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Abstract

We illustrate the importance of stochastic effects in population models of biological systems
and demonstrate a number of analytic and simulation-based approaches that can usefully be
applied to such models. In so doing, we compare the stochastic approach to the more usual
deterministic one. The model studied represents the gastro-intestinal infection of ruminants
by nematodes when the hosts maintain a fixed density. The incorporation of a feed-back mech-
anism, which accounts for the immune response of the infected animals, results in a highly
non-linear model; similar forms of non-linearity are a feature of many plausible models in pop-
ulation biology. In the absence of an analytic solution to the full stochastic model we explore a
number of approximations and compare them to simulations of the full stochastic process. We
explore three modes of behaviour of the system. In the endemic regime the stochastic system
fluctuates widely around the non-zero fixed points of the deterministic model. In the managed
regime, where the system is subject to external periodic perturbation, stochastic effects are
negligible. Finally, we find that in a regime in which the deterministic model predicts the
long-term persistence of oscillations the stochastic model shows that extinction can occur. Of
the approximation procedures we consider, the Normal approximation to the full stochastic
process is the most generally applicable, and also the most accurate in the light of simulation
results. Local linearization provides reasonably accurate prediction of the variance-covariance
structure, and a transfer function approach allows calculation of the time-lagged auto- and
cross-correlations in the endemic regime. Linearization of the stochastic updates themselves
results in poor prediction of the population variances.
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1 Introduction

In this presentation we examine stochastic effects in a model of nematode infection of ruminants.
Our aim is two-fold. First, we explore the importance of stochastic effects for the model in question.
Our second goal is to compare various analytic approaches to the study of stochastic processes. As
expounded in Renshaw (1991), we take the view that both deterministic and stochastic formulations
of biological models are valuable. Further, we argue that the complexity of many biological systems
forces one to adopt a fundamentally stochastic approach. Thus an initial stochastic analysis is
essential, even if this simply leads to the conclusion that the deterministic analysis is adequate.
Often it does not. The main reasons for the frequent avoidance of the stochastic route are the
relative lack of familiarity with associated analytic methods and the computationally intense nature
of stochastic simulation as compared with deterministic modelling. In this paper we demonstrate
a range of analytic approaches and make use of simulation-based methods. These techniques are
general in that they can be brought to bear on a wide range of problems, and the system we study
is of sufficient complexity to demonstrate their practical utility.

The model describes a nematode population infecting a ruminant population of fixed density in
which the hosts exhibit acquired immunity. Such a situation might arise in a commercial agricultural
setting where fluctuations in the host density are negligible. The infection is directly transmitted
to the hosts in grazing, and acquired immunity impedes the processes of parasite establishment,
development and reproduction. Our model is a natural stochastic formulation of the deterministic
model proposed by Roberts and Grenfell (1991) for nematode infections in ruminants. This system is
particularly suitable for our purposes because, as these authors point out, it captures the essence of
previous more complicated formulations of the processes of parasite demography and herd immunity,
as expounded in Anderson and May (1985), Barnes and Dobson (1990), Berding et al., (1987),
Callinan et al., (1982) and Grenfell et al., (1987). Thus our results may well have relevance far
beyond the specific model considered. Moreover, mirroring the study of Roberts and Grenfell
(1991) facilitates direct comparison between the deterministic and stochastic methods. To this
end we consider an autonomous stochastic system and focus on two regimes, the endemic and the
managed. The endemic regime corresponds to the equilibrium state of the deterministic system
and is analytically amenable to local linearization. =~ We stress that whilst study of this regime
is enlightening in comparing stochastic and deterministic approaches, more realistic models would
need to represent features not dealt with in the basic model considered here. Such features include
age structure and spatio-temporal heterogeneities. In the managed regime hosts are periodically
removed and replaced with animals with no acquired immunity. This corresponds to a periodic
forcing of the system which results in a marked transient response. The question of temporal
variation in the development and transmission rates of the infection is tackled in the deterministic
setting by Roberts and Grenfell (1992), and we hope to explore the issue of environmental variability
in the stochastic context in a subsequent publication.

The remainder of this paper is organized as follows. In the next section we present our
model and demonstrate that the deterministic model of Roberts and Grenfell (1991) results from
consideration of the expected updates in our stochastic formulation; in Section 3 we review the



results derived by these authors. Subsequently, we study the behaviour of the stochastic model
both analytically and by using numerical simulations. In Section 4 we apply four approximations to
the stochastic process, and in Section 5 the quantities thus calculated are compared to one another
in the light of simulation results. Finally, we summarize our results comparing the deterministic
and stochastic approaches, discussing the reliability of the approximations used and exploring the
implications for the model studied.

2 Formulation of the model

The life cycle of nematode parasites of ruminants such as Ostertagia ostertagi consists of larval and
adult stages. The larvae are free-living on the pasture, whilst the adults exist as parasites within the
hosts, producing eggs which subsequently re-infect the pasture via the host’s faeces. Transmission
to the host occurs through the ingestion of infected material during grazing. In reality the parasites’
life cycle includes a number of larval stages, but we consider only the final infective stage explicitly.
Denote by ny (t) the number of these infective larval individuals, at time ¢, in the area associated
with one host animal, and by n4(¢) the number of adult parasites infecting a host. Transmission
rates from larvae to host naturally reflect the stocking density of the host animals. In addition, we
model the level of immunity to these parasites in the host population by some notional level n, (),
which we consider to be discrete and non-negative.

