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Abstract

Using a sample of 949 Scottish farms with finishing cattle, the spatial distribution of Escherichia

coli O157-positive farms was investigated using disease mapping models. The overall prevalence of

E. coli O157-positive farms was estimated as 22%. The regions used in this study were the 16

postcode areas of Scotland. For each region, the posterior relative risk (RR) was estimated as a model-

based alternative to the saturated standardized morbidity ratio (SMR), i.e., the ratio between observed

and expected cases in a region. Three Bayesian hierarchical models with generalized linear modeling

of the area-specific risks were used to estimate the posterior relative risk of E. coli O157-positive

farms in the postcode areas: a random-effects model incorporating only spatially uncorrelated

heterogeneity; a model incorporating both spatially correlated and uncorrelated heterogeneity; and a

pseudo-mixture model with unstructured correlation and a weighted mix of two variance components

representing the spatial correlation and a jump structure. None of the models identified any areas with
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a significant increase or decrease in risk. The deviance information criteria slightly favored the

simplest model (RR range: 0.92–1.09). However, this model appeared to smooth out more of the

variation in the RR compared to the pseudo-mixture model, which gave a more informative pattern of

the posterior relative risks (range: 0.81–1.22).

# 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Escherichia coli belonging to serogroup O157 can be an important human diarrhoeal

pathogen. Cattle seemmostly unaffected by E. coli O157, but undercooked or rawmeat is a

source for food-borne infection in humans. Visits to infected farms, contact with animal

excreta and recreational use of animal pasture are risk factors contributing to the sporadic

cases of E. coli O157 in humans (Belongia et al., 2003; Locking et al., 2001; O’Brien et al.,

2001; Strachan et al., 2002).

In analyses of the spatial distribution of human cases, incidences of human cases were

associated with higher values of various indicators of livestock intensity (Innocent et al.,

2005; Kistemann et al., 2004; Michel et al., 1999; Valcour et al., 2002). However, no

studies have investigated the spatial distribution of E. coli O157-positive farms on a large

scale.

To help control the potential transmission risk of E. coli O157 from cattle to humans,

mapping of E. coli O157-positive farms and the assessment of the relative prevalence in

smaller areas within the area under study, e.g., a country or a region, would be useful. If

geographical differences in the prevalence of E. coli O157-positive farms exist, then

concentrating on the high-risk areas could optimize the use of the scarce resources of a

control program. More fundamentally, identification of spatial structures in the incidence

of an infection, such as E. coli O157, would lead to an increased understanding of the

disease/infection in terms of geographically associated risk factors.

A study of the farm-level prevalence of E. coli O157 in Scottish fattening cattle found

22% of all herds E. coli O157-positive (Synge et al., 2001; Ternent, 2002). In that study,

Scotland was divided into six areas based on the Scottish Agricultural College’s Animal

Health Divisions to investigate potential differences in the prevalence of E. coli O157-

positive farms, but no significant effect was found. However, that study did not allow for

possible spatial variation within regions. Furthermore, dividing Scotland into only six

regions might result in too crude a representation of potential spatial structures relevant to

the prevalence E. coli O157-positive farms.

Our objective was to characterize the spatial distribution of E. coli O1 57-positive farms

in Scotland using the relative risk of E. coli O157-positive farms in smaller areas formed

from postcode-information. As simple models might smooth over large discontinuities in

the risk surface (Lawson and Clark, 2002), we used three different models: a simple

random-effects model with an unstructured effect; a model where spatially structured

effects were included; and a model which also allowed discrete jumps in the underlying

spatial structure.
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2. Materials

We used data from a study that was designed to estimate the prevalence of E. coli

O157-positive fattening cattle-farms in Scotland (Ternent, 2002). The study was also

designed to investigate a variety of potential risk factors, including the effect of Animal

Health Division (AHD) as a proxy for potential geographical differences. Thus,

sampling was stratified by AHD to ensure that the samples were representative of the

distribution of farms across individual AHDs. We assume that the samples were

representative of the spatial distributions at lower levels of spatial aggregation as well,

this assumption being justified by the randomness of the sample at these levels. Farms

were selected at random using computer-generated lists from a database of all Scottish

cattle fattening farms.

