
e c o l o g i c a l m o d e l l i n g 1 9 8 (2006) 40–52

avai lab le at www.sc iencedi rec t .com

journa l homepage: www.e lsev ier .com/ locate /eco lmodel

Stochastic modelling of ecological processes
using hybrid Gibbs samplers

David M. Walkera,∗, F. Javier Pérez-Barberı́ab, Glenn Marion c
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a b s t r a c t

Stochastic process models are useful in describing a broad range of individual-based phe-

nomena and are increasingly being applied in ecology. However, the estimation of parame-

ters in such models is an important issue which has typically received much less attention

than the exploration of model behaviour. The difficulties of parameter estimation are com-

pounded by the fact that in most situations the available data are incomplete in some sense.

Here, we demonstrate how methods of Markov chain Monte Carlo (McMC) Gibbs sampling

can be combined within reversible-jump Metropolis–Hastings McMC frameworks to produce

a hybrid sampler which can be used to obtain estimates of parameters and missing data for

a broad class of stochastic process rate models. We apply these methods to two stochastic

models arising from the ecology of grazed ecosystems in order to display the benefits of
Inference

Agent-based models

Parameter estimation

the hybrid sampler and the usefulness of a stochastic modelling approach to experiments

where limited data exist.

© 2006 Elsevier B.V. All rights reserved.
Gibbs and Metropolis-Hastings

sampling

1. Introduction

The behaviour of many processes studied in the natural sci-
ences can be described, or approximated, by stochastic mod-
els. For example, stochastic processes have been used in
modelling biological populations (Renshaw, 1991; Bolker and
Pacala, 1997; Wilson and Hassell, 1997; Matis et al., 1998; Rand,
1999; Keeling, 2000a,b), epidemics (Isham, 1991; Filipe and Gib-
son, 1998), chemical reactions (Van Kampen, 1992) and other
applications.
Understanding the dynamics of complex natural systems
and identifying behavioural states based on some set of obser-
vations is a common methodological problem in ecology.
Agent-based modelling and simulation is one approach used

∗ Corresponding author.
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(G. Marion).
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doi:10.1016/j.ecolmodel.2006.04.008
for understanding the behaviour of complex biological and
ecological systems in which agents, such as animals, inter-
act with each other and their environment using simple local
rules. A drawback of the agent-based approach is often the
weak linkage between models and appropriate field data.
There is a need therefore to develop methods and models
which better link data with model parameters. This is espe-
cially true in ecology where field data are limited, or sparsely
sampled, leading to data sets with many missing values due
to, for example, bad weather conditions or mortality of the
rberia@macaulay.ac.uk (F.J. Pérez-Barberı́a),glenn@bioss.ac.uk

experimental subjects during the study.
A useful framework for developing agent-based and other

models when limited data are available is the theory of
stochastic processes (Cox and Miller, 1965). The theory pro-
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ides a general and flexible framework both to describe and
nfer behaviour. It is a powerful tool for developing models
nd provides a framework to parameterize such models from
ata. Unfortunately, the non-linearities required to model
any real world systems typically lead to stochastic processes

hat are intractable to analytic solution (Isham, 1991; Bolker
nd Pacala, 1997; Filipe and Gibson, 1998; Matis et al., 1998;
eeling, 2000a,b); however, simulation is usually straightfor-
ard (Renshaw, 1991) unless the expected number of events is

xtremely large. To place an agent-based model in a stochastic
ramework, the rules governing individual behaviour are for-

ulated in probabilistic terms. In the special case of exponen-
ially distributed times between events, this task simplifies to
ne of defining the rates at which each event occurs (note that
his is an implicit assumption in many deterministic mod-
ls based on ordinary differential equations). For example, a
imple model for the foraging behaviour of a grazing animal
ould be described by the rates at which an animal: (i) grazes

ts current location and (ii) changes location in search of better
uality or more abundant food. It would be naive to assume
hat the behaviour could be fully described by simple rela-
ionships of the type described here but the approach leads
aturally to the formulation of models which can approxi-
ately characterize and capture certain aspects of behaviour.

he stochastic approach can also point the way towards bet-
er deterministic process models by accounting for variability
nd spatial heterogeneity using suitable limiting processes
nd approximations (Whittle, 1957; Isham, 1991; Bolker and
acala, 1997; Matis et al., 1998; Keeling, 2000a; Holmes et al.,
004; Marion et al., 2005).

In this paper, we focus on the inverse problem of statisti-
al inference: given an observation of a process how can we
btain an indication of the range of model parameters which
ould plausibly explain the observations? Fitting stochastic
ynamical models directly to observations allows parameter
ncertainty to be treated more completely since the model

tself defines the error distribution and implicitly accounts
or correlations in the data. In contrast estimation based on
east-squares, as often used for deterministic models, typi-
ally makes the additional assumptions that errors are uncor-
elated and Gaussian.

