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The high level of human morbidity caused by E. coli O157:H7 necessitates an improved
understanding of the infection dynamics of this bacterium within the bovine reservoir.
Until recently, a degree of uncertainty surrounded the issue of whether these bacteria
colonize the bovine gut and as yet, only incomplete in-vivo datasets are available. Such
data typically consist of bacterial counts from fecal samples. The development of a
deterministic model, which has been devised to make good use of such data, is presented.
A partial differential equation, which includes advection, diffusion and growth terms, is
used to model the (unobserved) passage of bacteria through the bovine gut. A set of
experimentally-obtained fecal count data is used to parameterize the model. Between-
animal variability is found to be greater than between-strain variability, with some results
adding further weight to the hypothesis that E. coli O157:H7 can colonize the bovine
gastrointestinal tract.

Keywords: Advection-Diffusion Equation; Method of Lines; Triangular Distribution;
Maximum Likelihood; E. coli O157.

1. Introduction

E. coli O157:H7 causes serious illness and death in human populations.1 Since its
identification in 1982, there have been increasing reports worldwide of human infec-
tion with the organism.2 Cattle have been implicated as the source of infection in
many of these cases.3 Therefore, there is a demand to reduce the levels of infec-
tion within the bovine population. An improved understanding of E. coli O157:H7
population dynamics within the bovine host could aid the identification of suitable
within-animal control measures. This paper uses mathematical modeling to gain
insights into the in vivo population dynamics.

§Corresponding author.
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A previous attempt to describe bacterial population levels at various sites during
passage through the bovine gastrointestinal tract (GIT) involved the development
of a stochastic compartment model.4 However, development was limited by the
inadequacy of existing data defining the size of the E. coli O157:H7 populations
located at various sites along the bovine gut. Indeed, most results derived from
relevant experimental studies simply consist of counts of E. coli O157:H7 obtained
from fecal samples over a period of time. These data correspond to samples from
the infection process at just one particular (spatial) point in its spatio-temporal
evolution. Given the need for data in the model-building process, it is convenient
to build the model around what little data is available.

Since a known fixed amount of bacteria enters an animal, generally via inocu-
lation in experimental studies, and the amount of bacteria leaving the animal at
the other end, via fecal pats, can be observed, an appealing alternative approach
to modeling the in vivo infection process is to view the bacterial population as
being represented by a density function along a one-dimensioned representation of
the gut. A partial differential equation can be used to describe, deterministically,
the unobservable within-animal infection dynamics of E. coli O157:H7 assuming
constant values for the parameters along the entire gastrointestinal tract.

This paper describes the development of a simple continuum model of the pas-
sage of bacteria through the bovine gut, based on a partial differential equation, in
Sec. 2.1. Both analytical and numerical solutions are sought and in Sec. 2.3, a set
of detailed and extensive experimental data is used to parameterize the model for
two strains of E. coli O157:H7. The strains differ in that only one of the strains
possesses the phage encoding shiga-toxin 2. Therefore, the model can be used to
explore whether the presence of this toxin enhances the duration or level of col-
onization of E. coli O157:H7 within cattle. The results are described in Sec. 3,
followed by a discussion in Sec. 4.

2. Methods

2.1. Model development

In order to derive a model that describes the population dynamics of E. coli
O157:H7 during transit through the bovine gut, it is necessary to adopt several
simplifications. Firstly, to reduce the complexity of the model, a cylindrical tube
with a constant cross-sectional area is used to represent the gut. Secondly, it is
assumed that the contents of the gut are well-mixed vertically and transversely so
that the population density, n(x, t) varies only with time, t (days), and the distance
along the gut, x (meters). Furthermore, we assume that the bacteria do not colonize
or in any way adhere to the mucosal surfaces of the GIT.

The number of bacteria in the gut can change due to either the reproduction
or death of existing bacteria, or by the transportation of bacteria, either advec-
tively (with the luminal fluid, for instance) or diffusively (by molecular motions),
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across the ends of the cylinder. Observations suggest that the losses to a pop-
ulation of E. coli O157:H7 due to movement through the gut exceed any gains
due to reproduction, as infections appear to be transient.5 Therefore, any potential
density-dependent effects are assumed to be negligible, so that the population devel-
ops with constant per capita birth and death rates, and hence a constant intrinsic
growth rate, β (day−1).

