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Abstract

We examine stochastic effects, in particular environmental variability, in population models of bio-

logical systems. Some simple models of environmental stochasticity are suggested, and we demon-

strate a number of analytic approximations and simulation-based approaches that can usefully be

applied to them. Initially, these techniques, including moment-closure approximations and local

linearization, are explored in the context of a simple and relatively tractable process. Our presenta-

tion seeks to introduce these techniques to a broad-based audience of applied modellers. Therefore,

as a test case, we study a natural stochastic formulation of a non-linear deterministic model for

nematode infections in ruminants, proposed by Roberts and Grenfell (1991). This system is partic-

ularly suitable for our purposes, since it captures the essence of more complicated formulations of

parasite demography and herd immunity found in the literature.

We explore two modes of behaviour. In the endemic regime the stochastic dynamic fluctuates

widely around the non-zero fixed points of the deterministic model. Enhancement of these fluctu-

ations in the presence of environmental stochasticity can lead to extinction events. Using a simple

model of environmental fluctuations we show that the magnitude of this system response reflects

not only the variance of environmental noise, but also its autocorrelation structure. In the managed

regime host-replacement is modelled via periodic perturbation of the population variables. In the

absence of environmental variation stochastic effects are negligible, and we examine the system

response to a realistic environmental perturbation based on the effect of micro-climatic fluctuations

on the contact rate. The resultant stochastic effects, and the relevance of analytic approximations

based on simple models of environmental stochasticity, are discussed.



1 Introduction

The inclusion of stochasticity in a mathematical model may be motivated by several factors.

For example, Rand and Wilson (1991) partition stochastic effects for epidemics into three types: i)

demographic fluctuations arising from the stochastic nature of the epidemic; ii) randomness in the

environment, and thereby in the parameters affecting the epidemic; and, iii) measurement errors.

The first two have the potential to make stochastic model behaviour quite distinct from that of a

deterministic implementation (see, for example, Gurney and Middleton, 1996; Wilson and Hassell,

1997; Kokko and Ebenhard, 1996; Marion et al., 1998), and these effects should be considered in

any modelling study.

Marion et al. (1998) consider type (i) stochasticity in a reformulation of a deterministic model

of nematode infection of ruminants proposed by Roberts and Grenfell (1991). Such demographic

stochasticity is shown to be important in terms of extinction events and equilibrium model behaviour

(the endemic regime), but muted in a transitory managed regime where the system is periodically

perturbed. In the absence of an explicit solution, various analytic approximations are evaluated in

the light of simulations of the stochastic model. Here we extend the scope of this earlier paper to

include deterministic and stochastic fluctuations in the model parameters. Environmental fluctua-

tions are seen as crucial in modelling commercially important nematode infections (see, for example,

Beecham, 1997; Barnes et al., 1988; Callinan et al., 1982; Grenfell et al., 1987; Thomas et al., 1986),

and many other biological systems. For example, Jhost and Wissel (1997) study the influence of

temporal correlations in stochastic environmental fluctuations on extinction risk, and Gurney and

Middleton (1996) show that random variations in the environment crucially alter optimal resource

allocation strategies. Roberts and Grenfell (1992) examine deterministic environmental fluctuations

in their deterministic model of nematode infection (Roberts and Grenfell, 1991), and this deter-

ministic variation can be handled in a stochastic model using the methods presented in Marion et

al. (1998). We shall therefore focus on the development of techniques such as local linearization,

moment-closure approximations and simulation, as applied to stochastic environmental fluctuations.

Our principal aims are to present a generally applicable framework which accounts for both

demographic and environmental stochasticity in population biology, and to show how to conduct

simulations and derive analytic approximations for such models. We also seek to promote wider use

of stochastic methods. Stochastic analogues of many deterministic models are readily identified and

simulation is usually straight-forward (see Section 2.1). Analytic approximations are a useful way of

exploring model behaviour, and often provide valuable insight. We compare two such approximation

schemes. The first, moment closure, has no direct analogue in deterministic modelling, but may

be interpreted in terms of distributional assumptions akin to the negative binomial distribution

of host parasite burden assumed by Anderson and May (1978). The second is based on local

linearization of a stochastic differential formulation of the model, and is an extension of the transfer

function approach used by Roberts and Grenfell (1992) to analyze environmental perturbations in

a deterministic model (see also Nisbet and Gurney, 1982).

