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Abstract

Moment closure approximations are used to provide analytic approximations to
nonlinear stochastic models. They often provide insights into model behaviour and
help validate simulation results. However, existing closure schemes typically fail in
situations where the population distribution is highly skewed or extinctions occur.
In this study we address these problems by introducing novel second- and third-
order moment closure approximations which we apply to the stochastic SI and
SIS models. In the case of the SI model, which has a highly skewed distribution of
infection, we develop a second-order approximation based on the beta-binomial.
In addition, a novel closure approximation is developed in order to capture the
behaviour of the stochastic SIS model at the critical point of persistence or extinc-
tion of the process. This mixture approximation, is a third-order approximation
and comprises a probability distribution designed to capture the behaviour of the
system conditioned on non-extinction (quasi-equilibrium) and a probability mass
at 0 which represents the probability of extinction. Two versions of this mixture
approximation are considered in which the log-normal and the beta-binomial
are used to model the quasi-equilibrium distribution. Comparison with simulation
results show: 1) the beta-binomial approximation is flexible in shape and matches
the skewness predicted by simulation as shown by the stochastic SI model and 2)
mixture approximations are able to predict transient and extinction behaviour as
shown by the stochastic SIS model in marked contrast with existing approaches.
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1 Introduction

In this study, we obtain analytic approximations to nonlinear stochastic pro-
cesses based on the closure of second- and third-order moment evolution equa-
tions and compare the results obtained to those from stochastic simulations.
The stochastic SI (susceptible - infected) model is used as a case where the
population exhibits a highly skewed distribution but totality of infection is
guaranteed. In contrast, the stochastic SIS (susceptible - infected - suscepti-
ble) model is used as an example that exhibits behaviours of persistence and
extinction, common to many stochastic population models in ecology, epidemi-
ology and biochemistry. Both skewness and the transition between persistence
and extinction of a disease are often difficult to capture using existing ana-
lytic methods. Thus, novel closure approximations are developed to study the
transition region between persistence and extinction of a disease.

Stochastic models are useful in epidemiology and ecology and are used widely
(Isham, 1991; Allen and Cormier, 1996; Bolker and Pacala, 1997; Filipe and
Gibson, 1998; Marion et al., 1998; Matis and Kiffe, 1999; Bauch and Rand,
2000; Keeling, 2000). Usually, the transition probabilities exhibit non-linear
dependence on population size or number of infectives which makes the re-
sultant stochastic processes analytically intractable. Hence, techniques of ap-
proximation are needed to capture the underlying behaviour of the stochastic
processes. Linearisation is one such approximation, where, the behaviour of
small stochastic fluctuations can be examined around a fixed point of the
deterministic dynamics (Bailey, 1963). An alternative approach is to analyse
the quasi-equilibrium probabilities which give a picture of the distribution
independent of time and conditional on extinction not having occurred (Ren-
shaw, 1991). Both linearisation and quasi-equilibrium probabilities are lim-
ited in their application to regions close to the fixed points or equilibrium.
In contrast, closure methods are based on equations describing the temporal
evolution of moments or cumulants and in principle apply to both transient
and equilibrium dynamics. Moment closure approximation was introduced by
Whittle (1957) and has been widely used in recent years (Isham, 1991; Bolker
and Pacala, 1997; Marion et al., 1998; Keeling, 2000; N̊asell, 2003). Most com-
monly in these approximations, the population distribution is only described
by the first- and second-order moments and these typically fail to describe the
skewness or extinction. Thus, we extend the use of moment closure to a third
moment developing a novel closure approach called the mixture approxima-
tion.