The population of E. coli O157:H7 moves through the tube with a flux F (x, t)
at time t in the positive x direction. This flux can be broken down into two com-
ponents: an advective and a diffusive flux. The advective velocity ω (meters.day−1)
corresponds to the rate at which bacteria are carried by the medium they inhabit
within the bovine gut (for instance, the luminal fluid). The diffusive flux corresponds
to the rate at which bacteria spread diffusively with coefficient γ (meters2.day−1) in
both directions along the gut. It is not unrealistic to assume that diffusion occurs in
both directions as Singleton6 noted the occurrence of backflow from the duodenum
to the abomasum. In fact, it has been found that backflow amounts to nearly 10% of
the total peristaltic flow in sheep, and given the physiological similarities, it might
be expected that a similar result holds in cattle.7 However, boundary conditions
have to be selected to ensure that implausible events do not occur, such as the dif-
fusive flux causing bacteria to exit the tube at x = 0, an event which corresponds to
bacteria flowing back out of the mouth of an animal. Hence, the left-hand boundary
condition is defined to act as a reflecting barrier while the right-hand boundary is
an absorbing barrier.

Assuming that the advection velocity and diffusion coefficient are constants, the
within-animal infection dynamics of E. coli O157:H7 can therefore be described by
the combination of a conservation equation,

∂n

∂t
= βn︸︷︷︸

growth

− ω
∂n

∂x︸ ︷︷ ︸
advection

+ γ
∂2n

∂x2︸ ︷︷ ︸
diffusion

(2.1)

and the following initial and boundary conditions:

Initial Condition: n(x, 0) =
{

n0 if x = 0
0 otherwise

Left-hand Boundary Condition: ωn(0, t) − γ

(
∂n

∂x

)
x=0

= 0

Right-hand Boundary Condition: n(L, t) = 0,

(2.2)

where L is the notional length of the bovine GIT. For the purposes of this model, L

is assumed to equal approximately 40 meters, drawing on data in Phillipson.7 The
model is unrealistic in that it assumes constant growth, advection and diffusion
parameters when these take very different values in different areas of the GIT.8 It
would not be possible to parameterize a model with constants which varied with
respect to distance x, using only shedding data. However, the model can be thought
of as summarizing the average behavior of each parameter over the entire GIT.
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The problem is akin to that of population persistence in flowing environments
such as rivers and estuaries, as studied by Speirs and Gurney.9 However, given the
transient nature of the observed infections, which imply that the E. coli O157:H7
populations die out over time, this analysis of persistence is of little help. Further-
more, since the distribution of E. coli O157:H7 within individual bovine guts is not
observable, we are not interested in the form of the solutions per se, but rather
in what they imply for the measurable flux of E. coli O157:H7 leaving the animal
through feces. To examine these transient dynamics, it was necessary to resort to
numerical methods of solution.

It is often convenient to reduce the number of unknown parameters that require
estimation. However, it has been shown in Appendix A that each of the three
parameters are required to accurately describe the behavior of the process in this
model. As a result, a particularly efficient numerical method is required when the
model is being fitted to data. A discrete-time approximation, which is described
in more detail in Appendix B, is adopted, justified by the comparison outlined
in Appendix C. The discrete-time approximation, which is based on a triangular
distribution, produced results comparable to those obtained using the standard
method of lines,10 but was far more computationally efficient.

2.2. Experimental data

The set of data which is used to parameterize the model was obtained from an
experimental study carried out by the University of Edinburgh and the Scottish
Agricultural College.11 The study involved a cohort of 11 calves, which were exper-
imentally challenged at approximately 2 weeks post-weaning with a dose of 109

colony-forming units (cfu) of one of two different strains of E. coli O157:H7, labelled
strains “A” and “B”. Both strains were isolates from a single human case following
an outbreak centered on a restaurant in Washington State, USA, with the infec-
tion ultimately being traced back to a dairy farm.12 A series of 10 gram samples
of feces were taken from each animal. For the first 10 days post-inoculation, sam-
ples were collected each day, followed by sampling every 3 to 4 days until 28 days
post-inoculation or when the animal was euthanized. Each sample was suspended
in 90ml of sterile phosphate-buffered saline (PBS) and serially-diluted in 10-fold
steps in PBS in order to estimate the number of cfu within a sample by direct
culture.11 Hence, the data consisted of a series of plate counts and the associated
dilutions for which these counts were obtained. At each time-point sampled, this
procedure was repeated up to a maximum of six times.