To illustrate these ideas we first consider the immigration-death model (Section 2), where simple

models of environmental variation are introduced, and incorporated into moment-closure and local

linear approximations. These procedures are compared with simulations, and, where possible, with
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exact results. In Section 3 we describe our model of helminth infection, and show how to derive

approximations under different parameter perturbations. In Section 4 approximations are compared

with simulations in the endemic regime. In particular, we study deterministic fluctuations, and the

effect of temporal correlations in stochastic parameter variation on extinction risk. Finally, Section

5 uses the methods to explore the effects of fluctuations in the contact rate of the infection which

results from a mechanistic model of helminth response to micro-climatic fluctuations developed

by Beecham (1997). This analysis is conducted in a managed regime where stochastic effects are

negligible in the absence of environmental perturbation.

2 Environmental variation and a solvable model

2.1 Formulation and analysis of stochastic models

The immigration-death model consists of a single population of size n(t) which changes in a small

time interval (t, t+ ∆t) according to the probabilities

Pr(n(t+ ∆t) = n(t) + 1) = ν(t)∆t , Pr(n(t+ ∆t) = n(t)− 1) = µ(t)n(t)∆t . (2.1)

In general, the death rate µ(t) and immigration rate ν(t) are time-dependent. Statement of these

birth-death probabilities specifies the stochastic model, just as specification of the rates ν(t) and

µ(t)x(t) defines the deterministic model dx(t)/dt = ν(t)− µ(t)x(t). This correspondence is readily

extended to more complex models, and the continuous-valued population level x(t) of the determin-

istic model coincides with the true expected population size E[n(t)] when the transition probabilities

are linear functions of the stochastic variables. We shall consider three cases in which ν and µ are

constant, vary deterministically, and vary stochastically.

(i) Constant environment: For time-independent transition rates, simulation of the stochastic

model is straightforward since the inter-event time is exponentially distributed with rate R =

ν + µx (see Renshaw, 1991). Chapman-Kolmogorov forward equations typically form the basis for

analysis of stochastic population models (see, for example, Cox and Miller, 1965), and are formed

by considering all possible events occurring in a short time interval (t, t+∆t). Multiple events occur

with negligible probability and can be ignored. Let p(n; t) denote the probability of obtaining a

population of size n at time t given a population of size n0 at t = 0. Then the forward equation is

dp(n; t)/dt = p(n− 1; t)ν + p(n+ 1; t)(n+ 1)µ− p(n; t)(ν + µn) . (2.2)

Introduction of the moment generating function (m.g.f.) M(θ; t) ≡ E
[
eθn

]
≡ ∑∞

n=0 e
θnp(n; t) enables

raw moments of the process (i.e. E [nj] : j = 1, 2, ...) to be derived by evaluating ∂jM(θ; t)/∂θj at

θ = 0. This can be seen by expanding E
[
eθn

]
= E [1 + θn+ θ2n2/2! + ...].

Multiplying (2.2) by exp {θn} and summing over n = 0, 1, 2, ... results in the equation

∂M/∂t = ν(eθ − 1)M + µ(e−θ − 1)∂M/∂θ . (2.3)

Since ν and µ are constant, it is straightforward to solve this for the cumulant generating function

(c.g.f.), K(θ; t) ≡ lnM(θ; t), using the method of auxiliary equations (Bailey, 1964; Cox and Miller,

1965) obtaining

K(θ; t) ≡
∞∑

j=1

θjκj(t)/j! = n0 ln{1− e−µt(1− eθ)} − (1− e−µt)(1− eθ)(ν/µ) , (2.4)
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where κj(t) is the cumulant of order j at time t. For example, κ1 is the mean E[x], and κ2 the

variance E[x2]−E[x]2, whilst the third- and fourth-order cumulants measure skewness and kurtosis

(Kendall, 1994). Note that if n0 = 0, then all the cumulants are equal, since κj(t) ≡ (1−e−µt)(ν/µ),

which is a characteristic of the Poisson distribution.

