the chain has been achieved. Stan-
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dard Bayesian methods allow us to simulate from the parameters of the multivariate normal
distribution, θ|z.

The parameters are subject to sum constraints (μT1=1 and ΣJ =0), so, to avoid singularities,
we work with only the first D−1 components of μ and Σ; we denote these by μÅ and ΣÅ, and
denote the corresponding components of z by zÅ. We do not wish to make any strong prior
assumptions about the values of the parameters θÅ = .μÅ, ΣÅ/. One possibility is to adopt the
Jeffreys prior (Jeffreys, 1946)

π.μÅ, ΣÅ/∝|ΣÅ|−D=2, .3/

which is uninformative (diffuse) and invariant to reparameterization. Simulation of θÅ|zÅ then
depends on a Gibbs algorithm that alternates between the following steps.

Step 2a: simulate μÅ|.ΣÅ, zÅ/ from a multivariate normal distribution with mean vector
z̄Å =Σn

i=1zÅ
i =n and variance matrix ΣÅ=n.

Step 2b: simulate ΣÅ|.μÅ, zÅ/ from an inverse Wishart distribution with n degrees of freedom
and variance matrix V.zÅ/=Σn

i=1.zÅ
i −μÅ/.zÅ

i −μÅ/T.

The prior in equation (3) is improper, however, and we cannot demonstrate that it will neces-
sarily lead to a proper posterior distribution for .θÅ, zÅ/|y (Robert and Casella (1999), pages
328–329).

An alternative approach would involve assigning proper but diffuse priors to μ and Σ. The
complicating factors are that these prior distributions need to fulfil the constraints μT1=1 and
ΣJ =0, and that they ought, in the absence of any genuine prior information, to be symmetric
in the components of Y. Priors for the variance matrix are conventionally formulated in terms
of a distribution for the precision matrix Σ−1, but this approach is not possible here because Σ
is singular. The construction of appropriate proper prior distributions therefore appears to be
non-trivial.

4.1. Simulation study
We use a small simulation study to compare the posterior means and credible intervals that
are generated by the rejection Gibbs scheme against the corresponding estimates and confi-
dence intervals that are generated by numerical maximum likelihood. We restrict attention to
the case D=3 (qualitatively similar results are obtained by using D=2 but are not shown) and
apply the methods to four data sets, each of size 200. The values of μ are taken to be either

(a) μ1 =μ2 =μ3 =1=3 (labelled A) or
(b) μ1 =4=3 and μ2 =μ3 =−1=6 (labelled B)

and the covariance matrix is either

(i) Σ=Ω=9 (labelled a) or
(ii) Σ=Ω (labelled b),

where Ω= .3I − J/=2. In data set Aa a high proportion of points lie on the interior (104/200)
with few on the vertices (9/200), whereas in data sets Ba and Bb the majority of points lie on
the vertices (148 and 134 respectively) and few lie on the interior (4 and 10 respectively). Data
set Ab is intermediate, with 23 points on the interior and 85 on the vertices.

Maximum likelihood estimates are computed via numerical optimization, with confidence
intervals constructed either by using the inverse of the Hessian or via profile likelihood—
the latter is more computationally intensive, but allows for asymmetry in the distributions of
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the parameter estimators. The MCMC results for data sets Aa and Ab are based on 50000
iterations, following a burn-in of 10000 iterations. The results for data sets Ba and Bb are based
on four parallel chains, each of length 60000, which were started from widely dispersed initial
values—these chains are then combined, so that the final results are based on 200000 iterations.
The Heidelberger–Welch tests, Geweke Z-scores and (for data sets Ba and Bb) the Gelman–
Rubin convergence diagnostics detected no significant evidence of non-stationarity. The chain
lengths and burn-in periods were selected on the basis of the Raftery–Lewis convergence diag-
nostic, and on visual inspection of the trace plots. Further details of these (and other) methods
for assessing convergence of MCMC simulations are given in Cowles and Carlin (1996).

For data sets Aa and Ab, in which the majority of data lie on the interior or edges of the sim-
plex, we see (Fig. 3) that the results that are obtained by using MCMC sampling are very similar
to those that are obtained via numerical maximum likelihood. For data sets Ba and Bb most of
the data lie at the vertices, so, in the context of our model, these data contain a high proportion
of fully or partially censored values. The high degree of censoring leads to a shallow gradient
in the likelihood function and so presents challenging problems for statistical inference. We see
that there are reasonably substantial differences between the results that are obtained by using
maximum likelihood and MCMC methods, with the credible intervals obtained via MCMC
sampling tending to be wider than the corresponding confidence intervals that are based on the
profile likelihood.