Two generic epidemic models are studied: the stochastic SIS, as an exam-
ple which exhibits extinction and the stochastic SI, a simpler version of SIS,
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used in a case where recovery is impossible and therefore totality of infection
is guaranteed. Depending on the disease transmission rate, the SIS model
exhibits meta-stable persistence of disease, rapid extinction and a critical re-
gion corresponding to the border between the two regions. Both SI and SIS
models have been used before in other studies in either stochastic or determin-
istic form, for example (Jacquez and Simon, 1993; Allen and Cormier, 1996;
N̊asell, 2002). In section 2, we introduce the SIS model, present some simu-
lation results and show how a system of moment equations is obtained from
the stochastic model. The moment closure approximations are described in
section 3 where various methods of closure are shown with a general formula-
tion of moment equations. Here, we present the SI model, as an ideal starting
point for illustration of problems with existing second-order moment closure
approximations. In section 4 we compare the various closure approximations
used with the simulation results from the stochastic model. Finally in section
5, we lay out our conclusions based on the results discussed in section 4.

2 SIS model

An SIS epidemic model with fixed population size, N , is considered where
the individuals may be in one of two states, either susceptible (S) or infected
(I). When a susceptible individual is infected, it moves to the I class. After
some exponentially distributed time, the infected individuals move back to the
S class. Hence the model assumes that the disease is non-fatal and induces
no resistance in the recovered individuals. The number of infected individuals
at time t is denoted by n(t) and since the population size, N , is fixed, the
number of susceptibles at time t is N − n(t). Two parameters involved in the
dynamics of the model are α and β, where α is the contact rate and β is the
individual recovery rate. Infection occurs at rate αn(t)(N − n(t)) per unit of
time and recovery occurs at rate βn(t) per unit time.

Interpreting this model as a discrete state-space Markov process, gives the
following probabilities of a change, δn, occuring in (t, t + ∆t)

Prob[δn(t + ∆t) = 1] = αn(N − n)∆t ≡ ψα(n)∆t (2.1)

Prob[δn(t + ∆t) = −1] = βn∆t ≡ ψβ(n)∆t (2.2)

where ∆t is sufficiently small that multiple events which occur with probability
O(∆t2) may be ignored. The dependence on time is implicit, through n(t).

The inter-event time is exponentially distributed with rate R=βn+αn(N−n)
and the nature of the event will either be an infection with probability αn(N−
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n)/R or a recovery with probability βn/R (Renshaw, 1991). By repeating the
procedure, until a given finite time is reached or the disease becomes extinct,
single realizations of the stochastic model can be obtained for a given initial
condition n = n0. The results presented here are based on generating the
initial infectives n0 from a beta-binomial distribution: the beta-binomial being
a discrete distribution where the parameter p of a binomial distribution is itself
a beta variate (Evans et al., 2000), hence n0 ∼ bin(20, p), p ∼ beta(26.7, 80.0).
Without loss of generality, we set β = 1 throughout so that time units are
equal to the expected infectious period between infection and recovery (Filipe
and Gibson, 1998).
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Fig. 1. Single realisations of stochastic process (a-c) and Histogram rep-
resenting number of infectives (d-f): (a,d): α = 0.06; (b,e): α = 0.10 and (c,f):
α = 0.30. Observed number of infectives from single realisations of the stochastic
SIS process exhibits (a): Subcritical region where the epidemic quickly dies out,
(b): Critical region where the epidemic persist for a short period of time before it
dies out and (c): Meta-stable region where the epidemic has reached equilibrium.
Histogram representing the number of infectives obtained from 10 000 simulations
for t = 80 shows (d): Subcritical region where there is a mode at 0 meaning all
realisations have gone extinct, (e): Critical region where some of the realisations
persists longer and (f): Meta-stable region where extinction is rare.

Graphs, (a-c), of figure 1 show the simulation results of single realisations
of the stochastic process for the parameter values representing three regions
namely subcritical, critical and meta-stable corresponding to the three differ-
ent qualitative behaviours which are disease extinction, the transition between
disease extinction and meta-stable persistence and meta-stable equilibrium re-
spectively. In the subcritical region (α = 0.06), the epidemic dies out quickly
(before t reaches 20). When α = 0.10 (critical region), the simulation result
fluctuates around 10 for the number of infectives before it becomes extinct.
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The process seems to have reached equilibrium when α = 0.30 for the finite
time considered (t=10 000) and the number of infectives fluctuates around 17.
In this meta-stable region, the epidemic persists and extinction is rare at least
for the finite time considered, t=10 000.