(ii) Deterministic variation: For time-varying parameters ν(t) and µ(t), given an event at t0,

the time of the next event t1 is obtained by first drawing τ from an exponential distribution with

unit mean, and then solving

τ =
∫ t1

t0
[n(t0)µ(t) + ν(t)]dt (2.5)

for t1. Alternatively, an approximate simulation method is to increment time by an appropriately

small step ∆t, and use the probabilities (2.1) to determine which event, if any, occurs in (t, t+∆t).

When ν(t) and µ(t) vary deterministically the forward equation is identical to (2.3), but with ν

and µ replaced by ν(t) and µ(t), namely

∂K/∂t = ν(t)(eθ − 1) + µ(t)(e−θ − 1)∂K/∂θ . (2.6)

Appendix A describes how to solve this equation in general, and a closed form solution is obtained for

the case of constant death rate and sinusoidally varying immigration rate ν(t) = ν0 [1 + ε cos(ωt+ φ)].

In this case we obtain expressions for the cumulants, and show that the population fluctuations

follow a Poisson distribution when the initial population is zero (n0 = 0).

When both transition rates are time-dependent we are unable to find a closed form solution,

and such intractability is common to many realistic models of biological systems. Nevertheless,

some progress can be made. Expression (2.4) shows that the c.g.f. may be expanded in terms of

the cumulants κj, whence differentiating (2.6) with respect to θ (at θ = 0) leads to a closed set of

ordinary differential equations for the κj up to any desired order. For example, the mean κ1 = E [n]

and variance κ2 = E [n2]− κ2
1 are given by

dκ1/dt = ν(t)− µ(t)κ1 (2.7)

dκ2/dt = ν(t) + µ(t)(κ1 − 2κ2) .

If necessary, generalizations of (2.7) may be integrated numerically. An approximation to the

distribution p(n; t) may be obtained from a finite number of cumulants. For example, κ1 and κ2

may parameterize the Normal or, depending on the ratio of the mean to variance, the binomial,

Poisson or negative binomial distributions (see Renshaw, 1991). For µ(t) = 1 and ν(t) = 1+cos (t),

Figure 1a compares the exact probability p(0; t) (see Appendix A) with its highly accurate binomial

approximation (so here κ2 < κ1), and to the Normal approximation which is clearly too large for

small t and too low for t > 2. Figure 1b shows that the binomial approximation to κ3 is also

accurate, whilst the Normal approximation, for which κ3 = 0, fairs poorly in comparison. Note

that when n0 = 0 the true distribution is Poisson.

(iii) Continuous stochastic variation: One approach is to model the parameters themselves

using discrete stochastic processes. This results in a higher-dimensional model which may be non-

linear in the stochastic variables, such as the term n(t)µ(t) for stochastically varying death rate in
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the immigration-death model. Nevertheless, several authors have considered discrete-valued multi-

dimensional non-linear stochastic processes (see Isham, 1991; Marion et al., 1998), and we shall not

explore this approach further here. Instead, we focus on continuous stochastic variation.

In Appendix B we adopt a continuous limit of a discrete random walk, namely the mean-

reverting Uhlenbeck-Ornstein process, as our model of continuous stochastic environmental noise,

taking model parameters as transformations of this process. For example, in the immigration-death

model ν = B(Zν), the mean-reverting Uhlenbeck-Ornstein processes, Zν , has a Normal distribution

and with (in equilibrium) mean Z̄ν and variance σ2
ν/2bν (see text following Eq. B.7). In Section 2.2

the parameter bν is seen to control the auto-correlation of Zν .