However, a full analytic treatment of parameter estimation
or dynamical stochastic systems is rarely feasible since obser-
ations of biological processes from practical experiments or
eld studies typically record only a subset of the information
hat defines the evolution of the system. In such cases, we

ust “integrate out” the missing information which typically
eads to analytically intractable high dimensional integrals.
ecent advances in computing power mean that sampling
ethods and, in particular, McMC (Metropolis et al., 1953;
astings, 1970; Gelfand and Smith, 1990; Smith and Roberts,
993; Besag and Green, 1993) are flexible enough to be used to
ake inferences about missing data and unknown parame-

ers by providing robust approximations to such difficult inte-
rals. The methods are based on Gibbs sampling, Metropolis–
astings algorithms and the methodological advance of
eversible-jump McMC which is specifically tailored to explore
tate spaces of varying dimension (Gelman et al., 1995; Green,
995; Gilks et al., 1996; Gamerman, 1997). The need to sample
rom state spaces of varying dimension arises here because
1 9 8 (2006) 40–52 41

the observed data does not determine the numbers of all event
types. Therefore, sampling from the range of plausible recon-
structions of the missing data implies sampling over different
numbers of reconstructed events. It should be noted that this
approach is limited to relatively small numbers of missing
events although Marion et al. (in preparation) have recently
applied such methods to a case with ∼ 104 missing events.

The joint estimation of parameters and missing data (also
referred to as nuisance parameters) is typically conducted
within the framework of Bayesian estimation (Lee, 2004) in
which explicit quantification of uncertainty in model param-
eters (and indeed the missing data) is given by their posterior
distributions with respect to the observed data and of course
the model. A requirement, which should be mentioned, is the
need for the selection of subjective prior distribution of param-
eters in the Bayesian methodology. A potential advantage of
this approach is that the shape of the prior can be chosen to
quantify information gained from previous studies. In many
cases, however, little prior information is available and the
prior distribution is often chosen to be uniform, perhaps over
some range of parameters determined from the literature. In
either case prior influence, lessens with more information and
large observation samples mean that posterior distributions
are determined largely by the data. In addition, the robustness
of results to prior assumptions can be checked. The Bayesian
approach coupled with McMC techniques has been applied in
recent years to infer the parameters of stochastic epidemic
models (Gibson, 1997; Gibson and Renshaw, 1998, 2001a,b;
Renshaw and Gibson, 1998; O’Neill and Roberts, 1999).

In this paper, we will apply Bayesian methods using McMC
to estimate parameters in stochastic agent-based models. In
particular we describe sampling of parameters of stochas-
tic models by both conventional methods (standard Gibbs
and Metropolis–Hastings) and the “griddy-Gibbs” approxima-
tion (Tanner, 1996). In the conventional approach, we sample
from the standard full conditional distributions whereas in
the “griddy” method these are approximated using a param-
eter grid and likelihood calculations. The performance of the
various approaches are compared using a simple grazing off-
take model in ruminant animals, and their combined use in a
hybrid sampler is presented using data from an animal move-
ment and food selection experiment. The hybrid sampler rep-
resents a framework for parameter estimation which can be
applied to a wide class of stochastic models.

The outline of the remainder of this paper is as follows: in
the next section, we introduce the general stochastic mod-
elling framework for agent-based models. We describe the
methods of parameter estimation and present the reversible-
jump McMC algorithm and the two methods of Gibbs sampling
together with Metropolis–Hastings sampling. The combined
hybrid sampler is also introduced. In Section 3, we then com-
pare the performance of the sampling algorithms by way of
application to two examples from studies of agricultural and
ecological systems.
2. Markov chain Monte Carlo samplers

Here, we formulate the problem of inferring parameters from
incomplete data for a time-homogeneous Markov process.
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In this context, the simple rules of agent-based models can
be described in terms of the set of q allowed changes or
event types {ei : i = 1, . . . , q}, where event type ei induces a
change ısei

in the state of the system, denoted s(t) at time
t. In other words, if an event of type ei occurs at time t,
the state of the system immediately afterwards is s(t) + ısei

.
The rate r(ei, s(t); a) at which event ei occurs at time t is
governed by the state of the system and the vector of model
parameters a. More generally, the parameters can depend on
the time, but we shall restrict our discussion and studies to
the time-homogeneous case. The total event rate at time t is
R(s(t); a) = �

q
i=1r(ei, s(t); a). These rates may be used to define a

deterministic or mean-field dynamics in terms of ordinary dif-
ferential equations (Renshaw, 1991). The stochastic dynamics
of the corresponding time-homogeneous Markov process are
defined as follows: (i) the time � to the next event (of any type)
is drawn from an exponential distribution with rate R(s(t); a)
and (ii) the event type which occurs at time t + � is chosen to
be type ei with probability r(ei, s(t); a)/R(s(t); a) (Cox and Miller,
1965). In combination, (i) and (ii) define a stochastic updating
rule such that, conditional on the state of the system being s(t)
at time t, the probability that an event of type ei occurs before
any other event type and does so at time t + � is given by,

P(s(t + �) = s(t) + ısei
|s(t)) = r(ei, s(t); a) e−�R(s(t);a) (1)

Suppose the timings and nature of all events which occur
in the interval [t0, tn] are observed and recorded. Then, let tk be
the time at which event k in the sequence occurs and denote
its type by E(k) ∈ {ei : i = 1, . . . , q}. Suppose there are n events,
then given an initial state s(t0) the finite and complete real-
ization of the stochastic process, S = {stk }n

k=0 can be generated
from the set of events: E = {(E(k), tk) : k = 1, . . . , n}.

