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Selecting nonlinear stochastic process rate models using information criteria
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Abstract

We demonstrate how unknown process rates within a stochastic modelling framework based on Markov processes can be approximated from
time series data using polynomial basis functions. The problem of model selection is considered by adapting basis function selection methods
and the minimum description length information criteria which have previously been developed for nonlinear autoregressive models of time
series under Gaussian noise assumptions. We investigate the effectiveness of the methods with application to stochastic biological population
models.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic modelling and simulation have been widely
applied to understand and describe the behaviour of a
range of complex phenomena including biological populations
[1–6], epidemic dynamics [7] and chemical reactions [8]. The
theory of stochastic processes [9] is also a natural framework
in which to study so-called agent-based models in which
agents interact with each other and their environment using
simple local rules. For example, in economics one can think
of an agent buying, selling, or holding stock on the basis of
limited information, in ecology a grazing animal may choose
to graze a particular location, or decide to forage depending
on the local availability of resources or individual energy
requirements [10]. The stochastic approach to modelling can
not only account for variability and spatial heterogeneity, but
also point the way towards better deterministic representations
which model such variation using suitable limiting processes
and approximations [11,7,2,3,5,12,10].

Despite the widespread use of stochastic process models
techniques which link them to observational data are somewhat
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limited and methods are needed to estimate (the distribution of)
parameter values from data and to perform model selection,
that is to select the model (from some defined class)
which is best supported by the data. Recent advances in
computational methods such as Markov chain Monte Carlo
(MCMC) have enabled parameter estimation for discrete-
time Markov models [13] and continuous time Markovian
[14–16] and non-Markovian processes [17]. MCMC methods
have also been applied to enable model selection between
simple epidemic models [18]. However, although in principle
very flexible, MCMC methods are computationally intensive
and more worryingly, except in special cases [19], there are no
general results allowing a decision to be made as to when, or if,
the Markov chain has converged to the distribution of interest
and therefore heuristic criteria are typically employed [20].

In this paper we avoid the problems associated with
MCMC by tackling model selection in Markov process models
by discriminating between competing models using a novel
application of a basis selection algorithm [21] and the minimum
description length (MDL) principle [22] previously developed
for model selection in nonlinear time series reconstruction.
In [21] a deterministic predictive model of a system in an
equivalent phase space is reconstructed from time series data
under Gaussian noise assumptions. Our approach differs in
that we attempt to reconstruct deterministic process rates of
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a stochastic systems model. An essential difference manifests
itself in the likelihoods being given by products of exponential
distributions instead of Gaussian distributions.

We will also represent the rate functions (see Section 2) in
our stochastic population models by polynomial functions and
employ the MDL criteria to select the appropriate number of
terms solely on the basis of time series data. We recognize
that polynomials are not the most suitable or best choice of
approximating function and have chosen to use them only for
ease of exposition. Indeed in our first example where the perfect
model is given by polynomial process rates their use helps raise
a point highlighting why the best MDL-selected model is not
always the true representation.

The minimum description length principle has been used
with some success in discriminating between different model
approximations to dynamics reconstructed from nonlinear
time series. Judd and Mees [21,23] have used MDL to
reconstruct radial basis function models, Small and Tse [24]
have demonstrated how MDL can select between different
neural network architectures, and description length has been
applied to linear stochastic processes by Small and Judd [25].
Nakamura [26,27] has compared the performance of MDL
with other information criteria such as Akaike’s Information
Criterion [28] and Schwarz’s Information Criterion [29] for
linear autoregressive models, polynomial basis models and
radial basis function models. All of the above works involve
additive Gaussian noise assumptions and so our approach
widens the application of description length methods to a new
model class with a different noise source.

The outline of this paper is as follows: In Section 2 we
introduce the framework of stochastic process rate models
and describe how for such Markov processes the event rates
can be approximated with nonlinear functions. In Section 3.1
we briefly outline the subset selection method of Judd and
Mees [21] and discuss the important modifications required for
the class of stochastic models we study. We describe model
selection based on the minimum description length principle
in Section 3.2. These methods and ideas are explored in
Section 4 through application to two (stochastic) population
models from ecology: logistic population growth in Section 4.1,
and a predator–prey population model in Section 4.2. We close
the paper with a short discussion and concluding remarks in
Section 5. A preliminary outline of this work has been presented
elsewhere [30].