The histograms, (d-f), of figure 1 were obtained from 10000 simulations by
allowing the system to run until t = 80. For α = 0.06, it can be seen that there
is a probability mass only at n = 0, meaning all realisations become extinct
quickly. In the critical region, α = 0.10, the distribution is bimodal with a
probability mass at n = 0 and a nonsymmetric unimodal contribution to p(n)
at n > 0. This indicates that some realisations become extinct and some do
not, at least for the finite time considered. Finally, in the third parameter
region, α = 0.30, the histogram is clustered nearer n = 20 meaning that
extinction is rare in the finite time considered. However, this state is only
meta-stable because as t → ∞, ultimate extinction is assured.

2.1 Analytic approximations

The transition probabilities (2.1) depend non-linearly on the number of in-
fectives and the resultant stochastic processes are analytically intractable to
direct solutions. Thus, techniques of approximations are applied in order to
capture the underlying behaviours of the stochastic processes. Linearisation is
an example of such approximation, where, the behaviour of small stochastic
fluctuations can be examined around a fixed point of the deterministic dynam-
ics. An alternative approach is to analyse the quasi-equilibrium probabilities
which give a picture of the distribution independent of time and conditional
on extinction not having occurred (Renshaw, 1991). Both linearisation and
quasi-equilibrium probabilities are applicable to processes in equilibrium. In
contrast, closure methods are based on equations describing the evolution of
moments or cumulants that can be applied to both transient and equilib-
rium dynamics. Since, our aim is to obtain analytic approximations to predict
transient aspects of the stochastic process, we focus on applying the moment
closure approximation.

2.2 Moment evolution equations

Consider (2.1) and (2.2) as representing a Markov chain in discrete time t, the
probability of an event being a recovery or infection at time t+∆t is βn(t)∆t
and αn(t)(N − n(t))∆t respectively. The transition probability that there is
no change in the state occupied is 1 − αn(t)(N − n(t))∆t − βn(t)∆t. This
assumption is based on the Markov property, that the state at time t + ∆t
is only dependent on the state at time t and not on any previous time (Cox
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and Miller, 1965). Let pt(n) be the conditional probability that there are n
infectives at time t given that there are n0 infectives at time t = 0. Taking the
limit as ∆t → 0, the forward equation obtained is

∂pt(n)

∂t
= pt(n − 1)ψα(n − 1) − pt(n)ψα(n) +

pt(n + 1)ψβ(n + 1) − pt(n)ψβ(n). (2.3)

The evolution of the epidemic can also be described from the evolution of
the moments. For example, the first moment describes the expectation of the
number of infectives or susceptibles. We derive the evolution of moments of
the process, E[nk], for k=1,2,3,.... , by using the moment generating function,
Mt(θ) ≡ E[exp(nθ)] ≡ ∑∞

n=0 exp(nθ)pt(n).

When (2.3) is multiplied by exp(nθ) and the sum taken over n = 0, 1, 2, .., we
obtain (Bailey, 1963):

∂Mt(θ)

∂t
= (eθ − 1)ψ̂α

(
∂

∂θ

)
Mt(θ) + (e−θ − 1)ψ̂β

(
∂

∂θ

)
Mt(θ) (2.4)

where, if ψα(n) = αnN−αn2 and ψβ(n) = βn, then ψ̂α( ∂
∂θ

)Mt(θ) ≡ αN ∂Mt(θ)
∂θ

−
α∂2Mt(θ)