Let us now briefly consider how each of these quantities evolve. We write the population level,
n(t + 0t), at time ¢ + 0t in terms of the population, n(t), at time ¢ and some random change in
population level dn. Thus

nr(t 4 0t) = np(t) + dng, na(t+9t) = na(t) + dna, n,(t + 6t) = n,(t) + on,. (2.1)

If the time increment Jt¢ is sufficiently small then we can assume that no more than one birth or
death event will occur: formally the probability of two or more such events is O(6¢?).

Following Roberts and Grenfell (1991), in our model the larval population can increase only
from the birth of a new individual. The birth rate depends on the rate of egg production, A(n, ), and
also the probability, ¢, that any particular egg will develop into a larva. The rate of egg production
is a monotonic non-increasing function of the immunity level, n,, reflecting the assumption that
increasing immunity is detrimental to fecundity. Therefore, we write the probability of a birth in the
larval population as Pr(dn;, = +1) = gA(n,)nadt. Similarly, the number of larvae can decrease for
two reasons only. The first, mortality, we model by assuming that any individual has a probability
p of dying per unit of time. The second, encountering a host, we account for by a contact rate 3
per larva. Thus, an individual in the free-living larval stage can either die or attempt to parasitize
a host animal with total probability given by Pr(dny, = —1) = (8 + p)npdt.

Turning to the adult population level, n 4, we note that this can increase due to the maturation
of larvae or decrease due to adult mortality. The increase in the adult population depends on the
number of larval individuals in contact with the host, namely Snz. Once the larval parasites
have been ingested they are assumed to develop into adults with probability, p(n,), which is a

monotonic non-increasing function of the immunity level n,. Thus we write Pr(dny = +1) =
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p(n,)Bnrot. Similarly, the adult mortality rate, u(n,), is a monotonic non-decreasing function
of n, with Pr(éna = —1) = p(n,)nadt. Finally, the level of acquired immunity is assumed to
increase upon contact with the larval parasites, whilst fading in their absence at a rate o per unit
of immunity. So we have Pr(én, = +1) = fnrét and Pr(én, = —1) = on,o6t. The approximation
we consider in Section 4.4 effectively replaces this probabilistic model of the immune-response with

one in which the immunity is expressed as a deterministically evolving number.

3 Deterministic treatment

The simplest approach is to consider the expected updates at time ¢, namely

Elony] = [gA(n)na — (B + p)ng]dt ,
E[dna] = [Bp(n:)ng — p(n.)naldt , (3.1)
El[én,] = [Bng—on,]ot .

In the limit of 6t — 0 the update equations (3.1) are equivalent to the deterministic system of
Roberts and Grenfell (1991), i.e.

dL(t)/dt = qA(r)A—(B+p)L ,
dA(t)/dt = Bp(r)L —p(r)A , (3:2)
dr(t)/dt = BL—or .

Here we have introduced the notation L, A and r for deterministic population levels corresponding

to nr, na and n,, respectively.

The stability of system (3.2) has been previously examined by Roberts and Grenfell (1991)
who point out that a useful system parameter is

 BAO)p(0)g
Q= r A - (3:3)

For the unperturbed system (3.2) this is equivalent to the basic reproduction rate of the infection.
These authors show, by linearizing around the zero equilibrium (L = 0, A = 0,7 = 0) and arguing
that these linear trajectories bound the true solution, that if () < 1 then this zero solution is
globally asymptotically stable. However, for () > 1 the zero solution is unstable, but in the case
where p'(r) = p/(r) = 0 the non-zero (endemic) equilibrium (Lg, Ag, 7o) is locally stable; small
perturbations from this endemic equilibrium result in damped oscillatory behaviour. Indeed, for
the biologically plausible parameter settings shown in Table 1, weakly damped cycles with a period
of =~ 15 years develop. These parameter settings are based on the parameterization of the detailed
simulation of the gastrointestinal infection of calves by the nematode parasite Ostertagia ostertag:
(Grenfell et al., 1987). Furthermore, Roberts and Grenfell (1991) also demonstrate the existence
of small amplitude solutions of the system (3.2) which satisfy periodic boundary conditions of the

form
L(0) = d, L(1), A(0) = dyA(1), r(0) = dsr(1) . (3.4)
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TABLE 1

Parameter values suggested by Roberts and Grenfell

(1991): p(0), g, r and A; are dimensionless whilst the

remaining quantities are in units of year—!.

p(0) =065 g =035

3 =0.365 o =T

4(0) =25 o =001

p(r) =u(r)=0 A(r) = Agexp(—Air)
A1 =105 Ao = 39420

Numerical examination of the full non-linear system with the parameter values of Table 1 reveals
a solution satisfying the boundary conditions (3.4) with d; = 1, and do = d3 = 0 (Figure 1).
This boundary condition corresponds to the managed regime, that is the annual removal of hosts
who have built up immunity to the parasites and their replacement by un-infected hosts with no
acquired immunity. The subsequent infection of these individuals results from the free-living (larval)
population which remains. A feature of Figure 1 is the strong peak in parasite numbers in the first
half of the year. Since the model (3.2) is autonomous, this seasonal variation results from the
dynamics of the interacting populations and the imposed management regime, rather than from

environmental variation.

4 Stochastic analyses

In the previous section we investigated the deterministic evolution of population levels using ex-
pected updates at time ¢, and saw that the corresponding trajectory satisfied the system of ordinary
differential equations (3.2) analysed by Roberts and Grenfell (1991). However, this deterministic
treatment ignores the fundamentally stochastic nature of the system described in Section 2.