2. Stochastic models and nonlinear function approxima-
tions

In the framework of Markov process population dynamics
the simple rules of agent-based models are described by a
sequence of events determined probabilistically. The event
probabilities share the common structure

P(s(t + δt) = s(t) + δs) = r j (s → s + δs; λ)δt (1)

where r j (s → s + δs; λ) represents the (probability) rate of
an event of type j which causes the change δs in state space
in time interval (t, t + δt). If there are m possible events with
rates r j , j = 1, . . . , m, and the system is in state s(t) then
the total event rate at time t is R(s(t)) =

∑m
j=1 r j (s(t)) and the

time to the next event τ is exponentially distributed ∼e−R(s(t))τ .
For example, in a population model these rates could represent
the probability of only a birth event or a death event occurring
in the short time interval.1 The λ represent parameters of the
stochastic process.

A simulated realization z of the Markov process [1] is
generated from an initial state s(t1) by randomly selecting
the inter-event time from the exponential distribution τ ∼

e−R(s(t1))τ and applying (1) to choose one of the m possible
events, thereby determining s(t1). Iterating this procedure
generates

z = {s(t1), . . . , s(tN )} (2)

where t1, . . . , tN denote the event times and s(t) denotes the
state of the system immediately prior to the event at time t . The
model is event driven so let n index these events and denote
the event type occurring at time tn by E(n) ∈ {1, . . . , m}.
If all event types are visible and if the process is monitored
continuously we can observe all N events of the realization, so
that the data D = z. The likelihood L(λ, D) of the process may
be written as

L(λ, D) =

N∏
n=1

rE(n)e
−(tn−tn−1)

m∑
j=1

r j (s(n))

(3)

where the observations D are equivalent to the complete
realization z, the state of the system for all t ∈ (t0, tN ). The
rate rE(n) corresponds to the probability of event n occurring
at time tn whilst the exponential term is the probability that
nothing happens between event n − 1 and event n. When the
parameter space is low dimensional, and the data is a complete
realization, it is straightforward to obtain maximum likelihood
estimates of the parameters by applying standard optimization
routines.

We propose to represent the (unknown) rate functions
in a stochastic process model by nonlinear functions. In
this paper we consider polynomial basis functions but other
representations are possible. We note there is no need to select
event rate functions taking values between 0 and 1 as they are
suitably scaled to probabilities later as in Eq. (1). Therefore,
thin-plate splines, radial basis function networks, and even
neural network function approximations could perhaps provide
better models for a given application since polynomials may
not the best class of fitting functions to choose. If the state
of the system at the time of event n is denoted by s(n) then
a polynomial approximation to a process rate is

R(s → s + δs) = A + Bs(n) + Cs(n)sT (n) + · · · (4)

where A, B, C, . . . are constant tensors of appropriate rank.

1 We are indulging in an abuse of terminology here by referring to
“probability” and “rate” interchangeably. Strictly speaking (1) describes the
process rates which by a simple scaling using the total event rate R can be
converted to probabilities.
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The values of the parameters can be estimated by
minimizing the negative log likelihood where the rate
functions in (3) are replaced by the appropriate polynomial
representations (4). Our focus here, however, is on model
selection within a chosen model class. In particular how do we
determine the appropriate set of basis functions (polynomial
degree) given an observed realization of the (unknown)
process? A crucial problem associated with nonlinear basis
functions, and polynomial approximations in particular, is the
bias-variance dilemma and the curse of dimensionality; models
with a large number of parameters are difficult to estimate and
do not generalize well. We address this issue by appealing to
the minimum description length principle [22].