The Likelihood of the complete data set E, L(a, E) =
P(E|a, s(t0)), is the probability of observing the complete
sequence of events E given the parameters a and the initial
configuration s(t0). It is written:1

P(E|a, s(t0)) =
n∏

k=1

r(E(k), s(tk−1); a) e−(tk−tk−1)R(s(tk−1);a) (2)

and follows directly from the definition of the model via the
stochastic update rule (1). Therefore, if complete data are
available, Likelihood methods (Edwards, 1992) can be used
to estimate model parameters. Moreover, this is also true
for non-Markovian stochastic processes, although the form
of the likelihood will differ from that shown in Eq. (2). In
the sequel, we shall simply write the complete likelihood
as P(E|a) dropping the explicit dependence on the initial
condition s(t0) which may either be regarded as known and
fixed or considered as an additional set of parameters to be

estimated and thus incorporated into the vector a. Note that
we have already suppressed the conditional dependence of
the likelihood on the model since we do not compare different
models directly in this paper.

1 In general, the final observation time T may not coincide with
the occurrence of the final event at tn. In such cases, the likeli-
hood (2) should be multiplied by an additional term e−(T−tn )R(s(tn );a)

describing the probability that nothing happens between tn and T.
i n g 1 9 8 (2006) 40–52

In the case of incomplete data, we observe a set of events D
(the data), but there are also those hidden events H we do not
observe. The complete realization is therefore characterized
by the full set of events E = (D,H). Applying Bayes’ rule2 to
P(E|a) = P(D,H|a) we obtain the joint posterior distribution for
the parameters a and the unobserved events H,

P(a,H|D) = P(D,H|a)P(a)
P(D)

(3)

in terms of the likelihood for complete observations (2), the
parameter prior P(a) and the normalisation constant P(D). The
prior distribution is typically chosen to reflect any knowl-
edge about the parameters available before the data D were
obtained. For example, P(a) may be derived from previous anal-
ysis, or simply be a uniform distribution over some plausible
range of parameter values as ascertained from appropriate lit-
erature. In the absence of such information, the prior is usually
chosen to be some convenient form, for example, for the rate
parameters considered here, an (unnormalised) flat prior on
the positive real line or a gamma distribution. In addition,
it is common to assume independence between the priors
for each of the N components of the parameter vector, i.e.,
P(a) = ∏N

k=1 P(ak). It is good practice to test the robustness of
any analysis to prior specification.

Bayesian inference (see, e.g., Lee, 2004) is based on the pos-
terior distribution (3) which, for a given set of data, is simply
proportional to the likelihood and the prior. For example, the
distribution of parameters is given by,

P(a|D) =
∫
H

P(a,H|D) dH (4)

which is just the joint posterior (3) marginalised over the
hidden events. However, this integral is typically analytically
intractable and the space of possible hidden events too large
to allow evaluation by quadrature. Moreover, evaluation of
the normalisation constant P(D) in (3) involves integrals of
similar computational complexity. Fortunately, Markov chain
Monte Carlo techniques, allow parameter samples to be drawn
directly from the posterior P(a,H|D) without having to calcu-
late the normalisation constant P(D). The Metropolis–Hastings
algorithm and Gibbs sampling allow parameter samples to be
drawn directly from the posterior, but since the number of
unobserved events is in general unknown, in sampling over H,
the Markov chain must explore spaces of varying dimension
(corresponding to the numbers of events in a given realiza-
tion) requiring application of reversible jump McMC (Green,
1995). Variants on a combined algorithm allowing sampling
over both parameters and missing events are described in
detail below in Sections 2.1–2.5.

The samples generated from the posterior P(a,H|D) using
McMC allow the calculation of essentially any statistic based
on the parameters, a, and missing events, H. For example,
the marginal distribution of parameters described by Eq. (4)

may be estimated by simply disregarding the sampled hid-
den events and forming a histogram of the sampled parameter
values only. The marginal distribution of any single parame-

2 P(A|B) = P(B|A)P(A)
P(B) .
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er (component of a) or the joint distribution of two or more
ay be obtained in a similar fashion. Such estimates improve

s the number of samples generated from the Markov chain
ncreases.

.1. Reversible-jump Metropolis–Hastings algorithm

o generate samples of the missing events from the posterior
(a,H|D) for a given set of parameters a, start with a set of
idden events H0 which are consistent with the observations
. Let Hi denote the set of hidden events at the ith step and

terate the following procedure:

. propose Hi → H′ with probability q(Hi,H′);

. set Hi+1 = H′ with probability min
{

1,
P(D,H′ |a)q(H′,Hi)
P(D,Hi|a)q(Hi,H′)

}
;

. else Hi+1 = Hi.

Note that since the method only makes use of relative val-
es of the posterior P(a,H|D), the acceptance probability in
tep 2 is straightforward to calculate as the ratio of likelihoods
f complete events (see Eq. (2)) multiplied by a ratio of proposal
robabilities.

