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Abstract.

We show that in supervised learning from a supplied data set Bayesian model
selection, based on the evidence, does not optimise generalisation performance even
for a learnable linear problem. This is demonstrated by examining the finite size
effects in hyperparameter assignment from the evidence procedure and the resultant
generalisation performance. Our approach demonstrates the weakness of average
case and asymptotic analyses. Using simulations we corroborate our analytic results
and examine an alternative model selection criterion, namely cross-validation. This
numerical study shows that the cross-validation hyperparameter estimates correlate
more strongly than those of the evidence with optimal performance. However, we show
that for a sufficiently large input dimension the evidence procedure could provide a
reliable alternative to the more computationally expensive cross-validation.



1. Introduction

The problem of supervised learning, or learning from examples, has been much studied
using the techniques of statistical physics (see e.g. Krogh and Hertz (92), Seung et al
(92) and Watkin et al (93)). A major advantage of such studies over the usual analytical
approach in the statistics community is that one can examine the situation where the
fraction («) of the number of examples (p) to the number of free parameters (N) is
finite. This contrasts with the asymptotic (in «) treatments found in the statistics
literature (see e.g. Plutowski et al (94),Stone (77a),(77b), Shao (93), Gelfand and Dey
(94)). However, one draw-back of the traditional statistical physics approach is that it
is based on the thermodynamic limit where one allows N and p to approach infinity
whilst keeping « constant. Naturally this limits the applicability of these theoretical
results to the real world. In this paper we address the problem by calculating first order
corrections to the thermodynamic limit, that is we explore finite size effects. Finite size
effects in supervised learning have been studied previously by Sollich (94) and Barber
et al (95). Before discussing the main focus of our study a brief introduction to the
supervised learning paradigm is in order.

In this context one is presented with a set of data D= {(y:(x,),x,) : p = 1..p}
consisting of p example pairs of an otherwise unknown teacher mapping denoted
by the distribution P(y; | x). This notation accommodates, for example, teachers
with deterministic outputs corrupted by noise. Furthermore, we assume that the Ny
dimensional input space is sampled with probability P(x) and thus, the data set is
generated with probability P(D) = [T, P(y: | x,)P(x,). The learning task is to
use the data D to set the N parameters, w, of some model (or student), with output
ys(x), such that it learns to mimic the underlying mapping as closely as possible on all
inputs drawn from the distribution P(x) (i.e. not simply those in the training set D). A
popular measure of this performance is the generalisation error which we define formally
in section 2.2. We regard minimisation of this error, to which one does not have direct
access, as the principal goal of the learning or training process. The question is then how
to conduct training so as to obtain the best possible performance. One frequently used
approach consists of minimising a weighted sum, S Ey (D)+~yC(w) of the quadratic error
of the student on the examples, Ey (D), and some cost function, C(w), which penalises
over complex models. Provided 7 is non-zero this serves to alleviate the problem of over-
fitting of noisy data which can degrade performance. It is the setting of the, so-called,
hyperparameters # and v which we will examine in this presentation.

If stochastic gradient descent is used to minimise the composite cost function,
BEw(D) + vC(w), one obtains a Gibbs distribution of students, (i.e. the post training
distribution over the parameters w) (Seung et al 92). If we wish to make a prediction on
a novel input using the average, or the maximum, of this distribution then this prediction
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depends solely on the hyperparameters. Thus, the selection of 5 and v can be regarded
as a model selection. In practice, since a decision must be based only on the training
data there are essentially two choices in terms of hyperparameter assignment . Firstly
one can attempt to estimate the generalisation error (e.g. by cross-validation (Stone 74))
and then optimise this measure with respect to the hyperparameters. However, such
an approach can be computationally expensive. Secondly, one can optimise some other
measure and hope that the resulting assignments produce low generalisation error. In
particular, MacKay (92) advocates a quantity derived from Bayesian statistics, termed
the ewidence, as such a measure. In the main we will explore this latter approach,
defining the evidence in section 2.1.

Model selection based on the evidence, in the learnable case of a linear student
and teacher, has been studied by Bruce and Saad (94) in the thermodynamic limit.
Their results show that optimising the average, over all possible data sets, of the log
evidence simultaneously with respect to both hyperparameters optimises the average
generalisation error. In an unlearnable scenario Marion and Saad (95) show that in the
thermodynamic limit hyperparameter assignment from the average log evidence does
not optimise performance. Self averaging is said to hold if the variance of relevant
quantities vanishes as the thermodynamic limit is approached. Since both these studies
were conducted in the thermodynamic limit and the self averaging property was assumed
the analyses were average case. In this paper we show that self averaging does indeed
hold in relation to model selection based on the evidence in the learnable linear case.
However, we will explore the optimality of the evidence in a system of finite size where
the variance over data sets is non-vanishing. Furthermore, rather than conduct an
average case analysis we seek to examine hyperparameter assignment based on individual
data sets.

Our standpoint can be summarised as follows. In any real experiment a single set of
data is available for training and one seeks to optimise performance based on this data
set alone. The optimal policy (e.g. those hyperparameter assignments which minimise
the generalisation error) will fluctuate from data set to data set, as will policies based on
the evidence and the cross-validation error. What is of interest is how close our chosen
strategy is to the optimal for the particular set of data in question. It is clear that
average case analyses and measures of average performance do not reveal this. Thus, in
section 2.2 we define data dependent measures of performance and then subsequently
explore the performance of the evidence assignments in relation to them. In addition,
we also briefly consider the average case showing that such an analysis is in general
highly misleading. However, we note that in the thermodynamic limit, if self averaging
holds, then both approaches are equivalent.