3. Model estimation

The minimum description length principle is an information
theoretic approach to balancing complexity and predictability
for selecting between competing models explaining the data.
The idea is to calculate the description length required
to explain the observed data relative to some model and
information required to specify the model and its parameters.
The model for a given class which returns the minimum
description length value is regarded as the best model
describing the process given the data. For a given class of
models such as the polynomial functions outlined above it is
typically unfeasible to calculate the description length of all
possible model representations.

To proceed it is therefore necessary to have a practical
method for exploring a (large) subset of the model class. A
procedure demonstrated to be successful is a subset selection
method introduced by Judd and Mees [21] which we now
describe in our context.

3.1. Selection algorithm

In this paper we adapt the selection algorithm developed
by Judd and Mees [21] to select subsets of basis functions
of nonlinear models under Gaussian noise assumptions in the
context of reconstructing time series models from data. The
sensitivity analysis results of optimization theory are applied to
the likelihood in order to determine which model basis function
should be selected for removal or inclusion.

Specifically, it gives a prescription for selecting a new basis
function to add to a current model which minimizes a cost
function related to the likelihood, or for selecting an existing
basis function to remove from the current representation and
does the least “damage” in the sense of increasing a cost
function. This so-called “breathing” approach helps search for
candidate models within a model class in a focused way.

This step is computationally slightly more complicated in
our present situation due to the non-Gaussian likelihood but
here we show that the arguments carry through in a similar
manner to those presented by [21].

Following Judd and Mees, the problem of selecting which
basis function to add to the current model of the stochastic rate
approximation can be written as2

minimize − log L(λ) subject to N (λ) = k, (5)

where we have dropped the dependence on data in the
likelihood for clarity in exposition. The constraint N (λ) = k
corresponds to the number of parameters in the model. Setting
B = { j : λ j 6= 0}, so that N (λ) =| B |, we can use sensitivity
analysis to see the effect of changing the size of B. We write
the constraint as

λ j = u j , j 6∈ B (6)

where the u = 0 but are kept as parameters. The
Lagrangian [31] for (5) with (6) is

L(λ, µ) = − log L(λ) + µT (u − λ) (7)

where µ are dual variables. The Kuhn–Tucker conditions for
minimizing this give rise to

µ = 5λ(− log L(λ))

u − λ = 0.

Since µ is the dual variable corresponding to constraint (6) it
is the sensitivity to changes in u at optimality, and therefore
the largest element of µ in absolute value corresponds to the
basis function that should be added to give the greatest marginal
improvement in cost. This gives a prescription for adding a
basis function to extend the model.

We can similarly find a prescription for removing an existing
basis function from the model by considering the (Lagrangian)
dual problem. That is,

maximize − log L(λ) + µT (u − λ) subject to µ j = w j , j ∈ B

where the w = 0 but are kept as parameters and λ = λ(µ). If we
set u = 0 immediately then the Kuhn–Tucker conditions show
that the Lagrange multiplier for the constraints in this problem
is a dual variable of λ and so selecting the smallest existing λ j
in absolute value as the variable to remove from the basis will
do the least damage to the cost.

The above information gives a means by which an iterative
scheme for expanding and shrinking model size can operate.
Following [21] the ‘best’ model over all model sizes can
be chosen as the one which minimizes a description length
criterion to be described in the next section.

3.2. Description length

Rissanen’s [22] minimum description length principle can
be used to discriminate between models of different size for the
same data set by comparing the cost of describing the data in

2 One would expect the cost function to be the description length given
later in (14). Minimizing (14), however, can result in a difficult optimization
problem. This is particularly true for model function approximations where
parameters appear nonlinearly. It is more convenient, therefore, to carry out
the subset selection using only the likelihood in (5) and then calculating the
description length later to rank the models and solve the “argmin” problem for
model selection. This approach although sub-optimal is actually quite effective
in practice in finding parsimonious but well behaved models.
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terms of code length. Judd and Mees [21] apply this principle
to discriminate between nonlinear radial basis function models
of different size and here we extend these ideas to discriminate
between Markov process models.

