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Abstract

A recently published multivariate Extreme Value Theory (EVT) model [Heffernan, J.E., Tawn, J.A., 2004. A conditional approach for
multivariate extreme values (with discussion). Journal of the Royal Statistical Society Series B 66 (3), 497–546] is applied to the estima-
tion of population risks associated with dietary intake of pesticides. The objective is to quantify the acute risk of pesticide intake above a
threshold and relate it to the consumption of specific primary food products. As an example daily intakes of a pesticide from three foods
are considered. The method models and extrapolates simultaneous intakes of pesticide, and estimates probability of exceeding unob-
served large intakes. Multivariate analysis was helpful in identifying whether the avoidance of certain food combinations would reduce
the likelihood of exceeding a threshold. We argue that the presented method can be an important contribution to exposure assessment
studies.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In this article we consider the characterization and esti-
mation of the risk of exposure to toxic substances present
in food. Many substances, such as pesticides, occur only
rarely in human food, but still the occasionally found high
levels are a cause of concern, and food authorities need to
assess the risks associated with their intake. In animal stud-
ies health effects occur due to large exposures to hazardous
substances. Whereas some occupational groups (e.g., farm-
ers) may run a direct risk of pesticide exposure, the most
likely source of exposure for the general public is food.
Food safety authorities are required by the EU General
Food Law to base regulations on risk analysis. Any mea-
sures taken to reduce risk (risk management) should be
based on risk assessments, and these in turn should be
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based on the available scientific evidence. Whereas pesti-
cide residues are typically only found at low levels in prod-
ucts on the consumer market and often do not seem to
present a large risk, food safety authorities still need to
reassess risks when new data arrive. In this paper we pres-
ent sophisticated tools, and apply it to pesticide data which
were available to us.

In risk assessment a distinction is made between acute
risks, concerning health effects which arise from a single
or short-term intake, and chronic risks, related to long-
term intake. For example, high doses of organophosphates
cause neurological effects after a single intake in animal
studies (Brown and Brix, 1998), whereas many pesticides
have carcinogenic effects in animals after a long-term expo-
sure (Dich et al., 1997). The multivariate methods we apply
in this paper are relevant in the context of acute risk assess-
ment, based on intakes for a random person at a random
day. For chronic risk, residue concentrations can be aver-
aged over time. This means that such risks can be assessed
by just multiplying the food consumptions with the average
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1 The pesticide is iprodione, and the food products A–E are lettuce,
grape, currant, cucumber, and sweet pepper, respectively. However, we
want to stress that arbitrary thresholds have been used, and that our
analysis omits many practical issues, and does not constitute a full risk
assessment. The example only serves to illustrate the proposed
methodology.
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residue concentration, and then summing the intakes over
all consumed products. Therefore, for a chronic risk anal-
ysis, we can use univariate methods.

Risk assessment is often hampered by the fact that avail-
able data sets typically have little information about
extreme situations. In practice large residue levels are rarely
observed, which makes estimation of acute risks hard to
achieve. Yet the purpose of risk analysis is to make state-
ments about the probability that such rarely observed situ-
ations will occur. Therefore it is often necessary to
extrapolate from the data, and the statistical basis on which
to make such extrapolations is called Extreme Value The-
ory (EVT). EVT is a well established framework (Kotz
and Nadarajah, 2000; Embrechts et al., 1997) which
evolved during the last 50 years into a coherent theory.
EVT models have been widely applied in many areas
(financial, environmental) where maximal or minimal
values (called extremes) are relevant, but to our knowledge
they have hardly been applied to food risks—a recent
application concerns the exposure to heavy metals from
seafood (Tressou et al., 2004). However it should be noted
that whilst there is a developed body of theory and applica-
tion in the univariate case, multivariate EVT is the subject
of ongoing research (Coles and Tawn, 1994; Capéraà et al.,
1997; de Haan and de Ronde, 1998; Coles et al., 1999;
Heffernan and Tawn, 2004; Dupuis, 2005; Martins and
Ferreira, 2005).

A potential difficulty therefore arises from the fact that
exposure to pesticide may be caused from eating several
products containing pesticide simultaneously. Therefore
the total intake resulting from all relevant food products
should be modelled. One approach is to use a univariate
EVT model for the total intake. This, however, obscures
the source of the pesticide intake, and does not answer
questions about the influence of individual foods or combi-
nations of foods. Consumptions of different food products
are typically correlated (Paulo et al., 2005), and therefore
also the pesticide intakes from these foods will be corre-
lated. A multivariate model should be able to model corre-
lated intakes. In a recent paper a promising method that
models multivariate extreme values was presented (Heffer-
nan and Tawn, 2004). The method models relationships in
the tails of the joint distribution (extreme values in EVT
jargon) between pairs of variables and unlike other multi-
variate EVT methods can be used for tail dependence or
independence. This paper aims to show how the metho-
dology can be used in dietary exposure assessment, and
furthermore we extend the method to the calculation of
food risks, conditional on the amounts of eaten products.