The remainder of the paper is organised as follows. In the next section we review the
evidence framework and the performance measures we will deal with. In section 3, we
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write down the evidence and the performance measures for the learnable linear case. The
problem of consistency, that is the behaviour in the limit of large amounts of data, is then
explored along with an average case approach. In addition, employing some of the results
of Sollich (94), we demonstrate that, for large N, the variances, over data sets, of the
evidence and generalisation error are O(1/N), in other words that self averaging holds.
In section 4 we avoid the average case approach examining hyperparameter assignment
from the evidence in relation to the optimal hyperparameters using finite size corrections
to the thermodynamic limit. We corroborate these results with numerical simulations
of small systems. The impact of these assignments on performance is studied in section
5. In particular we estimate a lower bound on the system size necessary for the evidence
procedure to give reliable results. Also in terms of performance, we explore the relative
importance of fluctuations in the optimal and in the evidence procedure assignments. A
numerical study of a low dimensional system in section 6 allows a comparison of model
selection based on the cross-validation error and on the evidence. Finally we summarise
our main results in section 7.

2. Objective functions

2.1. The evidence

Since Ew (D) is the sum squared error then, if we assume that our data is corrupted by
Gaussian noise with variance 1/2(3, the probability, or likelihood of the data(D) being
produced given the model parameters, w, and 3 is P(D | B, w) o e #%(P)  The
complexity cost can also be incorporated into this Bayesian scheme by assuming the a
priori probability of a rule is weighted against ’complex’ rules, P(w | 7) o e 7¢(™).
Multiplying the likelihood and the prior together we obtain the post training or student
distribution, P(w | D, 7, 3) oc e #Pw(P)=7C(W)  Ag noted earlier stochastic minimisation
of the composite cost function also gives rise to this distribution. Indeed, Buntine and
Weigend (91) refer to this process as Bayesian Backpropagation.

The evidence itself is the normalisation constant for the post training distribution
P(D|7,8) = [ [Idw;P(D| B, w)P(w|7) . (2.1
J

That is, the probability of (or evidence for) the data set (D) given the hyperparameters
B and 7. The evidence can thus, be calculated from the data set, D, alone. Throughout
this paper we refer to the evidence procedure as the process of fixing the hyperparameters
to the values that simultaneously maximise the evidence for a given data set. Thus,
although the Bayesian framework outlined here envisages the hyperparameters as
defining the whole distribution of input-output pairs, the assignments from the evidence
procedure will depend on the data set at hand. Indeed, one could regard this procedure
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as empirical Bayes (see e.g. Berger (85)) where, to some extent, the data is allowed
to influence the choice of prior. In addition, we note that this is the way in which the
evidence procedure is used in practice (Mackay (92)).

2.2.  The performance measures

In contrast to the evidence, the performance measures we review here can not be
calculated from the data alone. Before proceeding we will introduce the notation
(f(2))p(z) to denote the average of the quantity f(z) over the distribution P(z).
However, we will use the short hand (.)y, to mean the average over the post training
distribution P(w | D,~, 3). Thus, the average student output at x conditioned on the
training data, D, is (Ys(X))w-

As the principal performance measure we choose the expected squared difference
over the input distribution P(x) between the average student and the average teacher.
That is, the data dependent generalisation error

€g(D) = {((We(x)) Pty — (s (¥))w) ") i) - (2:2)

If we were to average over all possible data sets of fixed size then this would correspond to
the generalisation error studied by Bruce and Saad (94) and Krogh and Hertz (92). The
question arises as to what one means by optimal procedure. As noted previously, in the
context of a real supervised learning experiment we are concerned with the performance
based on the actual data set available and not on the average performance. Thus, the
optimal policy is that which minimises the data dependent generalisation error and our
focus will be on the performance of the evidence procedure in relation to this. However,
in section 3.1 we will consider an average case approach. Further, in section 5 we will
also consider the effect of defining the optimal hyperparameter assignment in terms of
the average (e,(D))p(p) whilst using the data dependent evidence assignments. This
will enable us to asses the relative importance of fluctuations in the optimal and the
evidence assignments.

Another feature we can consider is the variance of the student output, y,(x), over
the student distribution ({ys(x) — (¥s(x))w }*)w,px)- Adapting the definition of Bruce
and Saad (94) we define the data dependent consistency measure as

0c(D) = ({ys(x) = (¥s(%))w}*Iw,peo) — €(D) - (2.3)

We regard 6.(D) = 0 as optimal since then we can estimate our expected error, €,(D),
from the variance of our student output; which in principle we can calculate if we
could estimate the input distribution. Indeed, Krogh and Vedelsby (95) suggest using
unlabelled data to estimate the variance over the ensemble of students, albeit in a
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slightly different context. Again note that we are principally concerned with the optimal
procedure based on the training data available and not on the average over all such sets.

3. Finite system size

In this section we consider a finite system size N examining the large p limit and
showing that in the learnable linear case under consideration in this paper the evidence
procedure is unbiased in a particular sense. We then explore the approach to the
thermodynamic limit demonstrating that the system is self averaging. However, initialy
we must calculate the evidence and the performance measures.