The issue of bacterial growth during the incubation of each sample was consid-
ered. However, this effect was disregarded, as the growth of E. coli O157:H7 kept
under lab conditions is thought to be negligible in the short period of time between
sample collection and plating.13

It is notable that the observed counts contain frequent zero values (Figs. 1
and 2), where observations from the same animal on congruent days, or even from
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other feces samples from the same animal on the same day, show very high estimated
counts. It has been established that bovine feces may be highly heterogeneous in the
distribution of E. coli O157:H7.11,14 The fecal samples were not homogenized before
culturing, and this within-sample variability may explain the observed null counts.
This heterogeneity was not, however, explicitly modeled in the parameterization
exercise.

2.3. Parameterization method

A maximum likelihood-based approach was used to parameterize the model. Each
data point (plate count, x) was assumed to be a realization from a particular Poisson
distribution, i.e.

x ∼ Po
(µ

d

)
where

µ = actual number of cfu in 10 g of feces

d = specified dilution level.

Likelihoods were derived from the Poisson distribution using the predicted values
from the model, rescaled to correspond to the appropriate dilution level, where
λti = mean cfu for a particular sample i, with observed count xi, collected at a
particular time, t. Hence, the log-likelihood to be maximized is given by:

F =
∑

i

{−λti/di + xi ln λti}.

The numerical optimization method used is the Nelder-Mead algorithm, a down-
hill simplex method used for the minimization of a function of M variables. It is
not very efficient in terms of the number of required function evaluations, but has
the advantage that it will converge even when the initial simplex straddles two or
more local minima, which is the main criterion for its adoption in this case.

The amoeba routine from Press et al.15 is used to implement the minimization
method. To avoid the problem of false convergence, the routine is re-started at a
simplex near to any apparent minimum, using a method proposed by Wood16 to
eliminate the uncertainty in deciding the size of random jumps required to clear
local minima. This involves stochastically perturbing the objective function, by
bootstrapping the underlying data to which the model is being fitted. The idea
behind this technique is that each bootstrap objective function will have the same
large-scale structure as the original objective function, i.e. the same global min-
imum, but have different small-scale structure. It is therefore unlikely that the
routine will converge to the same local minimum.

The simplex minimization routine with bootstrapping is applied to the datasets
generated by each of the 11 animals in the experimental study cohort, in order
to fit a model of the passage of E. coli O157:H7 through each individual animal.
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Approximations to the variance-covariance matrix, Σ, of the parameter estimates:

θ = (θ1, θ2, θ3) = (β, ω, γ)

are usually calculated using Fisher’s Information matrix. The use of this approx-
imation requires the assumption of large-sample efficiency.17 However, the small
volume of data which is available makes this assumption problematic, while the
evaluation of the matrix requires the numerical estimation of derivatives which,
although possible, is prone to numerical error. For both of these reasons, therefore,
the variance-covariance matrix of the parameter estimates is not estimated. This
does, however, have consequences on our ability to interpret the results, which are
discussed later.

3. Results

3.1. Strain A

The first of the strains considered, labelled “Strain A”, is inoculated into five ani-
mals, identified as A1, A2, A3, A4 and A5. The minimization routine is applied to
the likelihood function for the observed counts obtained from each of these animals,
in order to derive the parameter estimates that allow the model of bacterial passage
through each individual animal to be fully described.

The fitted model obtained for each of the animals can be seen in Fig. 1. The
solid line represents the estimated quantity of bacteria shed by the animals per
day, calculated by numerical integration of the flux of bacteria into the right-hand
boundary per day. Each observed count, rescaled to an equivalent daily amount by
assuming an average fecal output of 8 kg per animal per day,7 is represented on
the plot by a circle, and at the time-point at which the sample corresponding to
each observed count was collected, the corresponding fitted value is represented by
a cross.

In order to evaluate the fit for each animal, it is necessary to measure the
discrepancy between the fitted values λ̂ and the corresponding observations x. As a
Poisson likelihood was used to fit the model, an appropriate measure is the deviance,
which is formed from the logarithm of a ratio of likelihoods.18 The total deviance
involves the logarithmic likelihood ratio of the null model, in which it is assumed
that all observations x have a common mean parameter λ̂ = λ̂ = x̄, and the full,
or saturated, model, in which there is a parameter for each data point so that the
fitted model fits the set of observations exactly, i.e. λ̂ = x, giving the maximum
possible value of the likelihood. Hence, the total deviance can be defined as:

−2[l(x; x̄) − l(x;x)].