2. Data

To illustrate this multivariate extreme intake method we
use real pesticide concentration data and food consump-
tion data. However, to avoid the suggestion of a full risk
assessment study, we have coded the chosen pesticide and
the chosen food products. Pesticide intakes have not been
measured directly, so they are derived from datasets on
food consumption and on residue levels. Consumption
data are collected in food consumption surveys (Verger
et al., 2002), in this case the Dutch National Food Con-
sumption Survey of 1997/1998. In that survey 2564 house-
holds were selected as part of a stratified random sample
and each individual asked to write down all the food that
was consumed over 2 days (DNFCS, 1998). A total of
6250 Dutch individuals completed the questionnaire, which
also contained other information about the consumers
such as their body weight in kilograms (kg BW). Compos-
ite food products such as pizza were transformed into
amounts of raw agricultural commodities (e.g., tomato,
mushrooms), by use of a food conversion table (van
Dooren et al., 1995). In order to work with independent
observations, the daily consumption data (in g/kg BW)
are restricted to one randomly chosen individual in each
household. Although in our residue monitoring dataset
53 foods were found that contained the chosen pesticide
in at least one sample, we restrict our analysis to the three
main contributors (A, B and C), and, to further illustrate
the impact of correlations between intakes of different food
products we also show an example with two additional
products (D and E) from the same dataset.1

Residue concentration data comes from monitoring pro-
grams run at several stages of the agro-food chain (van
Klaveren, 1999). Monitoring data essentially is a collection
of measurements of residue concentrations present in
samples of raw agricultural products, and it is expressed
in milligram per kilogram (mg/kg). A typical feature of
monitoring datasets is their sparseness: toxic substances
are rarely found in food samples, either because they are
not present or because the concentrations are below the
limit of reporting. The total number of observations for
the pesticide in the three chosen foods A, B and C was
975, 712, and 131, respectively, but only 293, 171 and 36
of these were positive (non-zero) measurements. In this
study the non-detects in the sample have been replaced
by the value corresponding to the limit of reporting
(0.01 mg/kg), which of course corresponds to a worst-case
view of the situation. Food processing, such as washing or
boiling vegetables or fruit, is likely to reduce or eliminate
the residue present in food, but in this study we ignore such
factors and work with original concentration measure-
ments (again as a worst-case scenario). In a realistic risk
assessment (outside the scope of this paper) a sensitivity
analysis can easily be conducted to investigate the effects
of processing factors which reduce residue levels, or setting
non-detects at zero instead of LOR.



Fig. 1. Bivariate plots for daily pesticide intakes (lg/kg BW) from foods A, B and C. All intakes smaller than 10�4 are set to 10�4.
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A dataset of 2564 daily pesticide intakes (in lg/kg BW)
was constructed by multiplying the (daily) consumption
data for each food (in g/kg BW) by pesticide concentration
values (in mg/kg) randomly sampled from the residue
monitoring database for that food. Total intake was then
obtained by adding the intakes associated with each food.
This provided a dataset of total daily intake and daily
intakes for each food type used in the multivariate analysis.
Bivariate plots of this dataset are shown in Fig. 1. The
uncertainty due to the use of randomly selected consumers
and residues is addressed in an uncertainty analysis in
Section 3.4.

3. Methods

We first explain the traditional Monte Carlo estimate of exposure
percentiles using the empirical data (Section 3.1). Then we introduce the
univariate EVT approach (Section 3.2) used in this paper, both for the
sum of the univariate intakes, and for each food separately as a prepa-
ration for the multivariate EVT approach (Section 3.3). The bootstrap
method, as explained in Section 3.4, allows comparison of the methods by
calculating confidence intervals around the estimates (e.g., of probabilities
and quantiles) obtained by each method. Finally, a new method is
described to characterize the probability of intakes exceeding a threshold
level conditionally as a function of the consumption of individual food
products (Section 3.5). All methods described in this section were imple-
mented in Matlab 7.0 (MathWorks, 2004).

3.1. Exposure assessment using empirical data

Empirical quantiles were calculated for the pesticide intakes in the
example dataset (constructed as described in Section 2), for each food and
also for the total intake. Quantiles are specified using cumulative proba-
bilities, from 0 to 1, e.g., q0.99 is the intake (in lg/kg BW) which is not
exceeded in 99% of the cases. For a vector x of n intakes, quantiles are
calculated as follows: The intakes ordered by size {x(1),x(2), . . . ,x(n)} cor-
respond to (0.5/n), (1.5/n), . . . , ((n � 0.5)/n) quantiles. Linear interpolation
is used to compute quantiles for probabilities between (0.5/n) and
((n � 0.5)/n). The minimum intake is assigned to quantiles for probabili-
ties below (0.5/n) and the maximum intake is assigned to quantiles for
probabilities larger than (n � 0.5/n). The maximum intake in the dataset
was also recorded.