Since the student is linear with output y(x) = w.x/v/N, the number of parameters
equals the dimension of input space, N; = N. We also assume that the teacher mapping
is linear, parameterised by the weight vector w®, and corrupted by zero mean Gaussian
noise of variance o2. Thus, P(y; | x,) o« exp[—(y}' — w°x,/v/N)?/20?]. Further, we
assume P(x) is (0, 0,)t and adopt weight decay as our regularisation procedure, that
is C(w) = wlw. In this case we can explicitly calculate the evidence, or rather the
normalised log of the evidence f(D)= —1/NInP(D | A, ), where we have introduced
the weight decay parameter A = v/(802%). We can write the quantity f(D) which is
analogous to a free energy as

1. A 1 1

f(D) = —3 In — %lng + 5 In2 — ﬁlndet g+yn+g (Aaﬁafv +n'Tn + ae,,) (3.1)
where

L. = (x4) g%y 4 % _ 2\(w°)"gx,

uv NQO'% N ) yu - N\/N )
o2 (we)gwe

aC’U - N

and g=(A+A)"" with A= No? (%) (xp) -
Here p and v index the p patterns, | is the identity matrix in /N dimensions,
No2 = w° - w° and the p dimensional noise vector n has components drawn from

N(0,0). The term a,, does not fluctuate with the noise but only with the inputs x*.

The generalisation error and the consistency can be calculated from f(D) by
averaging appropriate expressions over the input distribution P(x). The generalisation
error is given by

¢(D)=n"An+zn+aq, (3.2)

T Where N (%,0) denotes a normal distribution with mean % and variance 0.



where
M=~ o nm (v,
and  a., = —/\j\?g (wo)Tg—iw" .
Finally, the consistency is
5.(D) trg — (D) . (3.3)

~ 23N

We note here that the generalisation error depends only on the weight decay, A, thus
in the remainder of this paper we refer to the optimal weight decay A,,:(D) as that which
minimises €,(D). Similarly, for fixed weight decay the optimal inverse temperature,
Bopt (D), ensures that 6.(D) = 0 and thus that the variance of the student distribution is
equal to the generalisation error. We denote the hyperparameters that simultaneously
maximise the evidence as A, (D) and [en(D). Thus, the term optimal refers to the
optimisation of, or with respect to, the performance measures whilst evidence optimal
refers to maximisation of the evidence.

3.1. Consistency and unbiasedness

Firstly we consider the question of asymptotic consistency, that is, we examine the
free energy, f(D), and the generalisation error in the limit of large amounts of data
(i.e. as p — oo with N fixed). This term is not to be confused with the consistency
measure defined above. Using the fact, shown in appendix A, that, for large p,
gi; = 6;;N/p+ O(1/p*?) we can find the asymptotic evidence optimal hyperparameter
assignments, namely

Jim Aey(D) = Ao + 0 (%) and  lim fe,(D) = 6o + O (%) (34)

where the noise to signal ratio Ay = 02/(0202) and By = 1/(20?). In addition it can
be shown that, to first order in p~!, the generalisation error is independent of . As
we shall see later in the context of large N this insensitivity of the generalisation error
to the value of the weight decay is associated with a divergence in the variance of the
optimal weight decay as the number of examples grows large.

That the generalisation error is independent of the weight decay for large p implies
that any scheme for setting A\, and in particular the evidence assignments, will achieve
optimal performance asymptotically (i.e. , generalisation error tends to zero irrespective
of A\). However, as we shall see in section 4 this does not imply that the evidence
assignments correspond to the optimal hyperparameters. Rather, it is a reflection of
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the fact that, for any weight decay setting, our linear student is mean square consistent
(see e.g. Stone (77b)) when the teacher is also linear.

For, this reason instead of looking directly at the generalisation error when assessing
the performance of the evidence assignments we will focus on the fractional increase in
generalisation error from the optimal incurred by their use. That is on

69()‘611; D) B eg()‘opt’ D)
69()‘0pt’ D)

Keg(Aews D) = (3.5)
Similarly the fractional error in estimating the generalisation error from the variance of
the student distribution is

d¢c(Aevs Bev, D)
Aevs Bev, D) = ——————— . 3.6
/{(50( ev /Bev ) ég(/\ev, D) ( )
In section 5 we examine the behaviour of both k. (D) and k5,(D) in the thermodynamic
limit.
However, before considering this regime we examine average case behaviour. Using
the result of appendix B it can be shown that

(€4(D)) p(py = 0*Gay + A\Gay(0® — No2a2) (3.7)

where the response function Gay = (trg)p(p) is unknown in general. The average
generalisation error is clearly optimised by A = Ay. Similarly, it can be shown that
the average consistency is optimised by # = 3, whilst the resulting average free energy,
[=(f(D))pw) is extremised by A = Ay and B = (3. This corresponds to the average
case result obtained for the thermodynamic limit by Bruce and Saad (94) but is valid
for all N and p. However, we are not able to explore the behaviour in more detail in this
regime since we can only calculate Gay explicitly in the region of the thermodynamic
limit. Thus, the average case analysis shows that the evidence procedure is unbiased
in the sense that maximisation of the average evidence optimises average performance.
However, we now show that the fluctuations around this average optimum performance
become increasingly important as the system size, N, decreases.

3.2.  Self averaging

Using the result of Sollich (94) t that the variance of trg/N is O(1/N?) one can calculate
the variance, over possible realisations of the data set, of the free energy, f(D) obtaining

Var(f(D)) = 204<tr(FF))p({xu:u:lup}) + 0'2<tr(yTy')>P({xM:u:1..p}) (3.8)
+/82<azv)P({xf‘:u=1--p}) - 62<aev)%({x“:u:1..p}) .