∂θ2 and ψ̂β( ∂
∂θ

)Mt(θ) ≡ β ∂Mt(θ)
∂θ

respectively. By taking the first, second
and third derivatives of (2.4) w.r.t. θ and setting θ = 0, we obtain ordinary
differential equations describing how the first, second and third moment equa-
tions of the stochastic process evolve over time.

dE[n(t)]

dt
= (αN − β)E[n(t)] − αE[n2(t)] (2.5)

dE[n2(t)]

dt
= (αN + β)E[n(t)] + (2αN − α − 2β)E[n2(t)] − 2αE[n3(t)] (2.6)

dE[n3(t)]

dt
= (αN − β)E[n(t)] + (3αN − α + 3β)E[n2(t)]

+(3αN − 3α − 3β)E[n3(t)] − 3αE[n4(t)] (2.7)

These equations are open, in the sense that the equation describing the rate of
change of the kth moment depends on the (k + 1)th moment. Therefore, these
equations cannot be solved successively. This is true for all orders of k, not
just the k = 1, 2, 3 shown here. In order to proceed, the system of equations for
the first k moments need to be closed and this is done by approximating the
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(k +1)th moment in terms of the first k moments. The resulting closed system
is then solved numerically. Generally, this method is known as moment closure
(Whittle, 1957; Isham, 1991; Marion et al., 1998). In the following section, we
discuss problems with existing closure approximation and introduce two novel
schemes.

3 Closure approximations

3.1 Second-order approximation

First we consider second-order moment closure schemes where E[n3(t)] is ap-
proximated in terms of E[n(t)] and E[n2(t)] by assuming that n is governed
by appropriate distribution function. The nonsymmetric bimodal shape and
the mode at n = 0 shown by the histogram in figure 1 suggest that a symmet-
ric distribution will not be a good approximation. Furthermore, the average
number of infectives tends to zero in the subcritical region, α = 0.06. Since
the normal distribution has zero skewness and no lower bound, using a normal
approximation seems inappropriate in this case. Instead, we employ a com-
monly used alternative, the log-normal distribution because its non-negative
support makes it a more appropriate description of population variables. The
primary interest in this study is the subcritical and critical regions, thus, the
fact that the log-normal does not have an upper bound is ignored. Since the
most commonly used distributions for moment closure, for example the normal
(Whittle, 1957) and log-normal (Keeling, 2000), are continuous whereas the
process we are looking at is discrete, we also consider a discrete distribution,
namely the beta-binomial.

The log-normal is a continuous distribution in which the logarithm of the
variable of interest is assumed to have a normal distribution. If the number
of infectives, n, is log-normally distributed, then y = log(n) is normal with
moment generating function

My(θ) = E[exp(θy)] = exp

(
k1θ+

k2θ
2

2

)

where k1 is the mean and k2 the variance of y (Kendall, 1994) . It is straight-
forward to obtain the moments of the log-normally distributed variable n since
E[nθ]=E[exp(θy)]=My(θ).

Thus, the first, second and third moments for the log-normal distribution can
be obtained by substituting θ = 1, 2, 3, for example, the third moment is:
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My(θ= 3) = E[n3] = exp

(
3k1 +

9k2

2

)

The beta-binomial distribution has been in existence since Eggenberger and
Pólya (1923) proposed their urn model, although it remained unnamed and
under-used until Skellam (1948) gave it a thorough description. The beta-
binomial distribution has more recently been used in plant epidemiology by
Madden and Hughes (1995) to represent quadrat counts of disease incidence.
The beta-binomial is a discrete distribution where the parameter p of a bino-
mial distribution is itself a beta variate (Evans et al., 2000). If the number of
infectives, n is from a beta-binomial distribution, then the moment generating
function (Skellam, 1948) is

Mn(θ) =
1

beta(a, b)

1∫
0

pa−1(1 − p)b−1(1 − p + p exp(θ))Ndp

where a and b are the shape parameters and N is the population size. By taking
the first, second and third derivatives of the moment generating function and
evaluating at θ = 0 we obtain the moments which are