On each farm, a number of faecal pats were sampled. The number of pats sampled on

each farmwas determined by a sampling scheme designed to achieve an 80% probability of

identifying the sampled group as positive, if at least one infected animal was shedding. The

sampling scheme was based on the size of the group of finishing cattle and an assumption

about the likely mean within-group prevalence. The latter was estimated as being

approximately 10% using data from an unpublished pilot-study conducted by two of the

authors.

Faecal samples were examined for E. coli O157 strains using immunomagnetic

separation (IMS) as described by Chapman et al. (1994), but using buffered peptone water

(BPW) without added antibiotics during enrichment to increase the analytical sensitivity

(Foster et al., 2003).

The sampled farms were grouped into 16 postcode areas of Scotland (Fig. 1(a) and (b)).

The sampling was carried out over 2 years, but any potential temporal structure is ignored

in this study due to the relatively small sample sizes in each postcode area.

3. Methods

The prevalence ( pi) of E. coli O157-positive farms in the ith area was estimated as

pi = yi/ni, where yi is the number of positive farms in the area and ni the total number of

farms sampled. A farm was defined as E. coli O157-positive if at least one pat sample from

the farm was positive.

The standardized morbidity ratio (SMRi) for the ith area is defined as the ratio

between the observed and expected cases. Thus, the SMR can be defined as the ratio

between the area-specific prevalence ( pi) and the overall prevalence, i.e. p = y/n, where

y =
P

yi and n =
P

ni. The SMR is often used in disease mapping, but has many

disadvantages (Lawson et al., 2003). The SMR is a saturated estimate of the relative risk,

where relatively small changes in the expected value can yield large changes in

estimates. When zero cases are observed, the SMR will be zero, regardless of the

expected number of cases. Furthermore, the variance of the SMR is proportional to the

expected number of positives.

To address the problems associated with SMRs, we adopted model-based relative risk

estimation methods to smooth the SMR estimates. As an initial model, we used a
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Fig. 1. (a) The spatial distribution of the 949 sampled farms in Scotland; (b) the standardized morbidity ratio

(SMR) of the prevalence of E. coli O157-positive farms.



generalized linear model with a logit link-function with random-effects:

yi �Binð pi; niÞ; logitð piÞ ¼ aþ vi; vi �Nð0; s2
vÞ (1)

where yi, ni and pi were the number of E. coli O157-positive farms, total number of sampled

farms and estimated prevalence in the ith postcode area, and vi were the random-effects

associated with postcode area, modeling the (uncorrelated) heterogeneity between post-

code areas. The parameter a, modeling the common intercept defining the mean global-

prevalence, was given the improper prior, dflat, inWinBUGS, which can be interpreted as a

uniform distribution on the real line (Spiegelhalter et al., 2003). This improper distribution

on a was needed in the two models specified below and used in this model to facilitate

comparisons between models. The random-effects parameter sv was given a non-infor-

mative uniform prior distribution on the interval [0.01, 10]. This choice of prior allowed sv

to vary uniformly in the relevant interval, while prohibiting extreme values which caused

problems with the convergence of the MCMC chain.

The relative risk RRi of the ith area was then estimated using RRi = pi/p, where p is the

overall prevalence. The RR and SMR represents the same estimator, applied to smoothed

and unsmoothed data, respectively, but wewill refer to the model-based statistics as RR and

the saturated statistics as SMR to distinguish between the results.

Although the above model smooths the estimates of relative risk, it does not explicitly

incorporate any spatial structure. The Besag, York and Mollié (BYM) model (Besag et al.