In general, although analytic solution of stochastic systems such as (2.1) is highly non-trivial,
there are a number of ways in which progress can be made. Essentially, there are two approaches:
one is based on stochastic differential equations, whilst the other focuses on the evolution of the
joint probability distribution of the population variables and hence on the moments of the random
process. In this section we explore the stochastic model using approximations based on both ap-
proaches. First, by formulating the model in terms of stochastic difference equations and linearizing
around the endemic equilibrium of the deterministic system we examine the local variance-covariance
structure of the stochastic model. We then consider the temporal variation in this structure using
Fourier transform methods. Secondly employing the moment generating function of the process
and following Whittle (1957) yields approximate update equations for the first- and second-order
moments. An alternative to both these is to construct a process, in which the updates are linear
in the stochastic variables, in the hope that the resulting system approximates the full model of
equation (2.1). Our results are summarized in Section 5 where we compare each method in the
light of direct numerical simulation.



4.1 Local variance-covariance structure

In order to consider stochastic effects we first express the update equations (2.1) in a stochastic
difference form. We do this by writing the random updates in terms of their means plus a random
variable with zero mean (see, for example, Renshaw 1991), that is

np(t+8t) —ng(t) = [gA(ny)na — (B+ p)nL]dt + 07,
na(t+0t) —nat) = [Be(n.)nL — p(n,)naldt + 3524 (4.1)
n.(t+ 6t) —n.(t) = [Bny—on,]|dt+0Z,.

The variances of these new random variables must equal that in the population updates dny, dnyu
and dn,. For small time increment d¢, this condition reduces to E[6Z%] = E[6n?] etc. where

E[(6n2)Y] = [gA(n.)na + (B + p)ng]dt + O(6t%)
E((0na)’] = [Bp(n,)ne + pln,)nalst + 06
E[(6n,)?] = [Bny + on,]ot + O(6t%) .

In general, analytic solution of the stochastic equations (4.1) is difficult. However, we can
make progress if we linearize around the endemic equilibrium point (L, Ag, ro) of the deterministic
system (3.2). We write the linearized trajectories ny(t) = Lo[l + ur(t)], na(t) = Ao[l + ua(t)]
and n,(t) = ro[l + u,(¢)]. Similarly, we rewrite the random variables §Z; = np/[QLdt], 6Z4 =
nav|[Qa0t] and 07, = n,+/[Q,6t], where Qr = qA(ro) Ao+ (B8 + p) Lo, Q4 = Bp(ro) Lo + p(re) Ao and
Q- = BLy+ ory and the time-dependent random variables 7, n4 and 7, are uncorrelated and have
zero mean and unit variance. Although this linearization procedure is rather crude it often seems
to work remarkably well (see Renshaw 1991). In addition, it is the first in a systematic series of
approximations (see Bartlett 1957 and 1960). The linearized stochastic updates can now be written

in the form

ur(t+6t) = ur(t) + {[gA(ro)Aoua(t) + ¢ (ro)rous(t)) — (8 + p) Lour ()]0t + nv/[Qrdt]}/ Lo
ua(t+6t) = walt) + {[Bp(ro) Lour(t) + BY (ro)rou.(t) Lo]ot

— [u(ro) Agua(t) + 1 (ro)us (t)roldt + nav/[Qadt]} /Ao (4.2)
ur(t+0t) = u(t) + {[BLour(t) — orou.(t)]0t + n./[Qr0t]} /70 -

On squaring and cross-multiplying, equations (4.2) yield six equations, and taking expectations of

2 2 2

these (assuming stationarity) leads to equations for the variances (o2 , o ) and covariances

ur,”’ g

uA? T Ur

(Cuguss Oupurr Ouyu,) Of the variables uy, us and u,. For example, the expectation of the square of
the equation for u,(t + dt) is
28 Lo Ouyu, [To —2002, +Qr /15 =0 . (4.3)

For a more detailed description of this procedure in a simple case see Renshaw (1991, p182 — 184).
The other five equations thus derived from (4.2) are

—2 (B+p) oy, +2q 40 [M70)0upus + N (70) 700uyu, ] /Lo + Qr/Ly = 0 (4.4)
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28 Lo [p(ro)Tugus + P'(10) 7o Oupu,] [Ac = 2 pu(ro) o, — 24 (ro) 70 Ouyu, + Qa/A5 =10,
—(70)Ourun — H'(70) T0 Ou, + B Lo [p(ro)UZL + p'(ro)T0 UuLuT] /Ao

—(B+P) Ougus + ¢ Ao [M10) 07, + N (10) 70 Oupu] /Lo =0,

B Loos, [0 — 0 Oupu, — (B4 P) Gugu, + 4 Ao [)\(7"0) Ouqur + N(T0) T UZT] /Lo=0,
BLoOurun/To = O Oupu, — (T0)Ousu, — 1£'(T0) To UZT + B Lo [p(TO)O-uLuT +pl(7‘0)7“0012h] [Ae=0 .

It is straight-forward to solve equations (4.3) and (4.4) for the variances and covariances either
using a symbolic mathematics package, such as Maple (see e.g. Heck, 1996), or numerically for
particular parameter values. Appropriate rescaling results in the variances and covariances in ny,
na and n, which we denote by 0%, 02, 02, 014, 01, and 04,. The resulting expressions are rather
lengthy and hence omitted here, but using the parameter values of Table 1 we find, for example,
that oy, ~ 31137, 04 ~ 297 and o, &~ 28083. In Table 2 we also show the cross-correlations ( e.g.
ora/(oroa)), and compare these estimates with those obtained by the Normal approximation (see
Section 4.3) and by direct simulation (see Section 5).