Probability of intake smaller or equal to a certain value was given by
the proportion of intakes in the data below or equal to that value, e.g.,
p0.01 is the proportion of intakes in the data that do not exceed 0.01 lg/kg
BW.
3.2. Univariate EVT approach: the generalized Pareto

distribution

Extreme value theory (EVT) is essentially about extrapolation. The
theoretical basis is that, given a wide class of continuous distributions,
extreme values from these distributions can be modelled in a unified way.
The limiting distributions for the extreme values from univariate distri-
butions (including for example the lognormal, the normal and the expo-
nential distributions) are the Generalized Extreme Value (GEV) family,
and the parent distributions are said to lie in the domain of attraction of
a GEV distribution (Pickands, 1975). Rather than modelling specific
extreme values such as the maximum value in a dataset, we choose
to model the probability of exceeding a threshold, which in food risk
analysis could be e.g., an Acute Reference Dose or a lower dose. If
our data are assumed to come from that class of distributions in the
domain of attraction of a GEV, then for a sufficiently high threshold the
conditional distribution P(X > u + xjX > u) can be approximated by a
generalized Pareto distribution (GPD) (Pickands, 1975; Coles, 2001):

PðX > uþ xjX > uÞ ¼ 1þ n x
b

h i�1=n
. Here u is a suitably chosen high

threshold for X, and b and n are respectively scale and shape parameters,
with b > 0. Practical application requires choice of the threshold u and use
of standard approaches to estimate the parameters b and n. Diagnostic
techniques exist to judge whether u is chosen high enough (Coles, 2001).



Table 1
Empirical distribution and quantiles of daily pesticide intake for foods A,
B and C; px = P(X 6 x) and quantiles qa = P�1(a) in lg/kg BW

Summary Food A Food B Food C

p0.00 [0.89,0.90] [0.61,0.65] [0.73,0.75]
p0.001 [0.89,0.91] [0.70,0.73] [0.84,0.86]
p0.01 [0.94,0.95] [0.82,0.84] [0.93,0.95]
p0.10 [0.98,0.98] [0.95,0.97] [0.97,0.98]

q.75 [0.00,0.00] [0.00,0.00] [0.00,0.00]
q.90 [0.00,0.00] [0.02,0.03] [0.00,0.00]
q.95 [0.01,0.02] [0.05,0.09] [0.01,0.04]
q.99 [0.27,0.79] [0.52,1.0] [0.18,0.52]
Max [4.6,23.7] [3.6,18.3] [2.2,17.8]

Bracketed values correspond to 90% confidence intervals based on boot-
strap samples.

M.J. Paulo et al. / Food and Chemical Toxicology 44 (2006) 994–1005 997
The upper end point of the distribution is1 if n P 0 and u � b/n if n < 0.
In the univariate approach X is taken to be the sum of intakes from the
various food products. After estimating parameters b and n, quantiles of
the estimated GPD are calculated.

3.3. Multivariate EVT approach: the Heffernan–Tawn

(HT) model

As noted earlier multivariate extreme value analysis is much less
developed than in the univariate case. However, recently Heffernan and
Tawn (2004) introduced a conditional approach to model and extrapolate
multivariate extremes. Traditional approaches in multivariate EVT (de
Haan and de Ronde, 1998; Capéraà et al., 1997) rely on the assumption that
all variables become large at the same rate. The HT model, on the other
hand, is applicable to any set of variables, which may include dependent
and independent subsets. The method uses a semi-parametric model for the
univariate distribution of each variable, and then models the distribution of
extremes of a variable conditionally on the values taken by another variable
in the dataset. Therefore it applies to pairs of variables at a time.

Starting with a random vector (X1, . . . ,Xp) the HT method consists first
in fitting the generalized Pareto distribution (GPD) to the extremes of each
variable, thereby obtaining p univariate distributions for the tail. A semi-
parametric distribution is then defined for each variable, based on its
empirical distribution in the centre and on the GPD model for the tail.
Then each variable is transformed to a Gumbel scale and models are fitted
to one variable conditionally on the value of one other variable, with the
restriction that this other variable has a value in the right tail, and the
procedure is repeated for each possible pair. This tail is determined by
another threshold, which we label uHT because it is specific for the Hef-
fernan–Tawn conditional model. The conditional model, run for
uHT = 0.001, 0.01 and 0.1, produced identical results so that the choice of
this threshold is not critical. These thresholds correspond to high marginal
quantiles as shown in Table 1. The conditional models are then used to
extrapolate to new values in the Gumbel scale. The new extrapolated
values are then back-transformed to the original scale, and used to esti-
mate tail probabilities and quantiles. The method is described in more
detail in Appendix 1.