(1991) cited from Lawson et al. (2003)) extends the random-effects model by decomposing

the area-specific random-effects into a spatially structured effect (clustering or correlated

heterogeneity) and spatially unstructured variability. Formally, the model is specified by:

yi �Binð pi; niÞ; logitð piÞ ¼ aþ vi þ ui; vi �Nð0; s2
vÞ;

ðuiju j; i 6¼ j; s2
uÞ�Nðūi; s2

i Þ (2)

where

ūi ¼
1P
j ci j

X
j

u jci j; s2
i ¼

a2
uP
j ci j

; ci j ¼
1 if i and j are adjacent;
0 otherwise:

�

i.e., spatial correlation is explicitly modeled, so that the estimation of risk parameters in

any area is conditional on the values estimated in neighboring areas. This model is

unidentifiable and it is necessary to impose a constraint on, for example, the intercept a

through the use of an improper uniform distribution as discussed above. The random-

effects parameters sv and su are given uniform priors on the interval [0.01, 10] as before.

Both the random-effects model and the BYM model can smooth out genuine and

relevant discontinuities. Hence Lawson and Clark (2002) suggested an extension of the

BYM model to allow discrete jumps in prevalence. Lawson and Clark referred to their

model as a mixture model; however, that term is usually reserved for models which are

defined as a mixture of the distributions of mutually exclusive sub-populations, where one

of these represents the true distribution of the subject (e.g. whether a postcode area is

similar or dissimilar to its neighbors) (Gelman et al., 1994). The model proposed in Lawson

and Clark (2002) assumes that the spatial variation in each postcode area is a weighted mix
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of the spatially structured effect of the BYM model and a jump-process, i.e., all areas

contain both components but in varying proportions. We will refer to this approach as a

pseudo-mixture model. Formally, the pseudo-mixture model is defined as follows:

yi �Binð pi; niÞ; logitð piÞ ¼ aþ vi þ riui þ ð1� riÞwi (3)

where vi and ui are defined as for the BYM model, and wi by the joint distribution

pðw1;w2; . . . ;wmÞ

pðw1;w2; . . . ;wmÞ/
1ffiffiffi
l

p exp

�
� 1

l

X
i; j

ci jjwi � wjj
�

where l acts as a constrained term with a gamma prior distribution, and the weights ri are

given the prior distribution Beta(0.5, 0.5), i.e., a prior belief that the weights attached to the

two underlying processes will be disparate rather than similar, but with no assumption of

either process being dominant. The jump-component of the pseudo-mixture model is

defined in terms of the total absolute difference between the jump-model variance-

components in neighboring areas. While the choice of using differences between risks

in neighboring areas seems obvious, the choice of functional relationship, i.e., the use of

total absolute difference, is less obvious and essentially chosen for convenience of

implementation. Again, a must be assigned an improper prior to allow identifiability

of the spatial heterogeneity element of the model, while the prior distributions of the

random-effects sv, su and sw are assumed uniform on the interval [0.01, 10].

The relative risk using each of the three models were estimated using WinBUGS

(Spiegelhalter et al., 2003). For each model an initial burn-in of 5000 iterations were

followed by sampling a chain of 50,000 samples which were thinned down to every 10th

sample to reduce auto-correlation. Convergence was assessed by time-series plots of the

thinned chains.

The three models were compared using their Bayesian residuals (ri, defined as ri ¼
yi=ni � p̂i; where p̂i is the estimated prevalence) and the deviance information criterion

(DIC) (Spiegelhalter et al., 2002).

4. Results

In total, 952 farms were sampled. However, due to missing or incorrect geographical

information, three farms were excluded from further analysis in the present study. The

spatial distribution of the remaining 949 farms is shown in Fig. 1(a) using the geographical

coordinates recorded using Ordnance Survey maps at the farm visit. The farms represented

a sample of approximately 10% of Scottish farms with finishing beef cattle during the

sampling period. Of these 949 farms, 213 were identified as positive, an overall farm-level

prevalence of 22%. The large area without samples in the northwest of Scotland is an area

where the primary livestock production is sheep and there are very few farms fattening

cattle.
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Fig. 2. The posterior expected relative risk (RR) for each of the three models: (a) the random-effects model; (b)

the BYM model; (c) the pseudo-mixture model.
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Fig. 3. The residuals for each of the three models: (a) the random-effects model; (b) the BYM model; (c) the

pseudo-mixture model.