E[n] =
Na

a + b
(3.1)

E[n2] =
Na(Na + N + b)

(a + b)(a + b + 1)
(3.2)

E[n3] =
Na

a + b

(
1 +

3(N − 1)(a + 1)

a + b + 1
+

(N − 1)(N − 2)(a + 1)(a + 2)

(a + b + 1)(a + b + 2)

)
. (3.3)

Note that both the log-normal and beta-binomial are described by just two
free parameters and thus only two moments, E[n] and E[n2] are required, to
solve for parameters in terms of moments. For example, solve (3.1) and (3.2)
simultaneously for a and b of the beta-binomial. Thus the log-normal and
beta-binomial distributions may be completely determined by the first- and
second-order moments. This is precisely what is required for a second-order
approximation. With these assumptions the third-order term, E[n3(t)] in the
equation describing the evolution of the second-order moment is replaced by
appropriate functions of E[n] and E[n2] for the log-normal and beta-binomial
distributions.

To illustrate second-order approximation and the application of the beta -
binomial approximation to a set of observed data (Kleczkowski et al., 1996;
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Gibson et al., 1999), we present the SI model in the following subsection.

3.2 Case Study: fungal plant epidemic

Kleczkowski et al. (1996) carried out experiments on radish seedlings by inocu-
lating them with the pathogen Rhizoctonia solani Kühn, a fungus that attacks
root vegetables and is responsible for what is known as damping-off disease
(Green, 1943). They monitored 10 microcosms, each containing 50 seedlings
and inoculated by means of 10 mycelial discs of R. solani, and recorded the
number of infected seedlings daily. Five of the microcosms were also exposed
to the antagonistic fungus Trichoderma viride Pers ex Gray, which has a con-
trolling effect on the pathogenic fungus, R. solani. These data are reproduced
in figure 2.
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Fig. 2. Number of radishes infected by damping-off in five replicate microcosms in
the absence (a) and presence (b) of the antagonistic fungus T. viride.

Parameter T. viride absent T. viride present

αp 0.0265 0.0074

α 0.0118 0.0102

v 0.167 0.127

Table 1
Maximum likelihood estimates for the three parameters, under the presence or ab-
sence of the antagonistic fungus Trichoderma viride, estimated by Gibson et al.
(1999).

Kleczkowski et al. (1996) formulated and fitted a deterministic model to their
data, which Gibson et al. (1999) recast in stochastic form, the stochastic model
having the benefit of being able to capture the variability observed in the
experiments. Both models contain terms accounting for infection of radishes
by primary sources, that is, the initial inoculum, as well as by the secondary
sources we have been considering so far, representing infection via an already-
infected plant. In addition, both models include a time-varying susceptibility
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of the plants to the disease. The probabilistic rule given by Gibson et al.
(1999), re-written to our notation, is:

Prob[δn(t + ∆t) = 1] = (αp + αn(t))(N − n(t))e−vt∆t (3.4)

with αp being the new primary rate of infection, α the secondary, and e−vt

the time-varying susceptibility of plants to the disease. This time varying
susceptibility can be accomodated by rescaling time as τ = (1 − e−vt)/v.

We derive the following equations for the rate of change of the first- and
second-order moments of n(τ) with respect to τ , which are analogous to equa-
tions (2.5) and (2.6):

∂E(n(τ))

∂τ
= αpN + (αN − αp)E(n(τ)) − αE(n2(τ)) (3.5)

∂E(n2(τ))

∂τ
= αpN + (αN + (2N − 1)αp)E(n(τ))

+((2N − 1)α − 2αp)E(n2(τ)) − 2αE(n3(τ)) (3.6)

Assuming that n(τ) ∼ beta-bin(N, a(τ), b(τ)), we can write E(n3(τ)) in terms
of the first two moments of n(τ), as described in section (3.1), and substitute
this value in equation (3.6). This means that we can use some numerical
method to evaluate approximations to the first two moments over time, for a
given parameter set {αp, α, v} and given the initial conditions in this case that
no seedlings were infected at the start of the epidemic (i.e. n(0) = 0). Here we
use Euler’s scheme. We also apply normal and log-normal approximations, in
the same way.