In practice, the null model is too simple and the full model is uninformative as it
simply maps exactly to the data. However, this deviance provides a baseline against
which the fit of an intermediate model can be measured. Therefore, the next step



September 6, 2006 15:1 WSPC/129-JBS 00188

A Continuum Model of E. coli O157 Population Dynamics 431

0 5 10 15 20 25

Days Post-Inoculation

100

101

102

103

104

105

106

107

108

109

1010

1011

N
um

be
r 

of
 c

fu
 s

he
d 

pe
r 

da
y

Fitted Model
Observed Values
Fitted Values

0 5 10 15 20 25

Days Post-Inoculation

100

101

102

103

104

105

106

107

108

109

1010

1011

N
um

be
r 

of
 c

fu
 s

he
d 

pe
r 

da
y Fitted Model

Observed Values
Fitted Values

0 5 10 15 20 25

Days Post-Inoculation

100

101

102

103

104

105

106

107

108

109

1010

1011

N
um

be
r 

of
 c

fu
 s

he
d 

pe
r 

da
y Fitted Model

Observed Values
Fitted Values

0 5 10 15 20 25

Days Post-Inoculation

100

101

102

103

104

105

106

107

108

109

1010

1011

N
um

be
r 

of
 c

fu
 s

he
d 

pe
r 

da
y

Fitted Model
Observed Values
Fitted Values

0 5 10 15 20 25

Days Post-Inoculation

100

101

102

103

104

105

106

107

108

109

1010

1011

N
um

be
r 

of
 c

fu
 s

he
d 

pe
r 

da
y Fitted Model

Observed Values
Fitted Values

0 5 10 15 20 25

Days Post-Inoculation

100

101

102

103

104

105

106

107

108

109

1010

1011

N
um

be
r 

of
 c

fu
 s

he
d 

pe
r 

da
y

Fitted Model
Observed Values
Fitted Values

Fig. 1. Fitted model of the passage of “strain A” through individual animals following inoculation
at day 0. The solid line represents the fitted bacterial distribution, the circles represent observed
counts and the crosses represent the fitted values at the corresponding time-points. Circles at the
100 level are zero observations.



September 6, 2006 15:1 WSPC/129-JBS 00188

432 Wood et al.

is to calculate the residual deviance, which involves the logarithmic likelihood ratio
of the fitted model and the full model, and can be defined as:

−2[l(x; λ̂) − l(x;x)].

The residual deviance is analogous to the residual sum of squares,∑
i

(xi − λ̂i)2

which is used to assess the fit of a model in normal linear regression. Therefore, the
following expression:

1 − residual deviance
total deviance

,

which will be referred to as R2
D as it is equivalent to R2, the coefficient of determi-

nation, is used to assess how well each of the models fits the data.
A summary of the parameters estimated for each animal along with the cor-

responding value of R2
D can be found in Tables 1 and 2. While it is relatively

straightforward to obtain reasonable fits for most of the animals, it is more difficult
to achieve this for animal A5. The initial model fit predicts an increasing distri-
bution of bacterial shedding over time, which is not expected, and as can be seen
from the value of R2

D in Table 1, the model does not fit the observations at all well
for this animal. In fact, the fitted model appears to fit the data more poorly than
if a common mean parameter had been used, as in the case of the null model. A
closer inspection of the observed counts in Fig. 1 can help to explain why this is
the case. Two peaks can be observed in the data. There is an initial peak around
day 3, which dies away slowly. No bacteria are present in any of the six samples col-
lected on day 17, while at the next sampling point (day 21), the amount of bacteria
isolated has returned to a level last seen 2 to 3 days post-inoculation. It is unclear
whether the break in shedding around day 17 is simply attributable to transient
shedding, or whether the animal did actually become clear of infection, but then,
perhaps as a result of fecal/oral contamination, became reinfected.

If transient shedding is responsible for producing the multi-modal pattern exhib-
ited by this dataset, then this animal corresponds to a case in which it is difficult to
obtain a model that fits the data well, as the model can only successfully describe
one peak in shedding. If, alternatively, reinfection did occur, it is not possible to
use the data set in its current form for parameterization purposes, as the model has
been developed to describe the passage of one pulse of infection through an animal.
However, assuming reinfection did take place, it is reasonable to suggest that the

Table 1. Summary of parameter estimates for animal A5, using the original set of observations
and a modified set.