1 Alternatively one can show this result using diagrammatic methods.
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Here we have explicitly performed the noise average and the remaining average over
the input points is with respect to P({x* : 4 = 1..p}). As shown in appendix C, it
is readily verified that (tr(I'T))p(xepu=t.p})s (tT(¥Y7Y))P({xt:u=1.p}p) and the variance of
ey are O(1/N) as we approach the thermodynamic limit. Thus, the variance of the
free energy is O(1/N), i.e. it is self averaging. Similarly, it can be shown that the
generalisation error and consistency measure are also self averaging. This means that
in the thermodynamic limit the behaviour exhibited by the system for any particular
data set will correspond to the average case behaviour, that is the fluctuations around
the average vanish. Thus, we see that the average case analysis of Bruce and Saad (94)
corresponds to the case for any particular data set because their results were obtained
in the thermodynamic limit.

4. Data dependent hyperparameter assignment

Having now established, in addition to the self averaging, that the evidence procedure
is unbiased and consistent in a crude sense we now wish to examine the finite system
behaviour for data sets of finite size. This is clearly the regime of interest to real
world applications since one is then in the business of optimising performance based
on the supplied data set. To obtain the hyperparameter assignments made by the
evidence procedure we must simultaneously solve 0, f(D) = 0 and 0sf(D) = 0, where
Ogf = 0f/00. We can linearise these equations, close to the thermodynamic limit, by
expanding around A = A\g and 8 = 3. Doing so we obtain

( Ade, ) _ ( RS 90uS ) < Onf ) (1)
= ) ) )
Ao ) T\ n3af O 95 ), s
Where the evidence optimal hyperparameters are Ae, (D) & Ao+ Ay (D) and (e, (D) =
Bo + ABey(D). In the notation adopted here the data dependence is implicit and the
right hand side is evaluated at A = A\g and 8 = .
Similarly, we can expand the true optimal hyperparameters about the

thermodynamic limit, obtaining Aoyt (D) = Ag + AXypi(D) from the generalisation error
with

Adgpt = —% . (4.2)
a)‘eg 20,60

Since we regard the optimal consistency as zero (see Section 2.2) we obtain By, (D) ~
Bo + ALyt (D) where

i) = 2]~ DD »
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and the notation (h)y denotes the value of the function A in the thermodynamic limit.

The (co)-variances of these quantities are O(1/N); an example calculation is outlined
in appendix D. Figure 1 shows, to first order in IV, the scaled variances t in the evidence
optimal weight decay, \//;r()\ev) and that in the true optimal weight decay, \//\zﬁ"()\opt) for
various values of Ay . In the limit of large a we find

203

A
Var(Aey) = a—N(l +2)) and Var(Agp) ~ 0%

N
The asymptotic O(1/«) decay of the former reflects the fact that, as discussed in section

(4.4)

3.1, limg 400 Aey (D) = Ao. Similarly, the divergence of the latter is indicative of the
insensitivity of the generalisation error to the weight decay for large .. The divergence
of both curves for small « is order O(1/(N«)) and in fact, for p = 1 it can be shown
analytically that these quantities are O(1). In the limit of zero noise we find that the
variance of A, diverges for a < 1 and is zero for o > 1. However, in this limit of zero
noise the variance of the optimal weight decay tends to zero irrespective of a. Since, at
least to first order, the average of A\, is zero this means that optimal weight decay is
zero in the limit of no noise. Thus, if there is no noise the evidence procedure can only
set the weight decay with confidence for o > 1, whilst the optimal policy is to accept
the data completely for all « (i.e. Ay = 0).

A second feature we consider is the average separation between the evidence
assignment of the weight decay and the optimal,

1 Aev = Aopt [IP=< (Aew(D) = Aopt(D))* >po) - (4.5)

As one would expect this average separation increases with the noise. However, in the
limit of zero noise whilst | Aey — Aoyt ||? is zero for @ > 1 we find that it diverges
for < 1. This divergence is linked to the divergence in the evidence assignment of
the weight decay discussed in the preceding paragraph. In the limit of large data sets
the average distance between the optimal weight decay and the evidence assignment
diverges linearly, indeed for large o we find that

| Aew — Aopt 172 Var(Agp) - (4.6)

Thus, we see that this divergence is caused by the fact that, whilst the evidence
assignment becomes ever closer to )y, the variance, over data sets, of the optimal
regularisation parameter diverges.

Finally we examine the normalised correlation between A, (D) and A, (D),
C(Aew, Aopt) and that between [, (D) and Bopt(D), C(Bev, Bopt) to order O(1) as shown
in figure 2. The normalised correlation between two fluctuating quantities h(D) and
k(D) is written C(h(D), k(D)) = ({hk)p) — (h)p){k)pD))/(Var(h)Var(k))/2. For

1 i.e. N times the true variances
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small o the non-monotonic behaviour of C(A¢y, Agpt) is a reflection of the fact, discussed
above, that the variance in the evidence assignment diverges for small noise whilst that
of the optimal tends to zero. As the noise level increases Var(\,) reduces and Var(Aqyt)
increases causing the correlation to first increase and then decrease as a function of ).
For zero noise C'(A¢y, Aopt) tends to zero for all « since the optimal parameter does not
fluctuate in this limit. The behaviour of C(fey, Bopt) is more straight forward. For small
a this correlation reduces monotonically with increasing Ag. In the limit of zero noise
C(Bey, Bopt) = 1 for v < 1 and is zero otherwise. The behaviour in the region o < 1,
where the variance of both §,, and (., diverge for small noise level is indicative of
the fact that, for this case, in the thermodynamic limit neither the consistency nor the
evidence are dependent on the inverse temperature, (3.