4.2 Auto-covariances

We now describe an alternative approach, also based on the linearized stochastic process described
in the previous section, which enables us to estimate the time-dependence of the local variance-
covariance structure.  Similar techniques have been employed by Roberts and Grenfell (1992)
to analyse environmental variation in the deterministic model of section 3 (for a straight-forward
introduction to the stochastic case see Nisbet and Gurney (1982, p 190)). We begin by taking the
limit 0t — 0, and thus recasting equation (4.2) in the matrix form

dv(t)/dt = Hv(t) + Z(t) . (4.5)

Here we define v’ = (vy, vo,v3) = (vg,va,v,), Where n = ng+v with n” = (ny, ny, n3) = (ng, na,n,)

and (nO)T = (LOa AOa TO)' The random updates 7" = (rYL(t) \% QL, rYA(t) \% QA, Yr (t) \% QT)’ where fYL(t)a
v4(t) and ~,(t) are uncorrelated Gaussian white noise. Finally, the matrix

—(B+p) gA(ro) g\ (ro)
H= 51027“0) —u(ro) Bp'(ro)Lo — 1/ (ro)Ao : (4.6)
0 —0

For a given function g(t) define

+T/2

3w, T) = [ o g(t)e=tdt | (4.7)

whence the Fourier transformation of ¢(t) is g(w) = limr_ e g(w,T).  Since v(t) and Z(t) are
undefined for ¢ < 0, we define new variables f(t) = v(t) and Y(¢) = Z(¢) for t > 0 with f = (0,0,0)T
and Y(¢) = (0,0,0)T if t < 0. Equation (4.5) then takes the Fourier form

fw)=T(Ww)Y(w) . (4.8)



The transfer matrix T(w) = (iwI — H) ! and I is the identity matrix. We are now in a position to
calculate the auto- and cross-covariances associated with the populations n(t). Assuming that the
process is fully recurrent, it is straightforward to show (see Nisbet and Gurney 1982 p 349 & 350)
that the time-lagged covariances are given by

Covlng (£), m(t + )] = /0 T B [ue()u(t + )] dt = / Sp (W) dw (4.9)

where the cross-spectral density

E A];CU,T A;w’T *
5, () = tim DU D)

T—00 T

(4.10)

Here (f)* denotes the complex conjugate of f, the expectation, E, is taken over the white noise
processes and the subscripts k,l = 1,2, 3. The second integral in (4.9) can be performed analytically
in the limit 7 — 0, in which case the problem reduces to the calculation of the variance-covariance
characteristics of the previous section. For 7 > 0 we have performed the calculation numerically for
the parameter values shown in Table 1. The time-lagged correlations Cy, (7)) = Cov[ng(t), (¢t +
7)]/(0n,0n,) are compared with values obtained by numerical simulation in Figure 3 and we defer
further discussion of them until Section 5.

4.3 Normal approximation

As noted earlier, an alternative to dealing directly with the stochastic updates (2.1) is to deduce the
joint probability distribution, {P(nr,n4,n,,t)}, and from this the moments themselves. A step
towards this goal is to consider how this joint density changes over time. Given the distribution at
time ¢ we can calculate the probability, { P(nr,na,n,,t+ dt)}, of being in state (nr,na,n,) a short
time, dt, later by considering the possible events that will lead to this from the unknown population
at time ¢. Fortunately, the number of events is limited to a single birth or death in one of the
populations, since the probability of two or more such events is O(6¢?). Thus, the probabilities of
the following occurrences in the interval (¢,¢ + 6¢) must be considered: a birth in the free-living
population given n;,—1 individuals at time ¢ or a death given n;+1 members at ¢; the corresponding
births and deaths in the adult population and the immunity level; and no change in any population
given the state (np,n4,n,) at time ¢. Summing these probabilities leads to

P(np,na,ng,t+ dt)

5t [P(ng, — 1,14, 0, t)gA (1, )00 (4.11)
P(ng +1,na,n.,t)(8+ p)(nr + 1)

P(np,na — 1,n,.,t)p(n,) o, + P(ng,na+ 1,n,,t)u(n,)(ng + 1)
(ng,na,n. — 1,t)Bnr, + P(ng,na,n. + 1,t)o(n, + 1)]

(np,ma,ne,t) [1 = 6t(gA(n.)na + (8 + p)nr + P(n,)Bng

pw(ny)na + Bng + on,)]

+ + + + +
R

In the limit 6¢ — 0, subtracting P(ng,na,n,,t) from both sides and dividing by ¢ leads to the
difference-differential Chapman-Kolmogorov forward equation

OP(np,ma,n.,t)/0t = —P(ng,na,n.,t)[g\(n.)na + (8 + p)ny + P(n,)Bng (4.12)
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+ p(ny)na+ Bng + on,]
+ P(nL —1,n4,n,t)gA(np)na + P(ng + 1,n4, 0, 8) (B + p)(ng + 1)
+ P(np,na—1,n.,t)p(n,)Bng + P(ng,na+ 1,n, ) u(ng)(na + 1)

+ P(nL, na,n, — 1,t)Bng + P(np,na,n, + 1,t)o(n, + 1)

For an introduction to the formulation of such equations see, for example Cox and Miller (1965,
p 147 — 151 & p 179). Equations of this type can be transformed into a partial differential form
through the introduction of so called, generating functions. = The moment generating function
(m.g.f.) is the expected value, over the density {P(ny,na,n,,t)}, of the product of exp {6n(t)},

exp {¢pn4(t)} and exp {¢Yn,(t)}, viz:

o

M@0, p,9,t) = > P(ny,na,ng,t)exp{0n,(t) + dna(t) + ¢¥n.(t)} (4.13)

nr,ma,n=0

= E[exp {OnL(t) + ¢na(t) + yYn,(t)}]
Henceforth we assume that A(n,), u(n,) and p(n,) take the functional forms suggested in Table
1. Whence on multiplying expression (4.12) by exp {0nr(t) + ¢na(t) + ¥n.(t)} and summing over
nr,na,n =0,1,...00 we obtain
M(O,6,9,t)/0t = qho(e’ — 1)OM (0, ¢, — A1, 1)/ (4.14)