Gibson et al. (1999) used profile likelihoods to estimate these three parame-
ters from the two data sets, corresponding to the presence or absence of the
biological control agent T. viride; these values are reproduced in table 1. We
perform 3 × 106 simulation runs of the model for both parameter sets. The
simulations and approximations are plotted in figure 3.

As can be seen in figure 3, the beta-binomial approximation captures the dy-
namics of the evolution of the true probability mass function far better than
either the normal or log-normal approximations. The normal approximation
is only able to capture the shape of the observed distributions when their
skewness is approximately 0. Furthermore, the normal approximation assigns
probability to negative numbers of infectives; these probabilities may be sub-
stantial for particularly skewed observations. In contrast, the log-normal ap-
proximation does not support negative numbers of infectives, and matches the
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Fig. 3. Distribution of the number of radishes infected by damping-off in
the absence (a-c) and presence (d -f ) of the antagonistic fungus T. viride, at 1 (a,d),
5 (b,e) and 15 (c,f) days after the first emergence of seedlings. The initial condition
is that the plants are all disease free (i.e. n(0) = 0). The histograms represent the
average frequencies from a series of 3 × 106 simulations, the unbroken curves our
beta-binomial moment closure approximations, the dotted curves the Normal, and
the dashed the log-normal. Continuity correction has been used for the continuous
distributions; however, we represent all three approximations as continuous curves
for clarity of comparison. Both simulations and moment closure approximations
make use of the maximum likelihood parameter estimates found by Gibson et al.
(1999), reproduced in table 1.

skewness present in the early stages of the epidemics better than the normal,
although its shape is not as flexible as that of the beta-binomial.

3.3 Second-order approximation results for the SIS model

Having seen the results in the case of the SI model, we now consider approx-
imating the more complex behaviours of the SIS model as shown in figure 1
where we have the subcritical, critical and meta-stable regions. Results from
numerical solution for the log-normal and beta-binomial approximation using
the Runge-Kutta fourth-order scheme are shown in figure 4.

It is seen that the beta-binomial is the better approximation in the subcritical
region where it is able to predict extinction as seen in stochastic simulation. In
the critical region, both log-normal and beta-binomial approximations break
down where they are unable to show the observed extinction as seen in stochas-
tic simulation for large t. In the meta-stable region, both log-normal and beta-
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Fig. 4. Second-order approximation and stochastic simulation: Expected
number of infectives, (a-c), and variance, (d-f), from closure approximations and
stochastic simulations. Subcritical region: (a,d): α = 0.06; Critical region: (b,e):
α = 0.10; Meta-stable region: (c,f): α = 0.30.

binomial approximations agree well with stochastic simulations where extinc-
tion is rare for the finite time considered. The beta-binomial approximation
is able to estimate the variation in the process better than the log-normal in
the subcritical region.

In summary, the beta-binomial gives reasonable estimates in the subcritical
but not the critical region and the log-normal gives poor estimates in both the
regions. Both approximations are good in the meta-stable region but predict
indefinite persistence. Both the beta-binomial and log-normal are approxi-
mately same in the critical and meta-stable region. Overall, second-order ap-
proximations did not give good description of extinction in the subcritical and
critical regions for the SIS model. Thus, third-order closure approximation is
developed and hoped to give an improved description of these regions.