To formulate the model description length consider the
fact that a data set has a certain code length necessary for
its description, i.e., the cost of representing the data using
floating point number representations. Alternatively, one can
consider a model describing the data and calculate the cost of
representing the prediction errors of the model plus the code
length necessary to represent the model, or its parameters,
at a certain precision. We call the code length of the model
plus data (errors) the description length. The model with the
minimum description length is chosen as the ‘best’ model. This
is the minimum description length principle. In our experience,
however, it is better to use information criteria as a screening
method to identify a good set of plausible models.

The total description length for a realization z is

C(z, λ) = C(z|λ) + C(λ) (8)

where the data code length can be approximated by [22]

C(z | λ) = (− log P(z | λ)) ≈ − log L(λ, z) (9)

the negative log likelihood of the data.3 The code length needed
to specify the parameters λ is [21]

C(λ) ≈

k∑
j=1

log
γ

δ j
. (10)

The parameter γ can be interpreted as the exponent in a floating
point representation of the parameters relative to the range
of the values of the estimated parameters [26]. The vector
δ represents the precision with which the model parameters
are specified; however, we will shortly see that these can be
optimized-out in a consistent manner. In contrast, γ is a free
parameter with typical values between 1 and 32. There is
actually no strict upper bound on γ but γ = 32 corresponds
to model parameters taking values in the range between 10−9

and 109 which seems adequate for almost all practical purposes.
(See Appendix A in [21] for a more thorough and technical
discussion.) In nonlinear time series reconstruction applications
under Gaussian noise assumptions a value of γ = 1 tends to
suggest larger models and a value of γ = 32 smaller models
in terms of the number of basis functions. The model class and
likelihood we study is non-Gaussian and so in the examples
to follow we study the effect on optimal model choice by
considering γ in the range 1 ≤ γ ≤ 32.

We can bound the description length by considering
the maximum likelihood parameter values λ̂ so that (9)
satisfies [22]

C(z | λ) ≤ C(z | λ̂) +
1
2
δT Qδ (11)

3 The analogy of coding a model plus errors to picture description length is
lost in our example since we do not have a predictive model as such, i.e., a
model which provides a pointwise prediction of the time series. However, since
the mathematics depends on a likelihood function we can still use the MDL
principle to discriminate between competing stochastic process rate models.
where the Hessian Q = DλλC(z | λ̂). As noted above we
eliminate the precisions δ by optimization. Rewrite (8) as

C(z, λ) ≤ C(z | λ̂) +
1
2
δT Qδ + k log γ −

k∑
j=1

log δ j . (12)

The right hand side can be minimized with respect to δ and the
optimal precisions δ̂ are the solution to

(Qδ) j = 1/δ j . (13)

This equation can be solved numerically using, for example,
Newton’s Method. A useful initial condition is δ = 1/

√
Qi i ,

which itself is sometimes a good approximation to the solution.
The approximate upper bound to the description length of a

model with k parameters can then be written as

Sk(z) = − log L(λ̂, z) +

(
1
2

+ log γ

)
k −

k∑
j=1

log δ̂ j . (14)

For each model obtained using the selection methods of the
previous section we can calculate Sk(z) and rank the various
models. The model with the minimum Sk(z) is chosen as the
optimal model.

We note that (14) depends on the number of data in the time
series in addition to the number of parameters in the model. In
the examples we will investigate this dependence on data length
for short time series.

It is interesting to note that, asymptotically, the description
length criterion can be simplified to the form [22]

Mk(z) = − log L(λ̂, z) +
k

2
log N + O(k) (15)

where N is the number of data. This expression is essentially
the same as the Schwarz Information Criterion (SIC) [29] also
known as the Bayesian Information Criterion (BIC). A related
criterion for model selection is given by Akaike’s (AIC), an
information criterion which can be written as [28,22]

Ak(z) = −2 log L(λ̂, z) + 2k. (16)

Eqs. (15) and (16) are presented solely to place the description
length in context and it is (14) which is used and investigated in
the examples where the length of the time series is quite short.