Animal β(day−1) ω(m.day−1) γ(m2.day−1) R2
D

A5 (original) 0.049 0.545 19.538 −0.18
A5 (modified) 0.064 1.031 5.333 0.45
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reinfection event probably occurred after day 17 (when the animal was clear of E.
coli O157:H7) and that therefore, disregarding all positive observations following
this time-point will result in a dataset that describes a single pulse of infection.

Hence, the model fitting procedure is repeated for animal A5, but this time
omitting the observations that were most likely to have arisen as a result of rein-
fection. The revised fitted model is plotted in Fig. 1 and the model now explains
45% of the deviance, which is a substantial improvement.

Of all the animals inoculated with strain A, the model for animal A3 shows
the poorest fit. This is also the only model to predict increasing levels of shedding
over time. However, animal A3 was necropsied on day 14 and so there are no
observations available after this point. Therefore, valuable information regarding
the rate at which the level of shedding diminishes is missing. The truncated dataset
probably explains the relatively poor fit and the qualitatively different behavior
seen in this case.

3.2. Strain B

The second strain considered in this experiment differs from strain A only in that it
does not possess the phage encoding shiga-toxin 2. The strain was inoculated into
six animals, identified as B1, B2, B3, B4, B5 and B6. The parameterization method is
applied to the data generated by the observation of each of the animals. A summary
of the most likely parameters can be found in Table 2, and the fitted models are
plotted in Fig. 2.

The only animal for which it is not possible to obtain a reasonable fit to our
model is animal B3. The explanation appears to be similar to that for animal A5; the
observations are multi-modal. In particular, there is a large drop in the shedding
levels around day 21 with all but one of the samples at that time-point testing
negative, followed by a large increase in shedding at the next sampling point, which
is indicative of possible reinfection. Even the adoption of a similar approach to that
used for animal A5, where the fitting procedure is repeated using a dataset that
omits possible reinfection observations, results in a negligible improvement to the
overall fit.

With the exception of that for animal B6, all of the fitted models predict an
eventual decline in the level of shedding over time. The high levels of bacteria
recorded for animal B6 towards the end of the sampling period suggest that rein-
fection may have occurred. A similar pattern of observations suggests that animal
B4 may also have become reinfected.

3.3. Comparison of strains

To aid comparison of the two strains, and in particular, to explore whether the
presence of shiga-toxin 2 has an effect on the shedding pattern of E. coli O157:H7
within cattle, the estimated parameters and measures of fit for each animal are
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Fig. 2. Fitted model of the passage of “strain B” through individual animals following inoculation
at day 0. The solid line represents the fitted bacterial distribution, the circles represent observed
counts and the crosses represent the fitted values at the corresponding time-points. Circles at the
100 level are zero observations.
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Table 2. Summary of parameter estimation results for animals inoculated with different strains.

Animal Growth, β(day−1) Advection, ω(m.day−1) Diffusion, γ(m2.day−1) γ/ω (m) R2
D

A1 0.024 0.314 0.413 1.315 0.51
A2 0.049 0.387 0.713 1.842 0.62
A3 0.018 0.214 1.619 7.566 0.07
A4 0.044 0.383 0.676 1.765 0.38
A5 0.064 1.030 5.330 5.175 0.45
B1 0.184 3.912 32.944 8.421 0.87
B2 0.056 0.371 0.427 1.151 0.50
B3 0.081 0.840 2.337 2.782 −0.06
B4 0.061 0.927 3.774 4.071 0.27
B5 0.040 0.522 1.628 3.119 0.05
B6 0.041 0.657 6.670 10.152 0.23

summarized in Table 2. However, given the small number of fitted models and the
inherent variability that certainly exists between animals, it will not be possible to
draw any strong conclusions from these results alone.

Nevertheless, a close inspection of the individual plots (Figs. 1 and 2) does reveal
some plausible between-strain differences. For instance, the predicted peak amount
of bacteria shed per day by the majority of animals infected with strain A lies around
the day 5 mark, whereas the peak for the animals infected with strain B lies near to
day 2. Qualitative assessments of the model are described in the Appendices, where
Fig. 3 illustrates that the time to reach peak flux could be decreased by either a
reduction in the birth rate or an increase in the ratio γ/ω which can occur by either
an increase in the diffusive coefficient γ or a decrease in the advective velocity ω.
An examination of the parameter values in Table 2 suggests that the difference
in the distributions is therefore likely to have been caused by the higher ratios
of diffusion coefficient to advective velocity generated by animals inoculated with
strain B. Nevertheless, given that there are few results available for comparison,
it would be inappropriate to argue that this effect is caused by any differences in
strain types, rather than some unspecified alternative factor.