The proposal probabilities allow the exploration of the
pace of possible hidden events. In theory q() can be any
istribution, e.g., uniform, however selection of the proposal
istribution determines how well the chain mixes, and thus
onvergence time (the number of samples that must be dis-
arded as burn-in). Therefore, in practice, it is often sensible
o use q’s related to the application. In our examples (see Sec-
ion 3), the proposal probability ratio turns out to be equal
o one but for more complicated changes to a reconstructed
ealization this may not be the case. For example, in Marion
t al. (in preparation), changes to a realization of a herbivore
razing model includes adding or removing off-take events.
pecifically, in that implementation of the Markov chain we
dd an off-take event to a realization of M such events, with
robability q(Hi,H′) = 1/(tf − t0), i.e., the probability of insert-

ng an event within a specified time interval. The reverse move
s then the deletion of the event just inserted. This is from the
ealization now containing M + 1 events, and thus occurs with
robability q(H′,Hi) = 1/(M + 1).

The above procedure implements a Markov chain indexed
y i and it can be shown that as i → ∞ the distribution of
tates visited by the chain is independent of i. Moreover,
his distribution is in fact the desired posterior distribution
Metropolis et al., 1953; Hastings, 1970; Green, 1995). The algo-
ithm therefore provides a way of reconstructing complete
ealizations of the process consistent with the data and the
hysical model. For this reason, the case of incomplete data
ets can be catered for as plausible and consistent values of
he missing data are proposed and the associated uncertainty
s accounted for. Moreover, we can use a form of Gibbs sam-
ling to obtain samples of the parameters to be estimated
or each complete, or reconstructed, realization as described
elow.
.2. Gibbs samplers

onventional Gibbs sampling can be achieved with the help of
ayes rule. If the prior distribution P(a) is chosen to be conju-
1 9 8 (2006) 40–52 43

gate to the likelihood then the posterior will be a known dis-
tribution. If the parameter vector a = (a1, a2, . . . , ak) ∈ Rk, then
the Gibbs sampler updates a component by component. That
is, for a given (reconstructed) complete realization of events
E = (D,H):

1. assign values to a(0) (this can be drawn from the prior dis-
tribution but this is not necessary);

2. set i = 0;
3. repeat

- draw a
(i+1)
1 from P(a1|E, a

(i)
2 , . . . , a

(i)
k

) ∝
L(a1, E, a

(i)
2 , . . . , a

(i)
k

)P(a1);

- draw a
(i+1)
2 from P(a2|E, a

(i+1)
1 , a

(i)
3 , . . . , a

(i)
k

);
- · · ·
- draw a

(i+1)
k

from P(ak|E, a
(i+1)
1 , . . . , a

(i+1)
k−1 );

- set i = i + 1;
- store every mth value of a after an initial burn-in period;

4. end repeat.

Note that although successive draws from the chain are
correlated, it is common practice to use m = 1 as this avoids
throwing away samples. We have presented the above update
procedure element-by-element. This is not always required
and a block update whereby all (a), or a subset (ã), of param-
eters are updated simultaneously is often more efficient, in
which case ã(i+1) is drawn from P(ã(i)|E).

This method of sampling is particularly well suited to
estimating parameters which appear linearly within model
process rate probabilities since selection of conjugate priors
can then be straightforward. As we shall see in Section 3 for
the time-homogeneous Markov process models described ear-
lier gamma priors for linear rate parameters imply that the
marginal posteriors (conditional on the other parameters and
the missing events) for each parameter are also gamma dis-
tributions. If a parameter appears non-linearly then it may
be non-trivial, or not possible, to select a prior resulting in a
posterior which can be written in the form of a known distri-
bution.

2.3. Griddy-Gibbs sampler

It is not always possible to choose a conjugate prior distri-
bution, or the product (likelihood × prior) cannot easily be
written in the form of a known distribution. If, however, the
possible parameter values are constrained to take values on a
finite lattice of points within the parameter space Q, then for
a given realization E, we can approximate,

P(a|E) ≈ L(a, E)∑
a′∈Q

L(a′, E)
. (5)

This approximation is coined “griddy-Gibbs” (Tanner, 1996)
and the prior in this case is discrete and uniform over a num-
ber of grid points. The griddy-Gibbs sampler is similar to the
conventional Gibbs sampler. It can perform block updates or
be carried out element-by-element.
1. Assign values to a(0) drawn uniformly from the grid points;
2. set i = 0;
3. repeat
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- draw a
(i+1)
1 from

P(a1|E, a
(i)
2 , . . . , a

(i)
k

) ≈ L(a1, E, a
(i)
2 , . . . , a

(i)
k

)∑
a′

1∈Q
L(a′

1, E, a
(i)
2 , . . . , a

(i)
k

)
;

- draw a
(i+1)
2 from P(a2|E, a

(i+1)
1 , a

(i)
3 , . . . , a

(i)
k

);
- · · ·
- draw a

(i+1)
k

from P(ak|E, a
(i+1)
1 , . . . , a

(i+1)
k−1 );

- set i = i + 1;
- store every mth value of a after an initial burn-in period;

4. end repeat.

A nice consequence of the griddy algorithm is that the
entire equilibrium distribution can be approximated by Eq. (5)
and not solely estimated from the sampled parameters.