+ (B+p)(e™” —1)0M(0,6,v,1)/00

+ p(0)B(e® —1)OM (0, 6,%,1)/90 + u(0)(e™* — 1)OM (0, ¢, 4, 1) /06

+ B(e¥ —1)0M(0,¢,v,t)/00 + a(e™” — 1)OM (0, ¢, 1, 1) /OY .
Although solution of this equation is currently an open problem, if we expand in powers of 8, ¢
and 1 and equate coefficients, we obtain ordinary differential equations for the raw moments of the
process. We write the means as E [ny(t)], E [n4(t)] and E [n,(¢)], and the second-order moments as

E [n2(t)], E [nyna], etc. The resulting equations of motion for the first- and second-order moments
of the stochastic process are

dE[nr(t)] /dt = qE[na(t)An,)] = (B+p)E[ni(t)] , (4.15)
dE[na(t)] /dt = p(0)BE[ni(t)] — n(0)E [na(t)] ,
dE[nr(t)] /dt = BE[ng(t)] — oE[n.(t)] ,

dE [} (t)] /dt = (B+ p)(B[ns(t)] — 2B [n] (1)])

+¢(E [na(t)A(n,)] + 2E [nanpA(n,)])

dE [n34(2)] /dt = Bp(0)(E [ng(t)] + 2E [npnal) + p(0) (B [na(t)] — 2E [RA(1)]) |
dE [n2(t)] /dt = B(E[ni()] + 2B [nyn,]) + o(B[n, ()] — 2E [n2(2)])
dE [nynal fdt = —(B+ p+ u(0)Elnina] + Bp(0)E [n] ()] + ¢E [n4(t)A(n)]
dE [nyn,] /dt = BE [ni(t)]—(ﬁ+p+a)E[nLn,«]+qE[nAnr)\(n,)] :
dE [n.nal /dt = PBE[nina| — (o + p(0))E [n.na] + BpE [nyn,]

To illustrate the construction of these equations let us examine the derivation of a specific case in
more detail. We expand the m.g.f. in powers of €, ¢ and v as

M0, 0,9,t) =1+ 0E [n.(t)] + OE [na(t)] + YE [n,(t)] + 6°E [ni(t)] /2.,
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so that the partial derivative w.r.t. ¢ of the left-hand side of equation (4.14) reduces to dE [n,(t)] /dt+
O(v¥). A similar, although longer, calculation for this derivative of the right-hand side leads to
BE [ny(t)] — oE[n,(t)] + O(¥), and evaluation of both these expressions at # = ¢ = 1 = 0 leads
to the third equation of (4.15). Other terms are obtained in the same fashion; for example the last
results from the derivative of equation (4.14) w.r.t. both 1 and ¢.

Note that since the transition probabilities are non-linear in the population variables, the
deterministic trajectories L(t), A(t) and r(t), defined by equation (3.2), do not correspond to the
mean trajectories of the stochastic process. However, the most important point concerning the
coupled set of non-linear ordinary differential equations (4.15) is that they are not closed. For
example, the equation for the mean E [ny(t)] reveals a dependence on the expression,

E [na(t)exp {—Ain(t)}] , (4.16)

which can be expanded as an infinite series of higher-order moments. It is therefore not possible to
solve these equations for the first- and second-order moments, even numerically.

However, at this point we can make use of an approximation based on the Normal distribution
which was first suggested by Whittle (1957) and then used more recently by Isham (1991). In this
approach we approximate the distribution of the populations ny, n4 and n, according to a joint
Normal density. For such an approximation the population distribution is fully described by the
first- and second-order moments. It would be interesting to examine other approximations, both
in regard to the order of moments considered and the form of the distribution chosen. Indeed,
since the Normal distribution has a non-zero probability density for negative values, perhaps a
form based on, say, the multivariate gamma distribution would be structurally more suitable. If
fully parameterized multivariate forms existed, discrete distributions would be even more appealing
choices, especially in the light of empirical and theoretical results which suggest likely parasite
distributions across hosts are negative binomial (see e.g. Anderson and May, 1978, Adler and
Kretzschmar, 1992). However, for the parameters of Table 1, simulations in the endemic regime
suggest that the Normal and negative binomial distributions fit the sampled marginal distributions
equally well. Therefore, we focus on the Normal distribution since it is relatively easy to handle.

Let x” = (ng,n4,n,) with expectation x = E|[x| and variance-covariance matrix ¥ =
E [(x —X)T(x—i)]. We shall subsequently find the time-dependence of these moments from
the equations (4.15). First, however, we must evaluate expectations such as (4.16) over this
Normal(x, X)) distribution. Fortunately this is straightforward, since the associated moment gener-

ating function is
1
My (w) = E [exp {win;, + wens + wsn, }| = exp (WT)_( + §WTZW) ) (4.17)

where w’ = (wy,wy, w3). It is apparent that the relevant quantities can be obtained from appro-
priate derivatives of My (w). For example,
OMy (w)

B, = E [na(t) exp {—Mn,()}] . (4.18)

WT:(any_)\l)
Thus, the approximation of the full joint density, { P(nr, na, n,t)}, by a Normal distribution allows
all the components of equations (4.15) to be written solely in terms of the first- and second-order
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TABLE 2

Local variance-covariance structure: comparison of calculations based on local
linearization and the Normal approximation together with results from direct
numerical simulation of the endemic regime, for standard deviations o, 04 and
o, and normalized cross-correlations, Cp,; n,(0) = Cov(ng,na)/(0ro4) etc.

oy, OA Oy CnL,nA (0) CnL,nr (0) CHA,’flr (0)

Local linearization 31137 297 28083 0.997 0.0246 0.0406
Normal approximation 38373 365 34613 0.999 0.0246 0.0407
Simulations 39300 374 33300 0.997 0.0208 0.0393

moments. We shall refer to the resulting set of non-linear equations as the Normal approzimation.
Since the dependence on raw moments higher than second-order has been eliminated, the Normal
approximation can be solved by numerical integration. In Section 5 we will use this method to
explore fully the properties of this approximation, but for the moment we consider analytic results
only.