3.4. Uncertainty analysis

Uncertainty is the lack of knowledge the risk assessor has about the
state of the system. It is important to assess the uncertainty in the final
results of risk assessment in order to avoid false confidence in the results.
Food risk assessment is often hampered by lack of adequate data.
Therefore one important aspect of uncertainty analysis is to describe how
the ultimate results depend on the limited data availability. Bootstrap
Table 2
Upper posterior distribution for daily total pesticide intake (i.e., summed ove
Generalized Pareto distribution fitted to the sum of daily intakes (GPD, colum
qa represents the quantile of 100a% in lg/kg BW

Percentile Method

Data GP

q.900 0.06 [0.06,0.09] 0.06
q.950 0.22 [0.19,0.32] 0.18
q.975 0.59 [0.48,0.86] 0.46
q.990 1.2 [1.1,2.4] 1.6
q.999 6.1 [4.5,11.4] 37
Max 11.0 [6.5,25.6]

P
P

X i > 1ð Þ 0.016 [.012,0.021] 0.07
P
P

X i > 10ð Þ 0.0004 [0,0.001] 0.00
P
P

X i > 60ð Þ 0 0.00

Point estimates from the working sample are given, as well as 90% confidence
a For uHT = 0.01. Other values uHT = 0.001 and 0.1 produced similar values
methods (Cullen and Frey, 1999; Efron, 1979) can be used for this purpose
with any clearly described data-based approach such as the present model.
In this study the uncertainty in the estimated quantiles and other results
was quantified using a non-parametric bootstrap procedure. A total of 100
samples of size 2564 were obtained. In each bootstrap sample the amounts
eaten by 2564 individuals (re-sampled, with replacement from the original
set of 2564 individuals) were combined with random concentrations from
the set of concentrations in the monitoring data, in a similar way as
described in Section 2. The variation present in the bootstrapped samples
was used to create 90% confidence intervals for pesticide intake quantiles
qp, and probabilities pm of exceeding a threshold m. The bootstrap was used
to calculate confidence intervals for the estimated probabilities and
quantiles obtained with each of the three methods in Sections 3.1–3.3 (see
Table 2).

3.5. Probability of exceeding a threshold

So far we have considered the intakes xi of pesticide from three different
food sources and the probability that the total intake will exceed m. How-
ever, for practical applications we extend the HT method to model this
probability as a function of the consumed amount of a certain food
product. So we are interested in the probability of exceeding a specific total
intake conditional on eating a fixed quantity of a food: Pf

P
ðX jÞ > mjhig,

where hi is the amount of food i (i.e., A, B or C) consumed in one day.
For a fixed consumed amount hi, corresponding intakes Xi are

obtained by combining hi with empirical concentrations of the pesticide.
Other intakes Xj, j 5 i are generated either empirically for Xi 6 uHT, or by
the conditional model for Xi > uHT, where uHT is the threshold used in the
r foods A, B and C), observed in the data (column 2), estimated with the
n 3) and estimated with the Heffernan and Tawn method (H–T, column 4);

D H–Ta

[0.058,0.084] a

[0.16,0.25] 0.19 [0.17,0.27]
[0.41,0.71] 0.45 [0.39,0.69]

[1.38,2.76] 1.6 [1.22,2.78]
[25,95] 52 [27,160]

4 [0.069,0.089] 0.075 [.074,0.099]
3 [0.002,0.004] 0.003 [0.002,0.004]
07 [0.0005,0.0013] 0.0009 [0.0006,0.0015]

intervals based on bootstrap.
.
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conditional model of Heffernan and Tawn (as described in Section 3.3).
Each generated vector (of the values of intakes from each food) is also
assigned a weight based on empirical and model-derived distributions. The
probability of exceeding a threshold is then obtained by averaging the
outcomes with their weights. The algorithm is described in detail in
Appendix 2.

4. Results

Table 1 shows the univariate empirical probabilities (see
Section 3.2) for pesticide intakes from consuming three
foods A, B and C. The proportion of zero intakes in the
bootstrap samples is around 90% for food A, 63% for food
B and 74% for food C. Only 2–3% of the consumers of any
of the three foods could have potentially ingested more
than 0.1 lg/kg BW of pesticide in a single day. In fact,
the maximum pesticide intakes observed in the bootstrap
samples were 23.7 lg/kg BW for food A, 18.3 lg/kg BW
for food B and 17.8 lg/kg BW for food C. For illustration
we consider a low threshold value of 10 lg/kg BW and a
high threshold value of 60 lg/kg BW. Note that these
thresholds are not related to known levels of acute risk,
but are only used as an example how the methodology
works when only few data, or no data at all, exist above
the threshold value. This only describes the situation for
each food separately, but in order to quantify the results
of simultaneous occurrence of such high values we need
to apply a multivariate model.