2.4. Metropolis–Hastings parameter sampler

A third method of parameter sampling is the Metropolis–
Hastings algorithm. We introduced a more complicated
reversible-jump version to explore the space of hidden events
in Section 2.1 but it can also be usefully used for parame-
ter estimation. In this case, the proposal probabilities can be
chosen as (continuous) uniform distributions rather than a
discrete prior in the griddy sampler. As a result, the acceptance
probability is a ratio of two likelihood calculations which is a
further advantage over the griddy method especially in exam-
ples where parameters, or blocks of parameters, are such that
the Markov chain converges quickly to the equilibrium dis-
tribution. The Metropolis–Hastings algorithm for parameter
sampling is given by,

1. assign values to a(0);
2. set i = 0;
3. repeat

- uniformly draw a
′
;

- set a(i+1) = a
′
with acceptance probability min{1,

L(a
′
,E)

L(a(i),E)
};

- else a(i+1) = a(i);
- set i = i + 1;
- store every mth value of a after an initial burn-in period;

4. end repeat.

The above algorithm can similarly be modified to perform
element-by-element updates. The uniform proposal distribu-
tion for the parameters may be inefficient and can be replaced,
for example, with a sample centred on the current value.
The acceptance probability in step 3 must then be modified
to account for the fact the forward and reverse moves may
not have equal probability. The above algorithm can also be
modified to account for non-uniform priors in which case
the acceptance probability becomes a ratio of likelihood ×
prior.

2.5. Hybrid sampler

The above algorithms can be combined to produce a very flex-
ible and powerful hybrid estimation algorithm. Let a denote

those parameters which can be estimated using the conven-
tional Gibbs sampler, let b denote those parameters which can
otherwise be estimated using the griddy-Gibbs sampler, and
let c denote those parameters estimated with a Metropolis–
g 1 9 8 (2006) 40–52

Hastings sampler. To approximate the integral in Eq. (4), start
with a realization E0 = (D,H0) consistent with the data, and
iterate the following procedure:

1. assign values to a(0), b(0) and c(0);
2. set i = 0;
3. repeat

- draw a(i+1) using the conventional Gibbs sampler with
b(i), c(i) and Hi;

- draw b(i+1) using the griddy-Gibbs sampler with a(i+1), c(i)

and Hi;
- sample c(i+1) using Metropolis–Hastings with a(i+1), b(i+1)

and Hi;
- update the realization to Hi+1 using the reversible-

jump Metropolis–Hastings algorithm with a(i+1), b(i+1)

and c(i+1);
- set i = i + 1;
- store every mth value of a, b and c after an initial burn-in

period;
- if required, store Hi;

4. end repeat.

It is often beneficial to update the reconstructed realization
many times using the reversible-jump algorithm before draw-
ing new parameter samples. In this way, the space of hidden
events can perhaps be explored more fully thus aiding conver-
gence of the Markov chain.

The above hybrid algorithm is extremely flexible; the
reversible-jump step deals with incomplete data and uncer-
tainty in the observations; the griddy-Gibbs and Metropolis–
Hastings steps allow for more complex models and parame-
terizations which do not lend themselves to conjugate prior
selection; and the benefit of conventional Gibbs sampling is
retained for those parameters which do lend themselves to
conjugate prior specification. We remark that both griddy-
Gibbs and Metropolis–Hastings can also be used to estimate all
parameters and not just those where conjugate prior selection
is difficult.

Ecological model parameters are often believed to lie in
some range either determined from experiment, or by col-
lating previous estimates from literature searches. For exam-
ple, the vegetation dynamics model VegeTate (Birch et al.,
2000; Birch, 2002) contains many parameters with ranges
specified in this way. Despite the lengthier computer run
time due to repeated likelihood calculations over a grid –
the likelihood must be recalculated at every grid point for
each iteration – the ecological researcher may prefer the
“griddy” method as the uniform prior is perhaps a less sub-
jective choice of prior than in the conventional method.
Of course, these Bayesian methods have the advantage of
allowing subjectiveness if there are strong reasons for doing
so.

The hybrid procedure implements a Markov chain (indexed
by i) which (asymptotically as i → ∞) generates samples from
the posterior distribution P(a,H|D). Since we must draw the
samples from the equilibrium distribution of the Markov

chain, a key problem is knowing how long to let the Markov
chain run before using the sample. There are a number of con-
vergence diagnostics available (Gilks et al., 1996) but by far
the most common is visual inspection of the chain output to
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heck for trends in the mean or variability of the samples.
his is the method we rely on and we monitor time series of

he parameter samples obtained by the chain after an initial
urn-in.

. Examples

egetation dynamics are of paramount importance in most
errestrial ecosystems, because of the close link existing
etween primary producers and higher trophic levels. Her-
ivorous mammals play a decisive role in the structure and
ynamics of the vegetation, the number of animals, their habi-
at use, diet choice and interactions between animal species
eing the key factors that model vegetation (Osem et al., 2002)
ther than fire and human intervention. Foraging models of
hese systems are of special interest to ecologists because the
ested levels of different scales at which they operate, from
lants or parts of plants at the bite size scale to geographic
cale due to, for example, migration movements of grazing
ngulates (McNaughton, 1991; Farnsworth et al., 2002).

We describe the applicability of McMC using two examples
f foraging behaviour at two contrasting spatial scales, the first
ne at the scale of bite size and the second one at the scale of
n experimental area.