Table 2 reveals that the diffusive coefficient appears to be the parameter which is
subject to the most variability between animals. The growth rates between different
strains may have been expected to show some variation, and the growth rate in
different animals could be affected by differences in the availability of nutrients
in the bowel, variety in the resident microflora which interact with the challenge
bacteria, or variability in immune response. The advective velocities are prone to
variation caused by a wide variety of sources such as change in diet or stress.
Contrary to the results of this parameterization, it is the diffusive coefficients that
might have been expected to have relatively constant values across all animals,
although given the small number of animals to which the model was fitted and the
lack of estimates of standard errors, it remains to be seen whether this phenomenon
is genuine. This discussion implicitly assumes that the parameter estimates for each
animal are largely uncorrelated. This is unlikely to be the case in practice, and some
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of the peculiarities of the estimates seen in Table 3.3 may be more explicable when
seen in the context of correlated (within-animal) estimates with large standard
errors. However, a methodological explanation of the variability in the diffusion
coefficients can be proposed based on examination of datasets to which it was not
possible to obtain reasonable fits. As illustrated in Fig. 3 in the Appendices, it
would appear that the diffusion coefficient is the parameter with the greatest scope
to vary the shape of the shedding curve towards that observed in practice. For
example, should the bacterial populations persist at high levels for a substantial
length of time, an increase in the value of the diffusion coefficient will cause the
shape of the curve to match, more closely, that of the observed counts over time.

4. Discussion

The development and parameterization of a novel, deterministic model of the unob-
served passage of bacteria through the bovine gut is presented. The model is devised
to make good use of the limited available data, and therefore uses a partial differ-
ential equation to provide a simple representation of the process.

Using this model, it is possible to obtain reasonable fits to all of the datasets
considered, with one exception (animal B3). However, in this case there is evidence
that the assumption of a single pulse of infection which underlies the parameteriza-
tion exercise is inappropriate. Figures 1 and 2, and Table 2, all indicate that poorer
fits were obtained for those sets of observations where shedding persisted for longer
periods of time at high levels. This suggests that the model also has difficulty in
fitting a slow decline in the levels of shed bacteria.

The continuum model assumes constant parameter values throughout the gut,
and hence, these rates are applied to the internal bacterial population as a whole.
The model would be robust when fitted to data arising from a situation where the
parameters take different values at different points in the gut as long as the change
applies to all bacteria at that point. For instance, if bacteria passing through a
particular section of gut moved with a velocity that differed from the rate found
in the rest of the gut, an equivalent temporal distribution of shed bacteria could
be obtained from the model fitting a weighted average of the two velocity rates
to the entire gut. However, the model will not fit well to data arising from a sit-
uation where different sets of parameters are applied to subsets of the bacterial
population. The difficulties noted above in fitting models to observations obtained
from “high-shedding” animals suggest that these observations have been obtained
from a situation in which the assumptions of the model do not hold. Therefore,
it is plausible that a subset of the bacterial population within these animals is
subjected to a different set of parameter values than that of the majority popu-
lation at some point during its passage through the gut. This is consistent with
the occurrence of colonization, as reported by Naylor et al.,11 which would cor-
respond to a sub-population becoming subject to negligible advection at some
point in the continuum. In future experiments, direct swabbing of the potential
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site of colonization19 will allow the identification and quantification of such sub-
populations. Models such as that described in this paper will still have relevance in
describing the population dynamics of non- or negligibly-colonizing strains of bac-
teria, or of the population dynamics in animals which are refractory to colonization.

The collection of bacterial data externally from an animal, for instance from
fecal pats, is cheaper, more convenient and more ethical than the alternative, which
inevitably involves surgical intervention in the animal to access the gastrointestinal
tract. In so far as pat data easily provides a dynamic picture of shedding within
individual animals, it is also more informative. The continuum model was specifi-
cally designed to ensure that information gathered externally from an animal would
be sufficient for parameterization purposes. The data used for this purpose was the
most detailed and extensive set produced to date. Therefore, an attempt was made
to compare the within-animal infection dynamics of the different strains used in
the experimental study. Unfortunately, the small number of datasets for which
parameterization was possible did not allow any general conclusions to be drawn,
beyond the observation that between-animal variability was greater than between-
strain variability. This inability to generate sufficient evidence to evaluate biological
hypotheses, despite the use of a large dataset and a specially-developed model, high-
lights the need for further research in this area, and in particular, a requirement
to conduct more extensive field and experimental studies. Future parameteriza-
tion models should also explicitly allow for the effect of heterogeneity in the feces
sample, including the possibility of observing a zero count from a sample collected
from a shedding animal, perhaps through the use of a zero-inflated count model.20