Fig. 1 shows 2564 pesticide intakes for pairs of foods.
Large intakes can be caused either by consuming a large
amount of a food with a moderate pesticide content or
Fig. 2. Empirical distributions (dotted line) and GPD-fitted (solid line) for dail
shown (vertical line).
by consuming a moderate amount of a food with a high
pesticide content. Simultaneous intakes of pesticide from
the consumption of two or more foods containing it are
observed, also for large values. In the case of foods B
and C some simultaneous intakes lie on a straight line,
probably due to the occurrence of the two foods in fixed
proportions in a recipe.

The mixed empirical/GPD model fitted to the univariate
intake distributions (from step 1 of the Heffernan and
Tawn method, see Section 3.3 and Appendix 1) are
shown in Fig. 2. We conclude that 0.01 lg/kg BW is a suit-
able threshold uGPD to separate the empirically modelled
and the GPD-modelled parts of these marginal fits.
The scale and shape GPD parameters were estimated as
b = {0.018,0.021, 0.047} respectively for foods A, B and
C and similarly n = {2.000,1.136, 1.066}.

The HT model was fitted to all pairs of bivariate data,
and a total of 10,000 extrapolations generated for the mar-
ginal tails and the conditional models are shown in Fig. 3 in
the Gumbel scale (step 4 in Appendix 1).

Fig. 4 shows a randomly selected 103 of the 104 extrap-
olations of conditional intakes in the original scale of
intakes (step 5 in Appendix 1). The intakes in the vertical
axis are conditional on the intakes in the horizontal axis
being above threshold uHT. The plots also show the original
data for comparison, shown as dots, with the only extreme
shown as a triangle. Extrapolated total intakes larger than
10 lg/kg BW were classified as extreme values, as they are
relative extremes in the dataset, and are shown as stars in
the figure. Extrapolated total intakes lower than 10 lg/kg
y pesticide intakes (lg/kg BW). The marginal threshold uGPD = 0.01 is also



Fig. 3. Daily pesticide intake data (dots) and extrapolations of the 99% tail (circles), in the Gumbel scale. The vertical solid line indicates the conditional
threshold uHT as well as the extrapolation threshold v, which are both equal to 0.01 lg/kg BW in this example.
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BW are displayed in the figure as circles. The amount of
extrapolated extremes clearly depends on the GPD-fit
(Appendix 1—step 1) to the variable which is fixed in the
conditional model (i.e., variable shown in the horizontal
axis in Fig. 4). In this example, many more extremes are
extrapolated in models conditional on values of food A,
because the GPD model for food A has a longer tail than
the models for the other two variables.

Two types of calculations were performed based on
these extrapolations—calculation of the probability that
total intake exceeds the low and high thresholds introduced
in Section 4 and calculation of tail quantiles. The calcula-
tion of tail probabilities and quantiles was based on the
extrapolations at the tail using Eq. (1) shown in Appendix
1. A comparison of the outcomes of the HT method with
the two other methods (empirical data, and univariate
EVT model) is given in Table 2. Both EVT model results
agree with the data, especially for lower quantiles. For
example, 95% of total intakes are estimated to be lower
than 0.2 lg/kg BW. However, although the higher thresh-
old of 60 lg/kg BW was never exceeded in the observed
data, the EVT models estimate the probability of exceeding
this value as 0.1%.

Finally we analysed the effect of eating different
amounts of the three foods to acute exposure to the pesti-
cide. Some consumers combine two or three foods, and
therefore the corresponding pesticide intakes are associ-
ated. For relatively low intakes we can observe this associ-
ation directly in the data, for large intakes this association
can be predicted by the conditional model. The algorithm
used to calculate exposure is given in Appendix 2. The
probabilities of an intake greater than 10 or 60 lg/kg BW



Fig. 4. Daily pesticide intake data (dots and triangle) and extrapolated intakes of the 99% tail (circles and stars), original scale. Intakes exceeding 10 lg/kg
BW are marked as a triangle (data) or as a star (extrapolations). The vertical solid line indicates the conditional threshold uHT as well as the extrapolation
threshold v, which are both equal to 0.01 lg/kg BW in this example.
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as a function of consumption of one of the foods is
shown in Fig. 5. The amounts consumed are given in gram
per kilogram body weight (g/kg BW). Among the 2564
consumers in the dataset the maximum amounts consumed
were 2.4, 14.8 and 2.8 (g/kg BW) for foods A, B and C,
respectively. In Fig. 5 values are shown up to a maximum
of 6 g/kg BW (300 g of a commodity for a 50 kg person,
600 g for a 100 kg person). Large pesticide intakes in this
case were more likely to occur for a large consumption of
food A—consuming 6 g/kg BW of food A would lead to
a 25% probability of exceeding an exposure of 10 lg/kg
BW, and nearly 2% probability of exceeding 60 lg/kg
BW. Food B and food C are safer commodities, as the
probability of exceeding an amount of 60 lg/kg BW by
consuming large amounts of these foods is negligible.
In the previous example the correlations between the
intakes were not very strong, but nonetheless the multivar-
iate analysis reveals a stronger association between food A
and B than between A and C. Next, we show the applica-
tion of the conditional model in another example using
data from the Dutch National Food Consumption Survey
of 1997/1998 where there is a strong positive correlation
between two different food stuffs for small intakes and
slightly negative correlation in large intakes. Fig. 6 shows
the relation between pesticide intakes from eating two
other commodities, (foods D and E) and the GPD fit to
the two univariate empirical distributions. The scale and
shape GPD parameters for foods D and E were estimated
as b = {0.022, 0.005} and n = {�0.037, 0.388}, respec-
tively. Pesticide intakes from food D up to 0.005 lg/kg