Suppose we linearize the Normal approximation to equation (4.15), assuming that both the ex-
pected population levels and their second-order moments are small. It is straightforward, if lengthy,
to show that the eigenvalues of this linearized system are the roots of a ninth-order polynomial,
which can be solved numerically. Exploration of this numerical solution suggests that the zero
solution of this set of equations is stable if () < 1, and unstable otherwise, in agreement with the
deterministic analysis outlined earlier. Thus, in so far as this Normal approximation mirrors the
full stochastic process the infection is liable to become established, i.e. persist, if () > 1. However,
in section 5 we will see that the Normal approximation does break down when the population is
close to extinction. Two possible future improvements include direct truncation of the negative tail
and its incorporation into the probability mass at zero. In both cases the new distributions may
have to be rescaled to obtain the required mean and variance.

A linearization can also be obtained around the non-zero fixed point of the Normal approxi-
mation; this corresponds to the endemic equilibrium of the deterministic system (3.2). Once again
the resulting characteristic equation has to be solved numerically. We find, for the parameter values
suggested in Table 1, that the fixed points are locally stable and that initial conditions close to the
fixed points will result in damped oscillatory solutions with a period of approximately 15 years, in
close agreement with the deterministic analysis. Furthermore, we find that the fixed points for the
means of the Normal approximation are in good agreement with those of the deterministic model
(3.2). In addition, examination of the standard deviations of the population fluctuations around this
fixed point reveals that o ~ 38373, 04 ~ 365 and o, ~ 34613, which are of similar magnitude to
those values obtained from the local variance-covariance analysis of Section 4.1. Table 2 lists these
values, along with the normalized cross-correlations of the population fluctuations in the endemic
regime obtained from the Normal approximation.
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4.4 Approximating stochastic process

Finally, we examine an approximation technique suggested by Tan and Hsu (1989) and brought to
our attention by Isham (1991). The essence of this approach is the linearization of the stochastic
updates. In the context of the parameterizations suggested in Table 1, the functional form of A(n,)
means that this can only be achieved by assuming that n,(¢) is described by the deterministic

process r(t) which evolves according to

dr(t)/dt = BE [ny(t)] — or(t) . (4.19)
Effectively, we have replaced our stochastic sub-model of immune-response with a deterministic one.

The resulting stochastic process is linear in ny and n4 and it is straightforward to write down the
following exact evolution equations for its first- and second-order moments:

dE[n(t)] /dt = qAr)Ena®)] — (8 + p)E [ns(t)]
dE[na(t)] /dt = p(0)BE [ny(t)] — p(0)E [na(t)]
dE [n} ()] /dt = 2(qA()E[nzna] — (8 + p)E [n} (1))
+ gAMERa@)] + (B + p)E [n,(1)] (4.20)
dE [n%(t)] /dt = 2 (p(0)BE [nrnal — p(0)E [n% (1))
+ p(0)BE [nr(t)] + n(0)E [na(t)]
dE [nynal /dt = qA(r)E [n4(t)] + p(0)8E [n} (¢)]
— (B+p+p(0)E [nrna

Together with equation (4.19) these form a closed set of non-linear ordinary differential equations.
Moreover, the equations for the means, E [n.(¢)] and E [n(t)], along with equation (4.19) for r(¢),
are identical to the deterministic model of Roberts and Grenfell (1991) (see equation (3.2)). Thus
for @ < 1, Eng(t)], E[na(t)] and r(t), tend to zero as t — oo; whilst for ) > 1 the zero equilibrium
is unstable. We now consider the evolution of the second-order moments. For large ¢t and @) < 1
the means E [ny,(t)] and E [n4(t)] are negligible, and equations (4.20) reduce to a three-dimensional
linear system with eigenvalues —(8 + p + p(0)) and Ay = —(8+ p+ u(0)) = /{(8+ p+ 1(0))* +
4u(0)(B+p)(Q —1)}, which are all negative. Thus for ) < 1 the first- and second-order moments of
this linear stochastic process decay to zero. For both the deterministic and Normal approximations,
we have seen that the infection will persist if () > 1 and die or fail to establish if () < 1. We have
also shown, in the case of our approximating stochastic process, that the infection will die out if
@ < 1. Similarly, at the start of the infection when expected population levels are negligible, the
eigenvalue Ay > 0 if () > 1, and the fluctuations increase. As we have already seen, in this case
E[n.(t)] = L(t), E[na(t)] = A(t) and r(t) also grow with ¢.

Numerical investigation suggests that one failing of this approximating process is that no
non-zero fixed point exists; as the system evolves the fluctuations around the endemic solution of
the deterministic system diverge. We see in the next section that this is a poor reflection of the
behaviour of the full process and indicates the need to consider the stochastic nature of the immune-
response to the infection. Furthermore, we examine the approximating stochastic process (4.20)
and (4.19) in the managed regime via numerical solution. We then compare each of the analytic
approximations discussed so far, in the light of stochastic simulations.
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5 Stochastic investigations

The analytic results derived in the previous section are limited in their applicability by the conditions
it was necessary to impose in order to derive them. So numerical simulations of the system prove
very useful not only in supporting the analytic results but also in exploring behavioural patterns
not amenable to theoretical analysis.