4. Examples

We will study the feasibility of the above methods using
two examples from population biology. The first example
describes simple logistic population growth and the system
model belongs to the class of nonlinear models we aim to
reconstruct. The second example is a predator–prey system
where we attempt to reconstruct the dynamics of the prey
population using only observations of the prey population.
In this case the true system equations used to generate the
time series do not belong to the polynomial model class with
which we attempt to model the data. The lack of knowledge
of the predator population also requires using the idea of
embedding [32] as applied to stochastic signals [33,34] in order



194 D.M. Walker, G. Marion / Physica D 213 (2006) 190–196
Fig. 1. Typical simulation of the logistic birth–death population model.

to reconstruct a suitable phase space from the prey population
measurements.

4.1. Logistic birth–death population model

The logistic model describes general population growth in
the absence of immigration and emigration, i.e., only birth and
death processes are considered. The birth and death rates are
given by polynomial functions of the population, namely

B[N (t)] = N (t)(a1 − b1 N (t))

D[N (t)] = N (t)(a2 + b2 N (t)).

The state space is one dimensional with the state at time t
being given by N (t). The population N (t) → N (t) + 1 with
probability B[N (t)]/(B[N (t)]+ D[N (t)]), or, N (t) → N (t)−
1 with probability D[N (t)]/(B[N (t)] + D[N (t)]). The time
between birth and death events is drawn from an exponential
distribution, i.e., δt = − log(u)/(B[N (t)] + D[N (t)]) where u
is a uniform random variable in (0, 1). A typical simulation [1]
with N (0) = 1, a1 = 2.2, a2 = 0.2, b1 = b2 = 0.1 and
tmax = 15 is shown in Fig. 1.

We assume the process rates can be represented by
polynomial functions of maximum order 4 and apply the
methods outlined above (cf. the order 2 polynomial in the
system model used to generate data belongs to this class
of functions). In Table 1 we show the model representation
selected as the best model using (14) for different lengths of
data sets and values of γ . An entry of Table 1 is interpreted
as follows: (x A, yB) represents a birth rate model with x basis
terms selected with A the highest order of polynomial basis
function. yB describes the selected death rate model. This is
not a unique representation for each model but does serve to
summarize the degree of nonlinearity of the selected model.
For example, the representations a0 + a1 ∗ x + a3 ∗ x3 and
a0 + a2 ∗ x2

+ a3 ∗ x3 would both be summarized by 33. The
true model representation takes the form (22, 22).
Table 1
Size of selected birth–death polynomial models by description length for
varying γ and data lengths N

N = 50 N = 100 N = 200 N = 300

γ = 20 (54, 43) (44, 23) (54, 33) (54, 33)

γ = 21 (10, 10) (44, 23) (54, 33) (54, 33)

γ = 22 (10, 10) (10, 10) (44, 23) (44, 23)

γ = 23 (10, 10) (10, 10) (44, 23) (44, 23)

γ = 24 (10, 10) (10, 10) (10, 10) (44, 23)

γ = 25 (10, 10) (10, 10) (10, 10) (44, 23)

(x A, y B ) is interpreted as follows: in the birth model there were x basis
functions selected with A being the highest order of the polynomial basis
function. Similarly y B represents the corresponding values for the selected
death model. The true model has the representation (22, 22).

Examining Table 1 we see that the true model is not chosen
as the best model given the data. We see also that for smaller
data sets and increasing γ , simpler model representations are
favoured by the minimum description length principle. This is
reminiscent of the phenomena observed in nonlinear time series
reconstruction where larger γ is known to be a stronger penalty
for increasing model size.

It is interesting to discuss reasons why the true model is not
selected as the best according to MDL despite belonging to the
model class under consideration. We are dealing with finite time
series and so the approximations which lead to the derivation of
(14) are being stretched and may not be entirely valid when we
apply them to short data sets.

A second cause of incorrect model identification can be
noise corruption in the time series. In this system there is
no artificial noise added to the data but noise is inherent in
the model itself and the time series are essentially stochastic
signals. It is possible to approximate stochastic process models
with systems of deterministic ode’s using moment closure
techniques [5]. One could then consider the data as signals
from a deterministic system contaminated with a high level of
dynamic noise which would exacerbate selection problems with
MDL.