Finally, in the large o limit we have

V2

lim C'(Aev; Aopt) = ——F——= 4.7

Jim C( ot) V] (4.7)
and

Jim C(Beo, Bopt) = 4Nga™ 2 . (4.8)

Thus, for large noise the asymptotic correlation between the evidence and the optimal
weight decays tends to —1 whilst for small noise it tends to zero. In contrast C(Bey, Bopt)
invariably tends to zero. In general then, to order O(1/N) the evidence assignments
correlate rather poorly with the optimal assignments.

When defining the evidence procedure, we could have chosen to optimise the
evidence with respect to each of the hyperparameters whilst holding the other fixed
rather than simultaneously w.r.t. both. In the thermodynamic limit, in the linear
case, we find that the evidence assignments are optimal only in the case where we
simultaneously minimise the free energy w.r.t. to both hyperparameters (Bruce and
Saad 94). This was the motivation for studying the later case here. However, we briefly
note that if we fix (., = By and optimise the evidence w.r.t. the weight decay only we
are free to expand A, (D) about A\ as before. In this case we find that, in analogy to
the thermodynamic limit, this assignment is less correlated with the optimal than in the
situation we have been discussing where we optimise the evidence simultaneously with
respect to both hyperparameters.

To summarise, we note that our results in this section are in stark contrast to the
average case result of section 3.1 and reveal the inadequacies of the latter approach. In
addition, despite mean square consistency the evidence assignments are in fact far from
the optimal values both asymptotically and for finite o. Indeed, in section 5 we will see
that this has a deleterious effect on performance.
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4.1.  Simulations

To qualitatively corroborate our results we performed simulations of one dimensional
linear perceptron students and teachers. In these simulations we generated random
data sets and found the evidence procedure and the true optimal hyperparameter
assignments. Then by averaging over many such data sets we calculated the variances
and correlations of these parameter assignments. Some results from these simulations
are shown in figure 3. The left-hand graph shows the variance of A,,: and of A, versus
the number of examples, p, in this case. They show qualitative agreement with the large
N results of figure 1, with the variance of A,y diverging linearly for large p whilst that
of A, falls off with p. The right-hand graph of figure 3 shows the correlation between
Aopt and Ag,. These simulation results demonstrate that there is a region of positive
correlation for a small number of examples and that as the noise reduces so does the
level of the (anti)- correlation.

A better understanding of this behaviour is to be had by examining the
histogrammed samples, over different data sets, of the evidence and the optimal
assignments. For a small number of examples, p, the distribution of evidence assignments
looks qualitatively the same as that of the optimal assignments. Thus, there are many
occasions where A, and A, are coincident and the correlation between them is positive
although as we can see in figure 3 the variances in the assignments are large. As p grows
the evidence assignments begin to cluster around )y as by our consistency results they
must for large p. The mean of )., thus tends to Ay and its variance decays in accord
with our thermodynamic results. However, as p grows the distribution of the optimal
assignment remains similar to its small p form but the variance in A,,; becomes larger
also in accord with our theoretical results. Given the differences between these two
distributions it is hardly surprising that the correlation between the two corresponding
hyperparameter assignments is not positive in this region.

5. Effects on performance

We now examine the effects on performance of these sub-optimal hyperparameter
assignments. Firstly, for the generalisation error to order O(1/v/N) the optimal
performance, €,(Ayp, P), and that resulting from use of the evidence procedure,
€g(Aey, D) are the same. However, to order O(1/N) they differ, thus we can write the
correlation between them, somewhat suggestively, as 1 — O(1/N). Unfortunately, we
are unable to calculate this correlation to O(1/N). Therefore, we examine the increase
in error invoked by use of the evidence procedure

A€(D) = €g(Aev, D) — €g(Aopt, D)
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= A)\eva)\Gg + §AA8,U6)‘69 + §A/\opta/\€g -+ O ﬁ s (51)
where the quantities in the second line are evaluated at A\;. The degradation in
performance, Ae(D), is a fluctuating quantity (over data sets) and in order to estimate
its typical magnitude we calculate its average and variance. The average degradation
in performance can be written in terms of the average separation of the evidence weight
decay assignment and the optimal, as defined in equation 4.5. Thus, we find that
1 1

< AD) >po)= 5(Beg)o | v = gt 7 +0 (ﬁ) . (5.2)
Whilst, the calculation of this average is then straight forward that of the variance is
more tricky. The variance is O(1/N?) and thus we would have to calculate the variance
of the response function trg/N to this order. Instead, we simply calculate the variance
over the noise ignoring that over the inputs. Clearly, this will give a lower bound on
the true variance. We also expect this to become increasingly tight as o grows since for
zero noise the fluctuations generated by the input variables vanish for o > 1. Thus, to
O(1/N), a lower bound on the typical error invoked by use of the evidence procedure
is the average degradation of equation 5.2 plus the square root of its variance over the
noise.