5. Discussion

We have outlined a novel methodology for analysing compositional data that contain zero val-
ues and have illustrated the application of the model to simulated and real data. The latent
Gaussian model that we have proposed is conceptually simple and similar to models that are
used in many other contexts to describe the properties of data which are subject to constraints.
The model is relatively parsimonious, especially when D is large, and the parameters should
be estimable even from data that contain a high proportion of zero values. Simulation from
the model is also straightforward, because of the assumption that the latent variable is multi-
variate normal.

We acknowledge, however, that there are theoretical difficulties with the model that we have
proposed. In particular, the model treats compositional data which lie on the interior of the unit
simplex as having arisen from a multivariate normal distribution. In doing so, it violates two of
the principles—scale invariance and subcompositional coherence—that models for data on the
interior of the simplex should adhere to (Aitchison (1986); note that it does adhere to the third
property, that of permutation invariance). Scale invariance requires that all inferences should
be expressed solely in terms of the ratios of proportions, whereas subcompositional coherence
requires that inferences about a particular subset of components should be unaffected if com-
ponents outside that subset are combined. Any approach that attempts to describe zero and
non-zero proportions by using a common model will inevitably break these principles, because
ratios of proportions are infinite along the boundaries of the simplex. A related issue concerns
the interpretation of the model parameters, μ and Σ, which do not—for the reasons that were
outlined by Aitchison (1986)—have any natural or convenient interpretation in terms of the
statistical properties of Y. In particular, the unit sum constraint implies that the elements of
the covariance matrix Σ cannot be used as a basis for making statements about the (in)depen-
dence of components of Y. As a result, our model should not be used as a basis for principal
components analysis, or for other methods that use the form of Σ to explore the dependence
structure of Y.
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Although our model in principle provides a basis for the analysis of any compositional data
set containing zero values, these theoretical limitations imply that, in practice, it should only
be used

(a) in situations where existing methods are unavailable or inappropriate,
(b) as a diagnostic tool to assess the performance of other methods or
(c) for exploratory data analysis.

Zero values that arise as a result of rounding error can be dealt with by using zero replacement
strategies, so situation (a) will generally only apply to data that contain structural 0s. In that
context, a hierarchical approach (Aitchison and Kay, 2003) can be used if the ratio of data to
components is relatively large but may not be viable if the data are sparse or contain a high
proportion of zero values. The potential diagnostic uses of our model merit further research.
The model provides a basis for drawing inferences about the patterns of zero values, and, in
particular, for calculating the probability that data will lie on a particular vertex or edge of the
simplex. These probabilities could subsequently be used, for example, to assist in the formula-
tion of an appropriate hierarchical model, or for the detection of outliers in the context of a
zero replacement model.

Our model makes implicit assumptions about the relative frequencies with which data lie on
the vertices, edges and interior of the unit simplex. These assumptions depend on the form of
the function g that has been selected to describe the relationship between the latent variable
Z and the data Y. We have chosen g such that it performs a Euclidean projection from the
unit hyperplane to the unit simplex, since the Euclidean transformation is widely used and has
attractive general theoretical properties. One drawback of this choice, however, is that inferences
about the distribution of a particular component Y1 will differ depending on whether or not
we choose to aggregate some of the other components within Y. It would therefore be interest-
ing to explore the theoretical and empirical properties of alternative transformation functions.
We would, ideally, like to infer the form of g on the basis of the empirical properties of Y,
by, for example, estimating the unknown parameters that are associated with a flexible para-
metric family of possible transformation functions, but we expect that real compositional data
sets will rarely contain sufficient information to enable us to distinguish between alternative
choices for g.

Finally, we have applied the model to data with three components, to illustrate the method-
ology, but we acknowledge that most practical applications involve four or more components.
The hybrid Gibbs rejection sampling approach offers a promising approach to inference in
higher dimensions but requires further refinement to provide an efficient and robust algorithm
for use in that context. Approximate Bayesian computation provides a possible alternative
approach to inference in situations where, as here, the likelihood function is difficult to com-
pute, but initial simulation studies have suggested that these methods have relatively poor per-
formance in the context of our model (Butler et al., 2007). Another important issue, which
becomes critical in higher dimensions, concerns the assessment of model fit in latent Gaussian
models, and in future research we hope to develop diagnostic tools that are appropriate for
this.
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Appendix A: Form of the log-likelihood function when D =3

Let D=3 and consider the log-likelihood contribution from a single point yi = .yi1, yi2, yi3/.