.1. Grazing simulation model

n this example, we consider a simple non-spatial grazing sys-
em. More complex stochastic models of agricultural grazing
ystems have been introduced by (Marion et al., 2005) and dis-
ussed in the context of statistical inference by (Marion et al.,
n preparation). The model here abstractly describes an ani-

al grazing in a paddock/cell of initial sward height h(0) at
ate ˇ and is summarized as:

(6)

The state space is given by the sward height at time tn, i.e.,
(tn) = h(tn). Given information from measurements of units
f the sward height we will demonstrate how the bite (off-
ake) rate ˇ can be estimated using the sampling algorithms.
his example is simple enough to allow detailed study of the
lgorithms performance.

We simulate a realization of the model using ˇ = 1.0 and
he initial sward height set to h(0) = 20 units. The simulation
nds when the cell is grazed to zero height, i.e., 20 (bite) events
ave taken place. In the first instance, we shall observe all
0 events so that the sampling algorithms can be compared
ith complete data. We will then consider an incomplete data

ase where only the initial height and final height and times
re observed. In this case, a reversible-jump step is needed to
econstruct consistent plausible realizations.

The likelihood given in Eq. (2) is represented by an expo-

ential distribution. We know the bite rate must satisfy ˇ > 0
o by choosing the prior distribution to be a gamma distribu-
ion P(ˇ) = Ga(a, b) we can show the conditional distribution
(ˇ|E) = Ga(a∗, b∗) since the gamma distribution and exponen-
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tial distributions are conjugate. Explicitly, we have,

L(ˇ, E) =
n∏

i=1

ˇhti e−(ti−ti−1)ˇhti =
[ n∏

i=1

hti

]
ˇn e−ˇ

∑n

i=1
ıtihti

The gamma prior distribution, Ga(a, b), takes the form [Lee
(2004)]:

P(ˇ) ∝ ˇa−1 e−bˇ.

The posterior distribution of ˇ conditional on the complete
history E is given by P(ˇ|E) ∝ L(ˇ, E)P(ˇ) and hence

P(ˇ|E) ∝ ˇn+a−1 e−ˇ(
∑n

i=1
ıtihti

+b)

which is also a gamma distribution, Ga(a∗, b∗), with a∗ = n +
a and b∗ =

∑n

i=1 ıtihti + b. We can compare and contrast the
performance of different priors (i.e., the parameters a and b)
for the Gibbs sampler with different parameter grids in the
griddy-Gibbs sampler.

For a complete realization, a∗ and b∗ are fixed once the prior
is chosen. In Fig. 1, we show the effects of choosing different
priors on the posterior. Similarly, the number of grid points in
the griddy sampler determines the accuracy of the approxima-
tion to the posterior distribution. In Fig. 2, we show the effects
of different numbers of equally spaced grid points across the
range ˇ ∈ (10−4, 2).

Examining Fig. 1, we see that in this example, due to the
small number of events (data), the choice of gamma prior dis-
tribution parameters appears to have some influence on the
posterior distribution. We notice that as the prior moves left
the (estimated) posterior appears to shift to the right. This
is a feature of gamma priors, most commonly discussed in
introductory Bayesian texts in the context of prior specifica-
tion of precision parameters. A full discussion could become
technical very quickly but one can see that as the prior moves
left its weight and slope (almost flat) where the posterior lies
becomes less influential. We can further see this effect by
examining the expressions for a∗ and b∗ given above. The prior
moving left coincides with a and b becoming smaller meaning
the data or likelihood having more influence on the posterior.
This effect of prior influence would lessen as the number of
data increases.

The number of grid points does have an effect on the qual-
ity of the approximated distributions in Fig. 2. Comparing Figs.
1 and 2, we see that for more refined parameter grids, for
example, greater than 50 grid points, the griddy-Gibbs approxi-
mation achieves comparable results to the conventional Gibbs
sampling approach. In Fig. 3, we show the results of an appli-
cation of the Metropolis–Hastings algorithm using 10,000 sam-
ples. We see that the estimated distribution is similar to the
conventional methods and the griddy-Gibbs sampling method
with a fine grid.

The reversible-jump algorithm is designed to cope with

incomplete or partially specified data information. It is highly
unlikely that an experimentalist, or observer, would have the
time or resources to record the time of all bite events. A more
realistic situation would involve measurements of the sward
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Fig. 1 – Normalized histograms from the parameter samples. The prior distributions for different gamma prior parameters
and complete data are indicated by the dotted lines (see text for details).

Fig. 2 – Normalized histograms to estimate the posterior distributions for different numbers of parameter grid points and
complete data (see text for details). The uniform (discrete) priors are indicated by dotted lines.
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Fig. 3 – Normalized histograms from parameter samples
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eight at select times, for example, the beginning and end of
ach working day. A reversible-jump algorithm can be used to
econstruct realizations consistent with these observations.
hree basic changes to a realization can be proposed: add a
ew bite event, remove an existing but unobserved event and
earrange the time of an existing event. In Marion et al. (in
reparation), we develop techniques to cope with such a situ-
tion.

For the purposes of this paper, however, we will consider
simplified version of the reversible-jump realization recon-

truction step. We will consider measurements of the initial
ward height and the time of the final bite event, t20, when
he paddock is fully grazed to zero height. Since the off-take
s fixed at 1 unit we know that 19 other bite events took place

hich we impute into an initial consistent realization at ran-
om times within (0, t20). Therefore, the rearrange step of the
eversible-jump algorithm is the only step required which has
proposal probability ratio of 1.0.