In figure 4, to first order, we plot this typical error, (A€)p(p) + (Var(Ae))'/2, scaled
by N as a fraction of the optimal generalisation error. This quantity which is a scaled
estimate of the fractional degradation defined in equation 3.5 is denoted, gegtyp (Aew)-
As before the notation i denotes the function k scaled by N. Figure 4 shows that use of
the evidence procedure results in a fractional degradation of significant magnitude for
finite system size, N, and number of examples, a. This is true of the degradation itself
and clearly demonstrates the failings of the average case approach which, as we have
seen, suggests the evidence assignments are optimal in this case. Figure 4 allows one
to determine a lower bound on the typical fractional degradation for any system size.
For example, for N = 100, we see that the fractional errors shown in figure 4 will range
between 0.01 and 0.29 and for a larger sized system the evidence procedure results in
closer to optimal behaviour. In the large o limit we find that, for the average fractional
degradation

_ 1 2\ +1) 1

| e (Aew = —4+ —-—" . 5.3

dim, < Fey(Ae) >poy= 5+ == +0 (Na?) (5.3)

Note that the average relative degradation, < k., (Aey) >p(p), does not decay with

« despite the fact that the average degradation in performance, < Ae(D) >p(p), is

itself O(1/aN). Thus, although the evidence assignments are consistent in a mean
square sense they are never optimal even asymptotically. Furthermore, given the large
fractional degradation associated with the evidence for finite o and N (shown in figure
4) even this mean square consistency is of questionable relevance in practice. If we
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consider the fluctuations, induced by the noise, in the relative degradation we find that
asymptotically they do not contribute being order O(1/aN). Indeed, the fluctuations
do not, in general, qualitatively change the behaviour of the average fractional error,
(Ke,(Aev)) p(py and the relative size of the fluctuation term as a fraction of the typical
error is most important for a mid range a = 2.

As the noise level increases so does < Kleg()\ev) >p(p) which is a reflection of the
increasing uncertainty in A, as shown in the right-hand graph of figure 1. In the zero
noise limit, since we consider only the variance induced by the noise, the fluctuation term
vanishes in both the degradation and the fractional degradation, for all . However,
whilst the average degradation, < Ae€(Aey) >p(p) vanishes for oo > 1 it diverges for
a < 1. Thus, for zero noise the evidence procedure gives optimal performance for oo > 1
but very poor performance for « < 1. The fractional degradation is more revealing in
this limit, as we find that < k. (Aey) >p(p) diverges when the normalised number of
examples, « is less than one, but for o > 1 we find

Jim, < i O >ri0= 35
showing that, for small noise, the evidence does not give optimal performance. We can

(5.4)

understand this behaviour if we consider the evidence weight decay assignments in the
case of zero noise. In the region o < 1 the variance of A, (D) diverges as A\g — 0 and
thus Ae, (D) is ill defined. This mirrors the phase transition found in the thermodynamic
limit by Bruce and Saad (94). Furthermore, as we noted in the previous section, in the
current scenario we find that for o > 1 the variance \//?a/r()\ev) — 0 in the limit of no noise
and thus the evidence weight decay assignment is zero ( i.e. Aey = Ao+ ANey = Ao — 0).
When there is no noise on the examples the optimal weight decay, Ay, is zero for all
« since there is no danger of over-fitting. Thus, the average degradation, < Ae >p(p)
and the average separation between the evidence and optimal weight decays diverge for
a < 1 and are zero otherwise. This reflects the fact that for « < 1 we do not even
have enough examples to fix all the weights and certainly do not have enough to set
the weight decay. However, for o > 1 the evidence assignment is optimal. Thus, in the
noiseless limit the performance of the evidence is optimal for o > 1. However, this is not
reflected in the average fractional degradation, equation 5.4, because the optimal error
approaches zero at the same rate as the degradation in performance. In other words for
small noise level and v > 1 the evidence assignments are still sub optimal.

We have argued that the optimal policy is a function of the actual data set available
and to date we have largely focussed on this definition. However, we now briefly
discuss the effect of re-defining the optimal policy as that which minimises the average
generalisation error. As we saw in section 3.1 this is achieved by choosing the weight
decay A\ = Xg. Thus, in this case the optimal weight decay does not fluctuate over data
sets and the error associated with the evidence assignments will be due to fluctuations
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in A\, (D) alone. Furthermore, we have already seen that asymptotically the evidence
assignment tends to Ag. It is thus not surprising that we find the average relative
degradation associated with the evidence assignment when compared with the new
‘optimal’ generalisation error, (€;(Xo,D))p(p), is to first order in o' O(1/Na) and
in fact, < ke, (Aew) >p)= 4Ao/(Na). Thus, in this case the evidence assignment
is asymptotically optimal and it is clear that the fluctuations in the optimal weight
decay caused the asymptotic inconsistency reflected in equation 5.3. In contrast, for
this new optimal, at small o we find qualitatively similar behaviour in the fractional
degradation to that displayed in figure 4. Moreover, fluctuations in the optimal are
relatively unimportant, in terms of performance loss, for small o but grow rapidly with
the number of examples; dominating in the asymptotic regime as we have seen. These
results show that an average case definition of optimal is misleading especially in the
data dominated regime.

Finally, we consider the error incurred in estimating the generalisation error from the
variance of the post training distribution of students. If we use the evidence assignment
of the inverse temperature, (e,(D), then our error will be O(1/v/N); an order of
magnitude larger than the degradation, Ae(Ag,, D), itself. On average this vanishes
but we can estimate the typical size of the fluctuation by calculating the square root
of its variance. Dividing this by the true generalisation error gives an estimate of the
fractional error, ks, defined in equation 3.6. To first order this quantity, scaled by VN

and denoted by %(Sctyp’ is plotted in figure 5. In general, Rﬁctyp

fﬁegtyp. For Ay — 0 %Jctyp diverges whereas R(;Ctyp

is much larger than

— 0 as )Ag increases. That is, as the
noise level increases the generalisation error becomes larger and we are able to estimate
it, using the consistency criterion, to a greater degree of accuracy when it is larger.