A.1. Interior points
If yi lies in the interior of the unit simplex, so that yi1 >0, yi2 >0 and yi3 >0, then zi =yi. We consider only
the first two components of zi, which we denote zÅ

i , since the third depends on these in a deterministic
fashion. We let yÅ

i , μÅ and ΣÅ denote the corresponding elements of yi, μ and Σ. Then

log{P.Y =yi/}= log{P.ZÅ = zÅ
i /}=− log.2π/− 1

2 log |ΣÅ|− 1
2 .yÅ

i −μÅ/T.ΣÅ/−1.yÅ
i −μÅ/:

A.2. Vertices
If yi lies at a vertex of the unit simplex, then we can assume without loss of generality that yi = .0, 0, 1/. We
know (from Section 2.2) that g.zi/= yi if and only if zi1 + zi2=2 < 0 and zi2 + zi1=2 < 0. Perform a change
of variable to ui =ATzi, where

A= 1
3

(−1 1
1 −1
3 3

)
,

so that

ui =
(

zi2 − zi1

3
+ zi3,

zi1 − zi2

3
+ zi3

)
=
(

1− 4
3

(
zi1 + zi2

2

)
, 1− 4

3

(
zi2 + zi1

2

))
:

It follows that g.zi/=yi if and only if ui1 > 1 and ui2 > 1, so that

log[P{Y = .0, 0, 1/}]= log
[∫ .∞,∞/

u=.1,1/

exp{− 1
2 .u −ATμ/T.ATΣA/−1.u −ATμ/}√{.2π/2|ATΣA|} du

]
:

Note that Σ is singular but ATΣA is not; the bivariate integral can therefore be evaluated by using stan-
dard algorithms.

A.3. Edges
We can assume, without loss of generality, that yi = .0, yi2, 1 − yi2/ for yi2 > 0. It can easily be seen that
g.zi/=yi if and only if zi1 < 0 and zi2 + zi1=2=yi2. It follows that

P.Y =yi/=P.U1 < 0, U2 =yi2/=P.U2 =yi2/ P.U1 < 0|U2 =yi2/,

where U = .Z1, Z2 +Z1=2/ has a multivariate normal distribution with mean .μ1, μ2 +μ1=2/ and variance
matrix ( Σ11 Σ12 +Σ11=2

Σ12 +Σ11=2 Σ22 +Σ12 +Σ11=4

)
:

Hence

log{P.Y =yi/}=− 1
2

{
log.2π/+ log

(
Σ22 +Σ12 + Σ11

4

)
+ .yi2 −μ2 −μ1=2/2

Σ22 +Σ12 +Σ11=4

}

+ log

⎛
⎜⎜⎝Φ

⎡
⎢⎢⎣−

μ1 + .Σ12 +Σ11=2/.yi2 −μ2 −μ1=2/

Σ22 +Σ12 +Σ11=4√{
Σ11 − .Σ12 +Σ11=2/2

Σ22 +Σ12 +Σ11=4

}
⎤
⎥⎥⎦
⎞
⎟⎟⎠:
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Appendix B: Algorithm for simulating zj(y,μ,Σ)

We present an algorithm for simulating values of the latent variable z ∈HD conditionally on data y ∈SD

and on values of the parameters μ and Σ; this is used in the hybrid rejection Gibbs sampling algorithm of
Section 4. Let

E={1�k �D : yk =0}
denote the set of the indices of the components of y which are 0. Then the algorithm proceeds as follows.

(a) If |E|=0 then set z =y and exit.
(b) Repeatedly simulate zE from an |E|-dimensional multivariate normal distribution with mean μE

and variance matrix ΣEE until we generate a value such that

z
.j/
E +

j−1∑
k=1

z
.k/
E

D− j +1
< 0 for all j � |E|:

(c) Calculate the remaining components of z by using

z−E =y−E −{1=.D−|E|/}zT
E1:

The justification for the algorithm relies on recognizing that it is just a variant of rejection sampling.
The most direct way to generate values of z|.y, μ, Σ/ would be to simulate z from a multivariate normal
distribution with mean μ and variance matrix Σ, and to accept z if and only if g.z/ = y. However, we
already know, from Section 2.2, that values of z must fulfil the constraint that

z−E =y−E −{1=.D−|E|/}zT
E1:

It follows that it is only necessary to simulate the subset of values zE relating to the set of components
for which y has zero values, since the remaining values z−E will depend on these in a deterministic way.
Section 2.2 also provides us with the order restrictions that the elements of zE must satisfy to ensure that
g.z/= y, and step (b) of the algorithm involves checking that these restrictions indeed hold for the value
of zE which we have simulated.
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