In Figs. 4 and 5, we show the results of the hybrid sam-
ler using conventional Gibbs and griddy-Gibbs methods for
arameter sampling in conjunction with the reversible-jump
tep. Each simulation was run for 1000 rearrange steps and
ample draws. The first 600 steps were discarded as an ini-
ial burn-in, and so only the final 400 samples are used in
he shown distributions. In Fig. 4, we show the estimated dis-
ribution obtained by normalizing histograms of the sampled
arameters. Once again we see that the choice of gamma prior
istribution parameters has some influence on the posterior
istributions due to the small number of data. In Fig. 5, we
how the equivalent griddy-Gibbs results. The only difference
rom the complete realization example above was the need
o specify a wider range for the parameter grid ˇ ∈ (10−4, 4) to
ccount for the greater uncertainty of unknown event times. A

0-point parameter grid again appears to compare favourably
ith the conventional Gibbs sampling approach. We found

imilar results (not shown) for the Metropolis–Hastings sam-
ling scheme.
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3.2. Animal movement and food selection

We now introduce a behavioural model of animal movement
based on observations of a food selection experiment involv-
ing Soay sheep (Ovis aries). The experiment was carried out
at the Macaulay Institute’s Glensaugh Research Station and
was principally designed to investigate effects of food han-
dling, sex, body and mouth size of sheep on intake and forage
choices when available food is sparsely distributed.

The experimental setup consisted of 36 pegboards
arranged in a 6 × 6 grid with 2 m between boards and walls (see
Fig. 6). The pegboard is a device that simulates a complex envi-
ronment in which food is sparsely distributed at the scale of
the feeding station, for example, small plants on stony ground
or fallen fruits and seeds. The wooden pegs surround a grass
(food) pellet which can be eaten by the animal with different
levels of difficulty according to the spacing of the pegs. The
use of the pegboard to investigate behavioural differences in
feeding Soay sheep is discussed extensively in Pérez-Barberı́a
et al. (2004).

An animal was released alone into the pegboard arena and
an observer recorded the order of pegboards visited, the transit
time between pegboards, the time spent at a pegboard, and the
number of pellets eaten after each pegboard visit was noted.
Nine male and nine female sheep were used in the experi-
ment.

There are two main events taking place when an animal
enters the arena, these are transit events where the animal
moves from pegboard to pegboard, and feeding (bite) events
when the animal is stopped at a pegboard and tries to eat
(independently whether the animal succeeds or not). When
an animal encounters a pegboard, it will typically eat all of the
pellets before moving on. If we denote the number of pellets
on pegboard i by pi, then a reasonable event rate for a feeding
event in the time interval (t, t + ıt) is

P(bite at i) = aiˇ(1 + pi) ıt (7)

where ai denotes the animals location, ai = 1 if the animal is
at pegboard i and ai = 0 otherwise. If the pegboard has already
been visited and the pellets supply was depleted, the animal
appears to spend some time searching the pegboard for pellets
before moving on. So, a feeding event also incorporates a visit
to a pegboard if pellets are depleted. Hence, we use (1 + pi)
instead of just pi.

Animals in the arena typically move to the closest pegboard
from their current location, preferring to move to adjacent
boards rather than to boards along the diagonal. There are
occasions, however, when the animals move to pegboards
which are not near-neighbours. The animals also do not
appear to make a distinction between full and empty peg-
boards from a distance so on occasions they tend to return
to a previously eaten pegboard. A model of movement which
seems appropriate is one that has been used in stochastic epi-
demiological models (Gibson, 1997), namely,

−1/2�

P(move i to j, i 	= j) = aiZij

ıt (8)

where Zij denotes the distance from pegboard i to pegboard j.
(We use the city-block or Manhatten norm in our experiments
but Euclidean norms could equally well be used.)
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Fig. 4 – Normalized histograms using the parameter samples to estimate the posterior distributions for different gamma
prior parameters in the reversible-jump algorithm. The prior is indicated by the dotted lines.

Fig. 5 – Normalized histograms estimating the posterior distributions for different numbers of parameter grid points in the
reversible-jump algorithm. The (discrete) prior is indicated by the dotted line.
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Fig. 6 – The left panel shows a schematic of the experimental arena. An animal enters the arena through the door and its
path, transit time and visit time at the pegboards (squares) are recorded. The number of pellets on each pegboard at the
s pan
t
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h

tart and end of the experiment are also recorded. The right
he grass pellets surrounded by wooden dowells.