Fig. 5. Probability that daily pesticide intake from all foods exceeds 10 lg/kg BW (left) and 60 lg/kg BW (right), conditional on the consumption (g/kg
BW) of each food.
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BW are positively correlated with intakes from food E. The
positive correlations are mainly caused by some patterns of
a fixed relation (straight line visible in last plot of Fig. 6),
and are probably related to standard recipes containing
small amounts of the two ingredients. Above the limit of
0.005 the intakes from food D are negatively correlated
with intakes from food E (mainly due to many null intakes
for E). The extrapolations of intakes from food E condi-
tional on intakes from food D in Fig. 6 display a slight neg-
ative correlation for the extrapolated intakes (compare
with Figs. 3 and 4). We do not make a complete study of
the example, but use it here to show that the conditional
tail model correctly captures the relationship in the tails
by restricting the information to that region. If univariate
EVT had been used in this example, instead of the multi-
variate HT model, the two intakes would have been
modelled independently, and the risk of exceeding a large
intake would possibly be overestimated.

5. Discussion

Extreme value distributions have long been recognised
as useful distributions in risk analysis (Konecny and Nac-
htnebel, 1985; Thas et al., 1997; Piegorsch et al., 1998;
Vose, 2000). However, the use of extreme value distribu-
tions seems more popular in some fields of applications
than in others, and food risk analysis is in this second
group. We must ask whether there are good reasons for



Fig. 6. Application to pesticide intakes from foods D and E: fit of the Generalized Pareto distribution to empirical distributions of intakes from food D
(upper left) and food E (upper right), with both marginal and extrapolation thresholds showing (vertical lines, respectively solid and dashed);
extrapolations of the 99.9% tail in the Gumbel scale (lower left) and original scale (lower right). The conditional threshold uHT = 0.01 lg/kg BW and the
extrapolations threshold are also shown (vertical lines, respectively solid and dashed).
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this lack of application. The results of this paper show that
fitting extreme value distributions to pesticide intake data
is very feasible, and provides more insight in the tail
regions that are relevant for assessment of acute risk. This
gain is due, of course, to the explicit parametric modelling
of values above a well-chosen threshold, where the data
below this threshold are just used as they are (in the form
of an empirical distribution).

One reason that extreme value methods, which are best
developed in the univariate case, have not been used much
in dietary risk assessment might be the multivariate charac-
ter of food consumption and therefore also chemical intake
patterns. The recently introduced multivariate Heffernan–
Tawn method (Heffernan and Tawn, 2004) was used with
two objectives: to extrapolate to extreme cases from
observed data and to study tail dependence among pairs
of variables. Unlike other EVT methods, it models rela-
tionships in the tails whether variables are dependent or
independent. Furthermore it can be applied to any number
of variables. The conditional model applies to pairs of vari-
ables, so different pairs of variables can have different types
of relationship. The present method can be very useful to
model dietary intake data, where there are groups of corre-
lated variables, and large values are rarely observed.

Although we have used only a small number of variables
in an exploratory way to study the applicability of the
model, this method is easily applicable to large numbers
of food products. The advantage of the bivariate condi-
tional model (one intake given another) instead of a full
joint modelling of the multivariate distribution is the
breakdown of dimension into pairs of distinct relations.
This is both advantageous in terms of numerical stability
of algorithms, and for the interpretability of results, and
the restriction to bivariate conditionality seems to present
little difficulty in practice.

A feature of the chosen extreme value methodology is
that marginal distributions can have either finite upper
bounds (e.g., food D in Fig. 6 has an upper bound
0.01 + 0.022/0.037 = 0.60 lg/kg BW) or infinite upper
bounds (all other foods, Figs. 2 and 6, see Section 3.2). This
may run contrary to the intuition that it should be estab-
lished beforehand whether an upper bound applies. How-
ever, it is a difficult matter to quantify biologically or
agriculturally plausible upper bounds. We just know that
very high consumptions and very high residue concentra-
tions are extremely unlikely. Yet, they can easily be higher
than the highest value in the available database, especially
when the quantity of data is rather limited. In general max-
imum values in the data are not suitable upper bounds, and
it seems inappropriate to exclude the possibility of more
extreme values. Nevertheless the fitting of a Generalised
Pareto Distribution has the flexibility to estimate an upper



M.J. Paulo et al. / Food and Chemical Toxicology 44 (2006) 994–1005 1003
bound when extremely high values are indeed impossible
(see Section 3.2).