6. Comparison with cross-validation

Given, that the evidence procedure is sub-optimal it is natural to ask if another model
selection criteria could do better. Here we compare the evidence procedure with leave-
one-out cross-validation (see e.g. Stone (74)) using simulations of our 1-dimensional
system. That is, we set the weight decay using the cross-validatory estimate and the
evidence estimate and compare the resulting generalisation error to the optimal. The
results, averaged over 1000 realisations of the data set for each value of p, are plotted
in figure 6. These results corroborate the results of the previous section in that they
show the evidence procedure to be sub-optimal. Further, they also reveal that cross-
validation produces closer to optimal performance. The left-hand graph in figure 6 shows
that the resulting error from the cross-validatory estimate correlates more strongly with
the optimal generalisation error than does that resulting from the evidence estimate.
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In addition, the right-hand graph shows that the average fractional increase in the
generalisation error, k., (A), is considerably larger for the evidence procedure than for
cross-validation.

7. Conclusion

By considering the fluctuations around the average case we have shown that in
general, even in the learnable linear case the evidence assignments do not result in
optimal performance despite thermodynamic, asymptotic and average case results to
the contrary. We have explored the evidence hyperparameter assignments in terms
of first order corrections to the thermodynamic limit and found qualitatively the
same features in simulations of low dimensional systems. In particular, we found the
evidence assignment of the weight decay became ever further from the optimal as the
number of training examples increased and as the system size reduced. This is in
stark contrast to the optimality of these assignments suggested by the average case
approach. Consideration of the generalisation performance reflected this sub-optimality.
Furthermore, we found that the inconsistency of the evidence weight decay assignment
was due to asymptotically diverging fluctuations in the optimal for large data sets.
The performance witnessed for finite normalised number of examples, «, showed that
the asymptotic results are of little relevance to the data impoverished regime. In
addition, our numerical studies indicate that for small learnable linear systems leave
one out cross-validation is closer, than the evidence procedure, to producing optimal
performance. This is perhaps not surprising as cross-validation attempts directly to
estimate the generalisation error. However, we have found lower bounds on the system
size required to make the evidence procedure reliable and in such instances it might still
be a reasonable alternative to the computationally expensive cross-validation.

In future work we hope to explore the finite size effects associated with the cross
validatory procedure and to compare these analytic results with those obtained here for
the evidence procedure. We also note the average case results for discrete mappings
obtained by Meir and Merhav (94) on the consistency of hyperparameter assignment
via minimisation of the stochastic complexity for a realizable case. Given our results
and the analogy between the evidence and the stochastic complexity it would also be
interesting to examine finite size effects in model selection based on this quantity.
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Appendix A

Here we calculate the matrix g in the large p limit using the following result for the
inverse of the patterned matrix C = (a — b)l + bJ (Graybill 83)

C_lzaibo_a—i—(lf—l)bJ) ’ (A1)

where J is the square matrix with all its entries 1. Now in the large p limit, using the

central limit theorem we can write

gl (% - \/;503) |+ \/po2) (A.2)

where the contribution from the Al term is negligible. Thus we can write,
N 1 1 .,
8ii X — +O( 3/2) and "~O< 3/2) 1#7 . (A.3)

This result is in agreement with that for the inverse of the correlation matrix A which
has an inverse Wishart distribution. In the large p limit this also has a fluctuation of
O(1/p*?) around a mean of N/p (for example see Eaton (83)).

Appendix B

Here we show that (gi;) p(p) = Gavd;;. Firstly, we can expand g as

9ij = )\71 - A72Aij + /\73AikAkj---- (B].)
1
where A;; = o 222 rixh

A typical term is then
1 n+1
—(n+2) M1 01, M2, 2 Hn—1, Mn—1, Hn Mo+l
A No? R R SR S N N : (B.2)
T

In order to perform the average over the inputs we must pair all the indices. Ignoring,
the pattern indices y it is easy to see that any pairings of the lower indices, i, k1..k,, 7,
will lead to + = j. In order to have ¢ # j one index must remain unpaired and the
resulting average will vanish. Thus, on average the matrix g;; is diagonal.

Appendix C

In this appendix we show that quantities in equation 3.9 are O(1/N). Firstly, tr['T

(x )Tgxu Opw (x,,)TgX dy
trI'l' = (;(/_27024-% WQM_‘_WM ; (Cl)
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where repeated indices imply summation. Now the average of this over P({x* :
u = 1.p}) can be re-expressed in terms of the average response function G =
(trg/N) p({x#:u=1.p})» Which can be calculated using the method of Sollich (94) or the
diagrammatic methods of Hertz et al (89). Thus, we can write

1
(4 TT) p(gxnsir.n)) = (0 =14+ X0,G) . (C.2)

Since G is O(1) then it is clear that (trI'T)p(xupu=1.py is O(1/N). Similarly
(tr yTy>P({x,u;N:1__p}) can also be shown to be O(1/N).
Finally we turn to the variance of ae, over P({x* : u = 1..p}). It is clear that

Var(ae,) = 02X\ Var (%(Wo)Tgw") : (C.3)
Now, due to the isotropic nature of the inputs it is clear that only the magnitude of the
teacher vector w° is important since one could always transform the inputs to rotate
the teacher to any particular direction. Thus, we can evaluate the variance of a., by
calculating the variance of (w°)Tgw®/N over a spherical distribution of weight vectors
w© constrained to be o, in length. We then obtain

Var (v aw?) = 22(@6) - (@) +0 (1) - (C.4)

Where, once again, (h), denotes the value of A in the thermodynamic limit.