It is well known in problems of reconstructing predictive
deterministic models from short noisy time series that
description length curves are non-smooth near the minimum
and the true model is often not discovered. For example, in
Judd [35] it was demonstrated that the best MDL-selected
model was often a degenerate model in the sense that it could
be rewritten as iterates of the true model, i.e., the fitted model
could be expressed as the true model applied to itself a number
of times. Despite having more parameters these degenerate
models were fitting the particular realization of the system
better under a one-step prediction error than the true model due
to using more information from the past resulting in a lower
description length.

In Fig. 2 we show the values of description length calculated
for different models using γ = 1 and sets of data of differing
lengths. The value of (14) for the true model representation
is shown by the dotted line in each case. We see that the
true model representation is not the model with minimum
description length but does give a MDL value close to the
minimum and so we suggest using MDL as a screening
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Fig. 2. The figure shows the results of using (14) with γ = 1 for different
lengths of data sets presented to the selection algorithm. The horizontal dotted
lines indicate the value of description length returned by the true model
structure for each data set. We see that in all cases the true model is not the
one with minimum description length.

process for candidate models rather than selecting a definite
model representation. Furthermore, if the intended application
permits, then an approach involving model averaging may be
worthwhile.

4.2. Predator–prey population models

In ecological and biological population modelling there
is great interest in the dynamics of interacting populations.
In particular, much study has been pursued considering
predator–prey behaviour of two interacting species. Early
representations led to the development of what are now referred
to as Lotka–Volterra models [1]. An example of a stochastic
Lotka–Volterra-type model is

B1 = X1(1.5 − 0.01X1) and D1 = 0.0833X1 X2

B2 = 0.01X1 X2 and D2 = 0.25X2

where B1 and D1 represent the birth and death rates of the prey
population X1, and B2 and D2 respectively represent the birth
and death rates of the predator population X2. This particular
representation and set of parameters gives rise to stochastic
cycles of the populations which can be sustained for several
periods [1]. A typical realization of the prey population is
shown in Fig. 3.

Of interest in ecology is trying to discover representations
for the birth and death processes of one species in the absence of
knowledge of the competing species. The ideas on process rate
reconstruction presented in this paper may provide a partial step
forward in addressing this question. We attempt to reconstruct
the behaviour of the prey population from an observation of
a realization of the above stochastic Lotka–Volterra model.
The observations will consist only of time series for the prey
Fig. 3. A typical simulation of the prey population of a Lotka–Volterra-type
model.

Fig. 4. The model selection criterion (14) with respect to model size with
γ = 1. The MDL model is a nonlinear representation with a total of 25 basis
functions.

population. We will consider polynomial representations of
the prey birth and death process rates and consider s(n) =

(X1(n − 150), X1(n)) as the system state. The lag of 150 is
chosen to be approximately 1/4 the number of data points in
a typical cycle. In this embedded space, for example, possible
32 representations include X1(n) + X1(n − 150) + X1(n)2 and
a0 + X1(n − 150) + X1(n − 150)2.

In Fig. 4 we show the results of considering polynomial
representations of the process rates with maximum order 4
and calculating (14) with γ = 1. The model selected using
MDL has total model size equal to 25 and is represented
by (144, 114), a nonlinear representation with degree 4
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polynomials in both the reconstructed prey population birth and
death process rates.

5. Conclusion

Markov processes are widely used in modelling population
dynamics, epidemiology, chemical reactions and systems of
interacting agents. Here we have demonstrated how process
rates within this stochastic framework can be approximated
using polynomial functions. The problem of model selection
was addressed by adapting methods based on information
criteria used in nonlinear time series reconstruction. The
methods were illustrated using two idealized examples from
population biology. We developed methods of model selection
for approximating the process rates of Markov process models
focusing on the case of complete data. The calculation of the
likelihood is much harder in the case of missing data and new
methods must be developed. Nonetheless, it is anticipated that
much of the framework for model selection presented here will
be applicable when only incomplete observations are available.
The scope for modelling systems using a stochastic framework
is wide and we believe the methods introduced here can aid
their diverse application.
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