In the paper we concentrate on acute risk, using just an
example compound. The use of EVT for chronic risk
assessment would be different: on the one hand it would
be easier because we need not consider a distribution of res-
idue concentrations since fluctuations in intake average out
over the long term. Therefore one can multiply the con-
sumption distributions with the average residue level, and
then sum over foods, which results in a univariate extreme
value problem. On the other hand, a long-term risk assess-
ment is more difficult because the consumption data neces-
sary for chronic risk analysis usually have a hierarchical
structure which needs to be modelled (day nested within
person). Variance components modelling can solve this
under the assumption of normality (Slob, 1993; Nusser
et al., 1996), but this problem needs still to be addressed
in the context of extreme value theory, and therefore the
issue of chronic risk is outside the scope of the current
methodology.

Practical risk assessment of pesticides is a field with a
long history (FAO, 2004) and many new developments
(Ferrier et al., 2002; Hamilton et al., 2004). Whereas prac-
tical adoption of probabilistic methods seems to be slow
due to the inertia of regulatory communities, it is recogni-
sed at the international level that further improvement
could be obtained by elaboration of procedures for proba-
bilistic modelling (FAO, 2004). This requires a tiered
system such as used in many regulatory frameworks in
which risk is first assessed by simple deterministic methods
in order to determine where more advanced (probabilistic)
modelling is necessary. Multivariate extreme value meth-
ods clearly belong to this advanced category, and are not
expected to be used routinely. However, they open the pos-
sibility of studying important questions concerning risk
associated with simultaneous intakes from multiple foods
in an objective and data-driven manner.

6. Conclusions

Multivariate EVT models are a suitable method to eval-
uate risks which are beyond the range of available data. Of
course the use of EVT models requires an act of faith in the
correctness of a model which seems inevitable in such cases,
but EVT provides a sound theoretical basis on which to do
this. The approach of Heffernan and Tawn (2004) was
found to be a flexible model that allowed visualization of
all bivariate relationships in extreme conditions. For exam-
ple, in our analysis a high pesticide intake from food A is
accompanied by a high intake from food B, but not from
food C. The probability of a daily total intake larger than
60 l/kg BW was estimated as 0.1% by applying extreme
value models, a result which could not be obtained from
direct investigation of the data. A method has been pre-
sented to calculate the probability of a total intake (from
all foods) exceeding the threshold as a function of the
amount consumed of any one food.
Appendix 1

Here we give a description of the Heffernan and Tawn
(2004) method for a random vector of pesticide intakes
from eating several foods (X1, . . . ,Xp):

1. The Generalized Pareto distribution (GPD) is fitted to
the marginal tail of each variable Xi (pesticide intakes
from eating food i) for Xi > uGPD, where uGPD is a large
threshold, for example the 0.90 quantile. A semi-para-
metric distribution function bF X i is defined for each mar-
ginal, given by the empirical distribution for Xi < uGPD,
and by the fitted GPD for Xi P uGPD. Fig. 2 shows both
the empirical distribution and pareto fit for pesticide
intakes from three foods.

2. Obtain new variables Y i ¼ � lnf� ln bF X ig. The trans-
formed Yi have a Gumbel marginal distribution.

3. Fit a conditional model to the tails of the Yi variables i.e.,
for Yi P uHT, where uHT is another threshold, not neces-
sarily equivalent (when back transformed) to uGPD. Next
all Yj, j 5 i are modelled as semi-parametric functions of
Yi: Y jji ¼ ajjiyi þ y

bjji
i zjji, where ajji and bjji are unknown

parameters, and zjji is a standardized residual, indepen-
dent of Yi, with mean ljji and standard deviation rjji. If
ajji = 0 and bjji < 0 then an alternative model is fitted,
Y jji ¼ cjji � djji ln yi þ y

bjji
i zjji, where cjji and djji are

unknown parameters. See Heffernan and Tawn (2004)
for the background of the models. First, parameters ajji,
bjji, ljji and rjji are estimated simultaneously by maxi-
mum likelihood assuming that Yjji � N(ljji(yi),rjji(yi)).
If ajji = 0 and bjji < 0 then the second model is used and
parameters bjji, cjji, djji, ljji and rjji estimated by the
same method. As a result of this conditional model,
Yjji has mean given either by ljjiðyiÞ ¼ ajjiyi þ y

bjji
i ljji,

or by ljjiðyiÞ ¼ cjji � djji logðyiÞ þ y
bjji
i ljji if ajji = 0 and

bjji < 0. Standard deviation of Yjji is rjjiðyiÞ ¼ y
bjji
i rjji.