3.4 Third-order approximation

In the histogram in figure 1, it is seen that there is a shift in the shapes of
the distribution shown when there is a change in the parameter value: In the
subcritical region (α = 0.06), it is simply a mass at n = 0; in the critical
region (α = 0.10), it becomes a bimodal with a mode at n = 0 correspond-
ing to the proportion of realisations that become extinct and a nonsymmetric
unimodal portion resulting from those remaining extant realisations; and in
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the meta-stable region (α = 0.30), the mode at n = 0 shrinks and there is
a nonsymmetric unimodal shape clustered nearer to n = 20. In this region,
extinction is rare on relatively large time scales though ultimate extinction
is guaranteed. Thus, the persistent state is said to be meta-stable. This can
be understood by noting that for n infectives, the probability of the next n
events being recovery (I → S) is finite. Here, a novel closure approximation
is developed in which the population is assumed to be described by a distri-
bution which is a mixture of mass at n = 0 and a probability distribution
representing extant realisations in order to obtain an improved description of
the transient aspects of the process. A major advantage of this third-order
approximation is that it estimates probability of extinction in the critical and
meta-stable regions which a second-order approximation cannot do, as seen in
figure 4. Therefore, it allows prediction of extinction probability, the transient
distribution and the quasi-equilibrium distribution. For this study, first we use
a log-normal mixture and then a beta-binomial mixture.

In general, the probability function of this mixture distribution is represented
by p(n) = pπ1(n) + (1 − p)π2(n) where π1(0) = 1 and π2(n) is a probability
mass function for n = 0, 1, 2, ..., N . Thus, E[nk] = (1 − p)Eπ2 [n

k]. If π2 is
from a two parameter, say (µ, ν), family of distributions then the mixture
defines third-order approximation since p, µ and ν are determined by solving
three equations for k=1, 2 and 3 (for example, the first three moments). Thus,
the mixture distribution is completely determined by the first-, second- and
third-order moments, E[n], E[n2] and E[n3].

Since this is a third-order approximation, the fourth moment of the log-normal
mixture and beta-binomial mixture are needed in order to close the system of
differential equations (2.5)-(2.7). Thus, when π2 is the log-normal, the fourth
moment of the log-normal mixture is

E[n4] = (1 − p) exp (4k1 + 8k2)

where p, k1 and k2 are determined as described above in terms of E[n], E[n2]
and E[n3] by solving the equations for the first three moments of log-normal
mixture simultaneously.

If π2 is the beta-binomial, the fourth moment of the beta-binomial mixture is

E[n4] = (1 − p)
Na

a + b

(
1 +

7(N − 1)(a + 1)

a + b + 1

)
+

(1 − p)
Na

a + b

(
6(N − 1)(N − 2)(a + 1)(a + 2)

(a + b + 1)(a + b + 2)

)
+

(1 − p)
Na

a + b

(
(N − 1)(N − 2)(N − 3)(a + 1)(a + 2)(a + 3)

(a + b + 1)(a + b + 2)(a + b + 3)

)
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where p, a and b are determined in terms of E[n], E[n2] and E[n3] by solving
the equations for the first three moments of beta-binomial mixture simultane-
ously with N fixed by the population size.

Therefore, the fourth-order term, E[n4(t)] in the equation describing the evo-
lution of the third-order moment, equation (2.7) is approximated by a function
of E[n], E[n2] and E[n3] for both the log-normal mixture and beta-binomial
mixture. Results of these third-order approximations are shown in the follow-
ing section.
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Fig. 5. Mixture approximation and stochastic simulation: Expected number
of infectives, (a-c), and variance, (d-f), from mixture approximations and stochastic
simulations. Subcritical region: (a,d): α = 0.06; Critical region: (b,e): α = 0.10;
Meta-stable region: (c,f): α = 0.30.

4 Results and Comparison

Here we discuss the results of the third-order approximations for the SIS
model. Numerical solution for the log-normal mixture and beta-binomial mix-
ture approximation using the Runge-Kutta fourth-order scheme are compared
with stochastic simulation in figure 5.