In order to simulate the stochastic updates of equation (2.1) we make use of the result that
the waiting times between random events are distributed exponentially (see Renshaw, 1991). Thus

Pr(an event occurs in interval (¢,t + s)) = 1 — exp{—Rs} (5.1)

where R = g\(n.)na + (8 + p)nr + p(n.)ng + p(n,)na + Bng + on,. To simulate the system one
simply needs to generate inter-event times from the above distribution and then choose specific
events, based on the relative magnitude of the corresponding probabilities, according to a uniform
(0,1) distribution. So at each update we will have either a birth or a death in one of the three
population variables, ny, n4 or n,.

Endemic regime. Figure 2 shows the results of such a simulation where the initial conditions
are the endemic equilibrium (Lg, Ay, 79) of the deterministic system, and the parameter values are
those of Table 1. The graphs show strong evidence for the oscillatory behaviour predicted by the
deterministic analysis, though to quantify the period of these oscillations it is best to consider
the auto- and cross-correlations in the time series. Figure 3 shows the auto-correlation function
Cn, ., (7) and the cross-correlation C, , o, (7) for a range of values of the time lag 7. The corresponding
analytic results derived using the transfer function approach (see Section 4.2) are shown along with
the simulation results. Oscillatory behaviour is clearly evident, with the estimated wavelength
~ 15 years. Both the simulation and analytic results are in good agreement with the deterministic
prediction. Recall that the Normal approximation also gives a similar prediction. However, it is
clear that whilst both theory and simulations are in close agreement for small lag times, 7 (see
equation (4.9)), this is not so for larger 7. As 7 increases, the discrepancy, both in the phase and
amplitude, between the analytic and simulation results increases.

Numerical solution of the Normal approximation provides variances and covariances along with
the mean trajectories. For the free-living population ny, in the endemic regime, +1 standard devi-
ation intervals around the mean are shown in Figure 4, together with a realization of the stochastic
process. This graph shows that the Normal approximation provides a reasonable indication of the
fluctuations around the mean. Indeed, similar behaviour is found in the other populations, n, and
n4. However, fluctuations do not appear to be symmetric around the mean value of the Normal
approximation. This indicates a potential draw-back of the assumption of Normality, and suggests
that a skewed distribution might be more appropriate.

In contrast, the approximating stochastic process of Section 4.4 exhibits fluctuations which
diverge as t increases. Furthermore, as these fluctuations are much larger than those shown in
Figure 4, the approximating stochastic process would seem to be somewhat misleading.

We can also use our simulations to check the variances and covariances calculated in the

previous section. If the system is ergodic then we can obtain simulated moment estimates by
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considering a single, but long-lived realization (see, for example, Nisbet and Gurney 1982). This
yields o7, ~ 39000, 04 ~ 370 and o, ~ 33000, which are similar in magnitude to our predictions
based on the local variance-covariance calculations, and are even closer to those based on the
Normal approximation (see Sections 4.1 and 4.3). The results of both approximations, along with
values based on simulation of the endemic regime for ¢ = 0, ..., 3000 years, are compared in Table
2. We find that the Normal approximation estimates the standard deviation in the population
fluctuations more accurately than the local linearization procedure. In terms of the normalized
cross-correlations of these fluctuations there is a remarkable similarity between the two methods
and both agree well with simulation results. However, we note that neither set of covariance terms
are in such good agreement with simulated estimates.

Our results show that stochastic effects play a considerable role in the endemic regime. This
is understandable as the competing effects of the parasitic life-cycle and the immune-response of
the hosts are roughly balanced in this case.  There is therefore no strong deterministic reason
for the system to move from equilibrium, and the fluctuations we observe around it are largely
stochastic. Note that damped deterministic behaviour often leads to sustained stochastic cycles
(Renshaw (1991)).

Managed regime. Here the adult population and host immunity are set to zero at the start
of every year, but the infection persists due to the remaining larval population. In this case the
immune-response is initially zero whilst the infective pressure of the larval population is large. The
transition probabilities thus favour a rapid rise in the adult parasite burden and one might expect
stochastic effects to be muted. Indeed stochastic simulations reveal a behaviour which is visually
indistinguishable (on the scale of Figure 1) from the deterministic result. The fact that simulated
trajectories differ so slightly from the deterministic path suggests a rather tight +1 standard de-
viation interval. In this case we find that the means and corresponding interval resulting from
the Normal approximation are also indistinguishable (on this scale) from the simulated stochastic
process. This contrasts with the approximating linearized process of Section 4.4 which, for this
managed regime, is shown in Figure 5. As noted earlier, the mean of this approximation is the
deterministic solution, which as we have seen approximates the stochastic trajectory well in this
regime. However, Figure 5 reveals that the £1 standard deviation intervals around this mean are

rather broader than those suggested by direct simulation.