The SMR of E. coli O157-positive farms by postcode area is given in Fig. 1(b). The

SMR (range: 0.00–1.62) suggested that there was some spatial variation in the distribution

of E. coli O157-positive farms.

The posterior expected relative risk for farms being E. coli O157-positive using the

simple random-effects model is shown in Fig. 2(a). The random-effects model (Fig. 2(a)),

range of the posterior expected RR: 0.92–1.09, removed most of the variation seen in the

SMR (Fig. 1(b)). The posterior probabilities of the RRs being different from one

(Pr(RR 6¼ 1)) were below 71%, i.e. the RRs for the 16 postcode areas could not be

considered different from one at the usual 5% significance level.

As could be expected, the posterior expected relative risk (Fig. 2(b)) for the BYMmodel

showed less smoothing compared to Fig. 2(a). The posterior expected RR estimates ranged

from 0.87 to 1.16, with Pr(RR 6¼ 1) less than 82%, i.e. no RR were significantly different

from one at the 5% significance level.

The pseudo-mixture model with discrete jumps as well as a spatial structure gave the

least-smoothed pattern of the three models (Fig. 2(c)). By allowing the discrete jumps in

the model, the posterior expected RR estimates ranged from 0.81 to 1.22, with the

posterior Pr(RR 6¼ 1) less than 84%, i.e. no RR were different from one at the 5%

significance level.

The posterior estimates of the population mean-prevalence p = exp(a)/(1 + exp(a)), a

and the variance components (sv, su, sw) for each of the three models are given in Table 1

as the posterior estimated mean with the estimated 2.5 and 97.5% percentiles. The deviance

information criteria (DIC) is also given for each model; the minimum DIC estimates the

model that will make the best short-term predictions.

Fig. 3 shows the Bayesian residuals for each of the three models; as expected, the overall

range of the residuals decreases as the complexity of the models increases.

5. Discussion and conclusion

The posterior estimated means and 95% credible posterior intervals for the intercept a

and the unstructured variance component sv are similar across the three models (Table 1),

which seems to indicate that the models behave reasonably well.
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Table 1

The deviance information criteria (DIC), the posterior estimated mean and 95% credibility posterior interval,

given as the estimated 2.5 and 97.5% percentiles, of the population mean prevalence ( p), the intercept a and

variance components (sv, su and sw) for the three RR models

Random-effects model BYM model Pseudo-mixture model

2.5% Mean 97.5% 2.5% Mean 97.5% 2.5% Mean 97.5%

DIC 79.91 81.29 80.93

p 0.19 0.22 0.26 0.19 0.22 0.26 0.18 0.22 0.26

a �1.45 �1.25 �1.07 �1.46 �1.26 �1.07 �1.50 �1.27 �1.05

sv 0.02 0.16 0.42 0.02 0.16 0.44 0.02 0.17 0.47

su – – – 0.02 0.27 0.80 0.03 0.53 1.77

sw – – – – – – 0.07 0.58 1.35



Lawson et al. (2003) suggests the use of the Bayesian residuals as a means of assessing

the local goodness-of-fit. Specifically, the ranges of the residuals are used to indicate which

model has the better fit, while the patterns of the residuals identify potential areas where the

models have problems estimating the true relative risk. The residual plots (Fig. 3) suggest

that there might be something gained by applying the more complicated models, because

the map for the pseudo-mixture model (Fig. 3(c)) shows residuals with a smaller range than

the random-effects model (Fig. 3(a)). However, all three plots display residuals with a

reasonable range indicating a reasonable fit. The plots all show that there are relatively

larger problems estimating the true relative risk in the north west and the south east of

Scotland, but that the problems decrease as the complexity of the models increase.

The DIC in Table 1 favors the simplest model over the pseudo-mixture model and the

BYM model, with the BYM as the least favorable model. However, according to

Spiegelhalter et al. (2003), if the difference in DIC is, say, less than five, and the models

make very different inferences, then it could be misleading just to report the model with the

lowest DIC. Hence, because any differences in DIC and residual maps are not very large

there is no strong evidence against any of the models. A model fitting only the intercept a
gives a DIC of 78.50, and could therefore be preferred to any of these three models, but, as

the differences in DIC are all less than three, we chose to take the above advice and

consider the nature of the inferences from the different models.