The two parameters to be estimated from the measured
ata are ˇ, an “off-take rate”, or “pellet depletion rate” param-
ter, and �, a movement rate parameter. The model can be
ummarized as follows:

(s → s + ıs) ıpi ıai ıaj Description

iˇ(1 + pi)ıt If pi > 0, ıpi = −1 0 0 Pellet eaten at pegboard i

iZ
−1/2�

ij
ıt 0 −1 +1 Animal moves i to j (i 	= j)
The above model requires a full implementation of the
ybrid sampler. The off-take rate parameter can be estimated
sing conventional Gibbs sampling. The likelihood is of the

ig. 7 – The upper plot shows the parameter samples as the algo
istogram of the samples. The prior distribution is shown as a d
el is a schematic of the pegboard. The dark dowells indicate

form of Eq. (2), so using a Gamma prior P(ˇ) = Ga(a, b), we can
show that

p(ˇ|D) ∝ L(ˇ, D)p(ˇ) = Ga(a∗, b∗)

with a∗ = NB + a and b∗ =
∑N

i=1(1 + pi)ıti + b, where NB

denotes the number of feeding events within the N event
realization. The movement parameter requires an implemen-

tation of the griddy-Gibbs sampler as a conjugate prior is
difficult to find or does not exist. A 200-point grid over the
range � = (0.05, 0.15) was used. A reversible-jump step is nec-
essary to average over the uncertainty of unknown feeding

rithm progresses. The lower plot shows the normalized
otted line.
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Fig. 8 – The upper plot shows the parameter samples as the algorithm progresses. The lower plot shows the normalized
histogram of the parameter samples. The prior distribution is shown as a dotted line.

event times. The total number of pellets eaten is recorded
for each pegboard visit together with the visitation time. A
complete realization of the model requires the off-take times
for each individual pellet. Since these are not recorded the
unknown event times must be imputed within the relevant
time intervals and then averaged over using the reversible-
jump rearrange step.

For each trial, we implement the hybrid sampler and record
500 samples. The parameters for the ˇ gamma prior were set
to a = 1 and b = 1 for each trial. In Fig. 7, we show the results
of analyzing the data for one trial of a female sheep marked

Fig. 9 – The estimated distributions of the ˇ parameter
using normalized histograms for each trial of the female
sheep with red–black markings. The prior is shown by the
dotted line.

Fig. 10 – The estimated distributions of the � parameter
using normalized histograms for each trial of the female

sheep with red–black markings. The prior is shown by the
dotted line.

red–black. The sample draws of ˇ as the algorithm progresses
are shown in the upper plot while the normalized histogram of
the sampled values are shown alongside the prior in the lower
plot. Fig. 8 shows similar plots for the movement parameter �

obtained by griddy-Gibbs sampling. The Metropolis–Hastings
scheme produces similar results (not shown). All trials and

animals displayed similar results. For example, Figs. 9 and 10
display the results of all five trials of the red–black female
sheep. Despite there being some variability across trials the
resulting (estimated) distributions exhibit consistent results.



i n g

4

W
c
a
c
a
i
b
i
r
t
i
s
c
p
a
w
q

a
b
t
p
e
p
a

e
p
B
b
v
m
m
A
t
r
2
L
a
e
t

a
p
I
a
D
M

w
m
h

A

W
t

e c o l o g i c a l m o d e l l

. Summary

e have shown how different McMC sampling techniques
an be combined to form a very flexible, powerful and widely
pplicable hybrid sampler. We compared the performance of
onventional Gibbs sampling, a griddy-Gibbs approximation
nd a Metropolis–Hastings sampling scheme on a simple graz-
ng system model. The griddy-Gibbs sampler was shown to
e a reasonable approximation technique as long as the grid

s fine enough. A very fine grid with many grid points may
esult in long simulation times for complex examples since
he likelihood must be recalculated at every grid point for each
teration, and so we recommend using conventional Gibbs
ampling where possible. The griddy-Gibbs sampling method
omes into its own when it is not possible to select a conjugate
rior due to the location of the parameter in the model. This is
lso true of the Metropolis–Hastings scheme and for examples
here convergence to the desired equilibrium distribution is
uick this scheme may be the preferred option.

The full power of the hybrid sampler was used with a novel
pplication to an ecological experiment. We proposed a purely
ehavioural model based on the observations to demonstrate
he algorithm. We made no attempt to extract or attribute
hysiological properties to the results. The results of this
xample did however highlight the success of the hybrid sam-
ler and demonstrate the potential of using such techniques
nd models in ecological studies.

There are a number of stochastic process models in the lit-
rature whose transition probabilities do have biological and
hysical significance. For example, in a series of three papers,
erg and Shuman (1995a,b,c) develop a stochastic model of
ehaviour of radionuclides in forests by modelling soil and
egetation uptakes. Bearlin et al. (1999) introduced a stochastic
odel for seagrass, the parameters of which could be esti-
ated using the sampling techniques outlined in this paper.
number of spatially extended and stage-structured stochas-

ic population dynamic models have been proposed which
equire the estimation of important parameters (Liu et al.,
000; Yemshanov and Perera, 2002; Castañera et al., 2003;
eung and Grenfell, 2003; Fink and Kofoet, 2005; Watanabe et
l., 2005a; Griebeler and Sietz, 2006). The sampling and param-
ter fitting technology described in this paper could be applied
o these models, or sub-components of these models.

Bayesian methods of inference such as Gibbs samplers
nd Metropolis–Hastings sampling schemes have found a
lace in the estimation of parameters in ecological models.

ndeed a body of work is growing which use McMC to improve
nd enhance ecological models (Harmon and Challenor, 1997;
owd and Meyer, 2003; Qian et al., 2003; Rivot et al., 2004;
alve et al., 2005; Watanabe et al., 2005b).

We hope that the techniques we have outlined here can find
ide application to the modelling of ecologically interesting
echanisms and to areas where incomplete data has been a
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