There is improvement for both mixtures over second-order approximations in
the subcritical region where the log-normal mixture is able to predict extinc-
tion and the beta-binomial mixture predicts extinction on a more accurate
time scale than the corresponding second-order approximation. Furthermore,
in this region, the estimated variances also agree with the stochastic simula-
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tion. In the critical region, there is again a large improvement for both mix-
tures as they are able to capture the behaviour shown by stochastic simulation,
which can be interpreted as a short-term outbreak which becomes extinct af-
ter a relatively short time. Unfortunately, the mixtures estimate this on a
slightly shorter time scale than that observed in stochastic simulations. In the
meta-stable region, the behavior shown by the mixtures is qualitatively correct
but it is unable to mimic the observed meta-stability of the epidemic. Both
log-normal and beta-binomial mixture tend to overestimate the probability of
extinction and therefore underestimate the time to extinction. However, the
beta-binomial mixture does slightly better in estimating its time scale. Since
the mixtures predict extinction on a shorter time scale compared to stochastic
simulation, we consider the expected number of infectives as a function of the
probability of extinction and this is seen in figure 6.
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Fig. 6. A diagram of expected number of infectives vs extinction probability obtained
from mixture approximations and stochastic simulations for (a): subcritical region
(α = 0.06), (b): critical region (α = 0.10), (c): meta-stable region (α = 0.30)

In both the subcritical and critical regions, it can be seen that the beta-
binomial mixture is the better approximation. In the critical region (α = 0.10),
for an extinction probability of approximately 0.2, the expected number of in-
fectives estimated by the mixtures is close to the result from the stochastic
simulations. In the meta-stable region, both mixtures are able to match the
simulation results for probability > 0.05. The result from stochastic simulation
shows that the expected number of infectives is a linear function of the prob-
ability of extinction. This is due to the large rate of infection when α = 0.30
which speeds the disease to reach epidemic level that persists over a long time
(t ≈ 6×107). In the meta-stable region, the expected number of infectives is a
linear function of probability of extinction because the mean is conditioned on
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non-extinction. Although the expected time to extinction is poorly estimated
by our mixture approximations in the meta-stable region, figure 6 shows that
they are able to predict the relationship between probability of extinction and
expected epidemic size seen in stochastic simulations.

5 Conclusion

In this paper we have introduced a new second-order moment closure approx-
imation and applied this to the SI model. The approximation (which assumes
that the distribution of the numbers of infections follows a beta-binomial dis-
tribution) agrees well with the true frequencies obtained by simulation, and
offers a considerable improvement on approximations based on the normal or
log-normal distributions. The beta-binomial approximation may be similarly
applicable to approximate other stochastic models on fixed-size populations.

In the case of the SIS model, which exhibits a richer range of dynamics includ-
ing extinction and meta-stability, the second-order beta-binomial approxima-
tion performs well in the subcritical region (where extinction occurs rapidly),
but is unable to predict the extinction occuring in the critical region, whilst
the log-normal approximation fails to capture extinction in both critical and
subcritical regions. This led us to propose the three-parameter mixture distri-
butions combining probability mass at 0 with log-normal and beta-binomial
distributions, respectively.

These new approximations are able to predict the extinction exhibited by the
SIS model, although both predict that extinction occurs over a shorter time
scale than observed in simulations. The beta-binomial mixture gives a superior
approximation to the log-normal mixture, predicting extinction on a longer
times-scale that is closer to the simulation results, and agreeing extremely
closely with the simulations in the subcritical region.

There are a number of areas where the work of this paper can potentially
be extended. One such example is to apply the mixture approximation to
other one dimensional models such as the Verhulst (Goel and Richter-Dyn,
1974) and SIR (N̊asell, 2002) model. Alternatively, the mixture approximation
could be extended to higher dimensional systems, for example, the predator-
prey (Renshaw, 1991) and chemical-kinetics (Marion et al., 2002) processes.
Finally, it would be interesting to consider moment closure schemes based on
more general mixture distributions than those considered in this contribution.
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