It will also be important to develop a robust estimator for the variance-covariance
matrix of the parameter estimates, facilitating better understanding of the interplay
between different parameter estimates, and allowing the identification of animals
with statistically significant differences in shedding behavior.
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Appendix A: Reducing the Dimensions

An attempt can be made to reduce the number of unknown parameters for which
estimates are required. While it is possible that the advective flux can be inferred
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from the mean length of time it takes a dose of E. coli O157:H7 to pass through
the bovine gut, it is difficult to identify any mechanism to estimate the intrinsic
growth rate and the diffusion coefficient, short of fitting the results of the model to
shedding data. Therefore the model is rewritten in a form which allows these two
parameters to appear independently.

The length of the digestive tract, L, can be estimated from the literature,7

providing a natural scale for space, x. Similarly, the characteristic passage time
through the gut can be denoted by L/ω, which provides a suitable time scale.
Therefore, defining

y ≡ n

n0
, T ≡ t ω

L
, X ≡ x

L
, B ≡ βL

ω
, K ≡ γ

ωL
, (A.1)

yields the following normalized model with unit passage time through the gut,
T = 1:

∂y

∂T
= By − ∂y

∂X
+ K

∂2y

∂X2
, (A.2)

with boundary conditions:

y(0, T )− K

(
∂y

∂X

)
X=0

= 0, y(1, T ) = 0 ∀ T, (A.3)

and initial condition:

y(X, 0) =
{

1 if X = 0
0 otherwise,

(A.4)

A standard approach to solving such systems is to use the method of lines,
in which discretization in space is independent of discretization in time.10 This
approach leads to a set of ordinary differential equations which are solved as initial
value problems.

The calculation of a numerical solution for the rescaled model enables the range
of behavior that can be exhibited by the model to be investigated. Figure 3 illus-
trates the effect of varying the normalized diffusion parameter, K, and the growth
rate parameter, B, on the amount of E. coli O157:H7 shed from the animal per unit
time (i.e. the terminal flux). Comparison of the three frames appears to indicate
that the shape of the temporal distribution of the flux is most strongly affected by
the level of diffusion. For a value of K = 1, used in the uppermost frame, the flux
of bacteria leaving the gut has a right-skewed distribution with respect to time.
However, the lower frames show that as diffusion levels decrease, the shedding of E.
coli O157:H7 becomes more concentrated in time, leading to a more symmetrical
distribution of the flux, whose mode lies closer to the mean passage time through
the gut, T = 1.

By contrast, the growth rate, B, has a weaker effect on the temporal pattern
of the flux, acting in the main as a scaling parameter. However, reductions in B

do appear to result in small decreases in the time to reach the peak flux. It can
be seen that, even when local growth rates are positive, the rate of terminal flux
decays over time.
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Fig. 3. Plots of the normalized terminal flux calculated for different parameter values. Each
frame shows results for a different value of the normalized diffusion coefficient, K, while the lines
within each frame show the effect of changing the intrinsic rate of increase, B.
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Table 3. Mean residence times (in units relative to the characteristic passage time) of E. coli
O157:H7 in the digestive tract for different values of the growth and diffusion parameters, B and
K, respectively.

B

−1 0 1

1 0.308 0.371 0.481
K 0.1 0.784 0.905 1.107

0.01 0.976 0.995 1.015

It is clear from Fig. 3 that the peak flux occurs prior to the mean passage time,
for K > 0. This earlier than expected peak is due to the diffusive component,
which dominates movement through the absorbing right-hand boundary, and since
the overall population growth is negative, the amount leaving the animal is at a
maximum early in the process, even though the mean location of the population is
not yet near the boundary.

The mean residence times of bacteria in the gastrointestinal tract are calculated
from the terminal fluxes obtained for different values of the parameters, B and K,
used in Fig. 3. As can be seen from Table 3, the mean residence time of bacteria in
the gut is not the same as the time required to advect the length of the gut, with
the mean residence time depending on both B and K. This difference is unfortunate
as it suggests that the advective velocity should be retained in the equation to be
solved and that therefore a model of this system should incorporate each of the
three unknown parameters.