For p variables Y1, . . . ,Yp a total ofp(p � 1) conditional
models are obtained.

4. The conditional model from step 3 can be used to
extrapolate to extreme regions. Extrapolation is per-
formed in two steps, first simulate yi > vi, where the
extrapolation threshold vi is not smaller than uGPD or
uHT. Simulate zjji � N(ljji,rjji), independently of yi.
Then, apply the semi-parametric regression model to
obtain yjji for all j 5 i. For each yi, a whole vector
(y1, . . . ,yp) conditional on yi is thus obtained. Repeat
to obtain a distribution of extrapolations. A total of p

sets of y vectors are extrapolated, conditional respec-
tively on y1, y2, etc. Fig. 3 shows extrapolations from
the conditional model for pesticide intakes.

5. Back transform the extrapolations to the original scale:
xi ¼ bF �1

X i
fexp½� expð�yiÞ�g.

We define extremes here as the set of vectors such thatP
xi > mf g, i.e., if total intake of pesticide exceeds m. We

shall call this set C. C can be partitioned into p subsets
C = ¨Ci where Ci ¼

P
xi > mf g; F X i > F X j for all j. Then
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P ðX 2 CÞ ¼
Xp

i¼1

P ðX 2 CiÞ ¼
Xp

i¼1

P ðX 2 CijX i > viÞP ðX i > viÞ

ð1Þ
This divides each item of the sum into two components, a
marginal model for the tail, i.e., P(Xi > vi), and a condi-
tional model i.e., P(X 2 CijXi > vi). Here vi is the extrapola-
tion threshold, so the calculation of tail probabilities are
based on expression (1), as the sum of a food of the two
components. Probability P(Xi > vi) is calculated from the
univariate GPD fit to Xi. The other component,
P(X 2 CijXi > vi) can be calculated from the extrapolations
where x is conditional to xi, as the proportion of extreme
points in the simulations (amount of extremes in simula-
tions divided by total number of simulations).

In the pesticide example we calculate PðX 2 CijX i > vX iÞ
as the proportion of simulations satisfying both f

P
xi > mg

and fF X i > F X j ; 8j 6¼ig.

Appendix 2

Here we describe a novel algorithm to estimate the risk
of exceeding a large pesticide intake given the consumed
amount of a food.

1. Let variable hi be the amount, in g/kg BW, of food i con-
sumed in one day, for each i 2 {A,B,C}. We take a
number of k = 12 discrete values of hi, to form a regular
grid. For each discrete value hi 2 {0.5, 1, . . . , 6} in the
grid we do the following:
(a) Generate n1 intake values by combining hi with the

empirical concentrations of pesticide. Each
observed concentration ci is given a weight corre-
sponding to its empirical probability, i.e.,, w1 = 1/
N for positive concentrations, and w1 = N0/N for
non-detects (N is the total number of concentration
samples in the dataset, and N0 is the number of non-
detects). Here all non-detects are replaced by the
limit of reporting (LOR). The resulting values are
observations from Xijhi, the intake of pesticide
through eating amount hi of food i. Each intake xi

is given the weight corresponding to the empirical
concentrations distribution. The variation in the
intakes corresponds thus to variation in pesti-
cide concentrations measured in food i. N.B.:
n1 = N � N0 + 1.

(b) If xi > uHT (where uHT is a very low value in our
example, for example 0.02) then apply the previ-
ously fitted H–T conditional model a number
n2 = 100 times to obtain {XjjXi} for each j 5 i.
We obtain a distribution of conditional Xj intakes,
j 5 i, for each {xi > uHT}. If xi 6 uHT then sample
n2 = 20 times the xj from the nearest neighbours of
xi (at a maximum distance of say 0.02), with
replacement, in the dataset of intakes (empirical
joint distribution). The sample size n2 was set
equal to 20 because was found large enough to
capture the diversity at the small neighbourhood.
Select neighbours randomly, with probability
inversely proportional to the distance of xi to
its neighbour. Update corresponding weight:
w2 = w1/n2.

(c) Find the distribution of total intakes conditional
to a consumed amount hi, by summing each xi to
all n2 corresponding xj’s. Each total intake has
weight w2.

(d) Find P
P3

j¼1X j > mjhi

n o
¼
P

xi
w2I

P
X j > m j hi

� �
for each fixed hi, m 2 {10,60}.
2. Repeat the previous step for each value of the variable hi

in turn.
3. Repeat the previous steps for each food.

As outcome of this procedure we obtain a series of total
intakes for each hi (consumed amount of food i), and
respective weights. That is, we obtain a ‘‘distribution’’ of
total intakes conditional on hi, though the weights do not
necessarily add up to one. The probability of exceeding a
large intake is obtained by rescaling the weights to sum
to one and adding the weights of exceeding intakes.
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