Appendix D

Here, as an example we calculate the correlation between A, and Ayy:. From equation
4.1 we find

1

Aley = —F———
det M

{03 O — 080rf Of}roso (D.1)

where we have defined

_ [ Of Osonf
M_<5A5ﬂf 03 f ) ' (B2

Now, we are expanding about the thermodynamic limit, that is around )y and ,. Since
these are the evidence optimal assignments in this limit 0)f and Ogf are of the order
O(1/v/'N). However, the second derivatives do not vanish at this point and so 93 f and
030\ f are O(1). Thus, expanding up to first order we obtain

1 1
Algy = —m{(agf)o Of — (980xf)o Opf oo +O (ﬁ) : (D.3)
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Similarly, from equation 4.2, we can write

8,\6 1
Adgyy = <_ g ) 40 (_> . (D.4)
# (8§69)0 Ao,B0 N
Thus, the covariance of A, and A, is given by
1

<)\opt)\e'u>P(D) = - (det M)o(aiﬁg)o {(azf)o <a>\f a/\€9>P(D)

1
~ (99001 (@S Oreghrorhro +O (577) (D5)

Now let us focus on one of these averages, namely (0»f Oxeg) p(p)- Firstly, using the fact
that (Orf [x,)p(p) = 0 and (Oxey [x) P(p) = 0 we can write this as the following,

(Orf Oxeg)p(D) = Cov(n’I'n,n”A'n) (D.6)

! 7 ! ! 1
+Cov(n.y ,n.z ) + SoCov(a,,, a. ) + O (N)
Here b = d\h and Cov(h(D), k(D)) = (hk)p) — (h)p){k) p(p), Whilst the individual
terms, I', A etc... are defined in equations 3.1 and 3.2. Equation D.6 can then
expressed in terms of the response function as we saw in Appendix C. The second
term, (Osf Oxég) p(p), is similar.
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C()\eva /\opt)

Figure 1. The scaled variance in the optimal weight decay, \7311?()\01,,5), for various
noise levels, (i) Ao = 0.04, (ii) Ag = 0.25 and (iili) Ag = 0.44 is shown in the left-hand
graph. Notice the linear divergence in a which corresponds to our result in section 3.1
that, for sufficiently large p, the generalisation error is independent of A. The variance
in the evidence optimal weight decay, Var(Aey), is shown, in the right-hand graph, for
the same noise levels. The O(1/«a) decay of this quantity is a reflection of the fact that
for large p the evidence optimal weight decay Aey (D) = Ao-

C(ﬂeva Bopt)
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Figure 2. The correlation between the optimal weight decay and the evidence optimal
weight decay C(Aey,Aopt) is shown, in the left-hand graph, for (i) g — 0.0, (ii)
Ao = 0.01, (iii) A\g = 1 and (iv) A¢ = 4. The right-hand graph shows the correlation
between the optimal inverse temperature Bop; and the evidence optimal ., for (i)
Ao — 0.0, (ii) Ao = 0.025, (iii) A\g = 1 and (iv) Ao = 16.
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Figure 3. 1-D simulation results: The left-hand graph shows the variance in the
optimal weight decay Aop: (solid curve) and that in evidence optimal A, (dot-dashed
curve) both for A\g = 1.0. The latter curve has been scaled by a factor of 0.01 for ease
of presentation and standard error bars are shown. Qualitatively, both curves show
similar characteristics to the theoretical curves of figure 1. For larger p the variance of
Aopt continues to diverge linearly. In the right hand graph, the correlation between the
optimal weight decay and the evidence optimal weight decay C(Aey, Aopt) is shown, for
Ao = 0.01 (full curve) and A9 = 1 (dot-dashed curve).
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Figure 4. Scaled estimate of the fractional error k. : for a system size of N dividing
%Egtyp (Mev) by N gives the an estimate of the true fractional increase in error above
the optimal incurred by using the evidence procedure. k’efyp(/\ev) diverges as A\g = o©
and as @ — 0. For large a K. gt yp()\ev) tends to 1/N and for small noise it diverges
for a < 1 (see text).
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Figure 5. Scaled estimate of the fractional error ks,: for a system size of N

dividing Edctyp by N1/2 gives an estimate of the true fractional error in estimating

the generalisation error from the variance of the student distribution. ¥ Jyp diverges
as a — 0 and as \g — 0.
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Figure 6. 1-D simulation results: The left-hand graph shows the correlation between
the optimal generalisation error and those obtained using the evidence (solid) and
cross-validation (chain) with Ao = 1.0. The right-hand graph shows the fractional
increase in generalisation error s, (A) = (€,(X) — €5(Aopt))/€g(Aopt)- A is set by the
evidence (dashed) and by cross-validation (chain) for Ay = 1.0. For Ag = 0.01 the
evidence case is the solid curve cross-validation the dotted curve. In the latter case
the error bars are not shown for the sake of clarity but are of a similar magnitude.