Appendix B: An Efficient Discrete-Time Approach

In order to fit the model to data, an efficient discrete-time approximation, based
on a triangular distribution, was adopted. Having discretized space using m nodes
spaced ∆x apart, the method essentially involves approximating the distribution of
bacteria after some time increment ∆t, following an initial point release at the ith
node, xi, by a triangular distribution displaced a distance δ from xi. Since in this
problem, the distribution around the initial node after one time step is independent
of the starting position, it is convenient to express this as a dispersal distribution,
Dj , which gives the fraction of the population which has been displaced j nodes
from the source,21 i.e.:

Dj =




(1 + (j∆x − δ)/α)Φ if δ − α < j∆x < δ

(1 − (j∆x − δ)/α)Φ if δ < j∆x < δ + α

0 otherwise ,

where α is half the width of the distribution, and Φ is a normalization parameter
such that: ∑

j

Dj = 1. (B.1)
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The distribution, Dj , can only be nonzero for values of j such that:

(δ − α)/∆x < j < (δ + α)/∆x, (B.2)

and Eq. (B.1) can easily be obtained numerically by bisection on Φ, for any δ and
any α > ∆x. The restriction on α occurs since the triangle must be sufficiently
wide to ensure that it spans at least two nodes in order to guarantee normalization
with Φ in the range 0–1.

To incorporate growth, the population at each node is multiplied by the net
reproductive rate used in discrete-time models, equivalent to a multiplier of

exp (β∆t)

where β is the intrinsic growth rate used in the continuous-time model (see
Eq. (2.1)). These growth and dispersal procedures are applied to each node at
the end of each time step.

However, in some instances the triangular distribution determines that dis-
persers should arrive at nodes lying outwith the domain {1, 2, . . . , m}. Therefore,
in order to use this triangular distribution in a system of finite length, it is nec-
essary to approximate the boundary conditions. This is done using the method
of images.22 Hence, for a reflecting boundary located halfway between two nodes
(i.e. x = 0), the part of the distribution which falls outside the domain is “folded”
back and added to the weight associated with the matching cell that is equidis-
tant from the boundary on the interior of the domain. For the absorbing boundary
at x = b the process is the same, except that the weights associated with nodes
outside the boundary are subtracted from the corresponding nodes in the interior.
Hence, as the nodes are numbered from 1 to m, and taking into account the reflect-
ing boundary on the left-hand side and the absorbing boundary on the right-hand
side, any destination node k lying outside the domain {1, 2, . . . , m} is mapped as
follows:

k →
{−(k − 1) if k < 1
−k + 2m + 1 if k > m.

Appendix C: Comparison of Numerical Methods

Gurney and Nisbet21 have shown that where a population is initially located at a
single cell, successive iterations of the triangular distribution will converge to a nor-
mal distribution in space, approximating the diffusion equation. This result allows
a comparison to be made between two numerical methods (triangular distribution
and method of lines).

The convergence result indicates that the variance (with respect to space) of a
population diffusing from a point source over a period of ∆t is 2γ∆t for a diffusion
coefficient of γ, while the mean displacement is ω∆t. Thus, by calculating the mean
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Fig. 4. The dots indicate the terminal flux obtained from iterating the triangular distribution
with 100 nodes and ∆t = 0.01 with α = 0.20022 and δ = 0.0002. These parameters imply an
advective velocity of 0.2 and a diffusion coefficient of 0.333, and the solid line shows the solution
to the equivalent continuous-time formulation using the method of lines.

and variance of the triangular distribution, estimates of the advective velocity, ω,
and diffusion coefficient, γ, of the corresponding continuous-time model can be
obtained as follows:

ω̂ =
1

∆t

∑
j

Djj∆x (C.1)

γ̂ =
1

2∆t

[∑
j

Dj(j∆x)2 −
(∑

j

Djj∆x

)2]
. (C.2)

Figure 4 shows a comparison between the two numerical methods to illustrate
that the more computationally efficient discrete-time method produces acceptable
results. First, the terminal flux obtained from iterating the triangular distribu-
tion with 100 nodes, ∆t = 0.01 and parameters α = 0.20022 and δ = 0.0002
is plotted. Equations (C.1) and (C.2) are used to derive the parameters for the
corresponding continuous-time model and hence, the terminal flux is obtained
using the method of lines. It is clear from Fig. 4 that the results are virtually
identical for all times. Hence, the discrete-time method involving the triangu-
lar distribution is preferred, given that it is the more efficient algorithm, which
is particularly important for computationally intensive tasks, such as parameter
estimation.
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