Extinction. Finally, we consider the question of extinction. Recall that both the deterministic
analysis and the approximations to the stochastic process indicate that the infection will continue
unless () < 1. In the cases so far examined in this section the condition ) > 1 has been satisfied and
the infection does seem to persist. However, Figure 6 shows the case where () ~ 14.8 and the param-
eters are as in Table 1 but with 1(0) = 30. The solid line represents a typical stochastic trajectory
and shows that the infection becomes extinct at around ¢ & 31 years, despite () being considerably
greater than unity, and the indefinite oscillation of the deterministic trajectory. The approximating
stochastic process once again exhibits large fluctuations about the mean suggesting that extinction
may occur. Initially the Normal approximation follows the stochastic trajectory closely, with both
the deterministic and the simulated trajectories (Figure 6) lying within +1 standard deviation in-
tervals (i.e. E[np(t)] £o0r). However, at t ~ 10 years the lower level, E [ny(t)] — or, is negative
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indicating that the probability of extinction may now be substantial. Whilst for ¢ ~ 16 years the
Normal approximation predicts large fluctuations around a negative E [ny(¢)], thus the approxima-
tion has clearly broken down. It is clear that care is needed in interpreting all stochastic analytic
approximations and that direct stochastic simulation of the full process is an indispensable tool.

This phenomenon of extinction may be of interest in the case examined by Roberts (1994)
who has applied the deterministic model (3.2) to the case of nematode infection of lambs by using
parameterizations different to those of Table 1 (recall that these pertain to Ostertagia ostertagi
infection of calves). In this case Q = 7.746 ( i.e. @ > 1) but our stochastic formulation of
the model reveals that typical trajectories in the endemic regime quickly become extinct, despite
persistent oscillations predicted by the deterministic model. This difference remains even with
temporal inhomogeneity in the probability of egg development (¢), which is a further indication
that deterministic modelling fails to capture the subtleties of the stochastic process.

6 Conclusions

We applied a number of approaches to the analysis of a stochastic population model and assessed
these by comparing the analytic predictions with simulations of the full stochastic process. The
approximations chosen are applicable to a broad range of stochastic systems. The test system is
a natural stochastic formulation of a deterministic model of nematode infection in ruminants, and

has features common to many host-parasite systems.

Although deterministic analysis reveals a range of interesting behaviour, consideration of the
full stochastic process shows that although the deterministic treatment is highly accurate in the
managed regime, significant departures from deterministic predictions occur in the endemic regime
and for settings not considered by Roberts and Grenfell (1991). In the endemic regime there are
large fluctuations around the deterministic steady state; evaluation of the time-lagged correlations
reveals cyclic behaviour whose period is in close agreement with deterministic predictions. In a
regime for which the deterministic model predicts persistent oscillations the full stochastic model
produces extinction events. Thus there is significant discrepancy between the stochastic process
and the deterministic model.

Both the Normal approximation and the calculation of the local variance-covariance structure
are shown to be reliable indicators of the size of the fluctuations expected in the endemic regime,
with those of the former being most accurate. In addition, for small lag times, calculations of the
auto- and cross-correlations using transfer function methods are accurate. In the managed regime,
where local linearization of the stochastic updates is not appropriate, the Normal approximation
correctly predicts small fluctuations. The use of a linear approximating stochastic process is shown
to be inferior to the Normal approximation, with the former suggesting very wide ‘confidence’
intervals in both regimes. Finally, in contrast to the deterministic treatment, both the Normal
approximation and the approximating process indicate that extinction is a real possibility: in this
regime simulation of the full stochastic process does indeed result in extinction.

In summary, much care is needed in interpreting these approximate analytical results and
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direct simulation is an indispensable tool. Nevertheless, the analytic methods explored seem re-
markably accurate. In particular, the Normal approximation is seen to be both robust and flexible.
Whilst it should be stressed that this relative efficiency of the Normal approximation may not hold
universally, it does seem that it should become an important and widely used technique. However,
the assumption of Normality is perhaps not the most appropriate in the context of population mod-
els, and it would be exciting if other more plausible, but tractable, distributional approximations
could be made in its place.
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Figure 1: Deterministic trajectory; (i) L(t), (i) A(¢) x 100 and (iii) r(¢) x 5; the time ¢ is measured
in years. The initial condition for the system is L(0) = 401500, A(0) = r(0 )
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Figure 2: Stochastic time series: nr(t) (lower curve), 200n4(t) + 5 x 10* (middle curve) and
n,(t) — 2.54 x 10® (upper curve). The initial condition for the system is close to the endemic equi-
librium (Ly, Ag, 7o) of the deterministic model. Oscillations with a period close to the deterministic
prediction of 7 & 15 years are discernible.
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Figure 3: Correlation functions: (a) shows the time-lagged auto-correlation, C,, n,(7), of the fluc-
tuations in the free-living population; (b) shows the time-lagged cross-correlation, Cy, a,(7) (7 is
measured in years). Solid curves shows the theoretical values obtained in Section 4.2, whilst the
dot-dashed curves show the simulation results. The period of oscillation obtained from the calcu-
lated time-lagged correlations, ~ 15.5 years, is in good agreement to the ~ 15.8 years from the
simulations.
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Figure 4: Normal approximation in the endemic regime, showing the Normal approximation to
the mean, E [ny(¢)], and £1 standard deviation (pitchfork curve) along with one realization of the
full stochastic dynamic. The time ¢ is measured in years. Similar graphs are obtained for the
other populations (n4 and n,), showing that in this regime the Normal approximation gives a fair
indication of the spread around the mean.
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Figure 5: Approximating linearized stochastic process, showing the means (E [ny(¢)] and E [n4(t)])
and one standard deviation intervals, together with the deterministic value r(t), against the time ¢
in years. The quantities have been re-scaled as indicated.
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Figure 6: Extinction: The full curve shows a stochastic realization of the larval population ng(t)

with initial condition n; = 78850,n4 = 748,n, = 2870000 and parameters as in Table 1 except

that p(0) = 30 (i.e. @ = 14.8). The infection dies out at around ¢ =~ 31 years. The dashed curve
shows the associated deterministic model output L(t).