None of the three models identified any clusters with a significant reduction or increase

in relative risk compared to the overall risk level, at the 5% significance level. The pattern

in the pseudo-mixture model (Fig. 2(c)) did, however, show more variation than the other

two models. Prior to the analysis carried out in this study, we analyzed data for clusters of

E. coli O157-positive farms using the (x,y)-coordinates of the individual farms to calculate

scan statistics using SaTScan v4.0 (http://www.satscan.org) (Kulldorf, 1997). This analysis

did not find any significant clusters, which is consistent with the findings here. However,

simple sample-size calculations based on a base prevalence of 0.22 and RR = 1.25 suggest

that 760 farms should be sampled in each (of two) areas to find a such difference between

the two areas with 95% confidence and 80% power (Houe et al., 2004). Hence, failing to

identify any significant differences in this study is hardly surprising considering that only

949 farms in total were sampled.

A Swedish study (Kistemann et al., 2004) reports that positive cattle samples appeared

to be concentrated in the southern and central part of Sweden. However, the study reported

only the cases and did not adjust for the spatial distribution of farms in general, so it is

impossible to make any inference from that study about the spatial distribution of positive

farms.

Analyzing the data on the spatial scale of the 16 postcode areas does not give much

scope for modeling the spatial structure. This scale was chosen to avoid the problems with

convergence due to small sample sizes and missing information in areas that occur when

using finer scales of postcode-information such as postcode-districts (of which there are

434 in Scotland). A more suitable spatial scale would probably be something intermediate

between the two scales and an optimal choice will depend on the objective of the study.

However, because no clusters were identified using individual farm records, it is unlikely

that regions with significant deviations in risk will be identified at any level of aggregation,

especially given the sample-size considerations outlined above. It is expected that using a

N. Toft et al. / Preventive Veterinary Medicine 71 (2005) 45–5654
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spatial scalewith more regions would favor more-complexmodels, as spatial heterogeneity

becomes more important when smoothing at a less aggregated scale; dividing an area into

more regions can reveal a structure that is invisible at a higher level of aggregation.

To utilize the RR for inference and decision making we would suggest that the pseudo-

mixture model is used. To discover potential sub-populations the model needs to be

formulated in a way which allows such populations to be identified (McCulloch et al.,

2002). Future analyses of the data presented in this study should involve ecological

analyses of covariates at area level, e.g., indicators of livestock density, as well as farm

level covariates, such as management related factors. In the present study the pseudo-

mixture model did not identify areas with significantly higher or lower risk. Furthermore,

based on the RR estimates, the calculated smoothed area-specific risks lies between 18 and

27%. This basically suggests that differences are not only non-significant, but also too

small to advocate an area-specific intervention against E. coli O157 among Scottish cattle

fattening farms.

An advantage of the models used here compared to models based on individual farm

recordings lies in the need for data quality. Geocoding the positions of farms is tedious,

expensive, time consuming and in some countries been resisted by farmers opposing the

potential for surveillance arising from such registration. However, census data can often be

obtained at some level of aggregation, thus making the use of RR models a more practical

and realistic option.

Acknowledgements

The original sampling survey was funded by SERAD (now SEERAD). This analysis

was funded as part of the Wellcome Trust International Partnership Research Awards in

Veterinary Epidemiology. Nils Toft was supported by a grant from The Danish Research

Agency. Iain McKendrick was supported by SEERAD project BSS/028/99.

The maps were based on data provided with the support of the ESRC and JISC and uses

boundary material which is copyright of the Crown, and the Post Office. Source: The 1991

Census, Crown Copyright. ESRC purchase.

References

Belongia, E.A., Chyou, P.-H., Greenlee, R.T., Perez-Perez, G., Bibb, W.F., DeVries, E.O., 2003. Diarrhea

incidence and farm-related risk factors for Escherichia coli O157:H7 and Campylobacter jejuni antibodies

among rural children. J. Infect. Dis. 187, 1460–1468.
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