Two possible transformations are ν = B(Zν) = Z2
ν , which imposes a Normal distribution on

√
ν, and the log-Normal transformation ν = B(Zν) = exp {Zν}. In each case we parameterize the

underlying process (for a given bν) by matching the required mean E[ν] and variance var[ν] with

those of B(Zν). When B(Zν) = exp {Zν} this yields

Z̄ν = 2 ln{E[ν]} − ln{var[ν] + E[ν]2}/2 (2.8)

σ2
ν ≡ 2bνσ

2
Zν

= 2bν [ln{var[ν] + E[ν]2} − 2 ln{E[ν]}] ;

whilst for the case B(Zν) = Z2
ν ,

Z̄2
ν =

(
E[ν]2 − var[ν]/2

)1/2
and σ2

ν ≡ 2bνσ
2
Zν

= 2bν
[
E[ν]− Z̄2

ν

]
, (2.9)

where we have defined σ2
Zν

for later convenience. Note that the latter expression for Z̄ν places a

restriction between the mean and variance of ν (var[ν] ≤ 2 E[ν]2). In Section 2.2 we consider the

effect of bν on population fluctuations, but until then we assign bν = 0.5 (that is, σν = σZν ).

Moment closure and the Normal approximation: Appendix B shows how to construct the

associated Chapman-Kolmogorov forward equation (B.4) for the joint-density of the population

and environmental fluctuations for the immigration-death model together with the corresponding

m.g.f. equation (B.5). Consider constant death rate µ(t) = µ0, and variation in the immigration

rate modelled as a transformation of a mean-reverting Uhlenbeck-Ornstein process ν = B(Zν). The

appropriate substitutions, αµ = βµ = 0, D(Zν) = µ0, αν = σ2
ν and βν = bν(Z̄ν−Zν) reduce Eq. (B.5)

to

∂M

∂t
= (enθ − 1)B̂(∂/∂λν)M + (e−nθ − 1)µ∂M/∂θ + λ2

νσ
2
νM/2 + λνbν

(
∂M/∂λν + Z̄ν

)
. (2.10)

The case ν = B(Zν) = Zν is analytically tractable, but allows the immigration rate to be negative

(it is Normally distributed) and so will not be considered further. In general, no analytic solutions

have been obtained, but taking appropriate first- and second-order derivatives of Eq. (2.10) with

respect to θ and λν , and setting θ = λν = 0, leads to

dE[n]/dt = E[B(Zν)]− µ0E[n] (2.11)

dE[n2]/dt = E[B(Zν)] + 2E[nB(Zν)] + µ0E[n]− 2µ0E[n2]

dE[nZν ]/dt = E[ZνB(Zν)]− µ0E[nZν ] + bνZνE[n]− bνE[nB(Zν)] ,

together with equations for the first two moments of Zν(t) which satisfy (B.7). Equations for higher-

order moments can be obtained in a similar fashion. Note that this is analogous to the derivation

of the cumulant equations (2.7).
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If B(Zν) is non-linear then the equation for any given moment involves moments of higher-

order, and so the system (2.11) cannot be closed; a parallel problem arises in the corresponding

cumulant equations. However, closure may be imposed by assuming that cumulants above a certain

order are zero (see, for example, Matis et al., 1998). Second-order cumulant truncation, where

only the mean and variance-covariances are assumed non-zero, relates to a Gaussian distribution.

As an example of this Normal approximation, consider the case ν = B(Zν) = Z2
ν . Recall that

in one dimension the c.g.f. can be expanded as K(θ) = θκ1 + θ2κ2/2! + θ3κ3/3! + O(θ4). In

this case, second-order cumulant truncation yields K2(θ) = θκ1 + θ2κ2/2! which corresponds to a

Normal distribution. Approximate higher-order moments can be obtained, via the m.g.f. M2(θ) =

exp {K2(θ)} ≈ E[exp {nθ}]. A two-dimensional analogue of this argument yields

M2(θ, λzν ) ≡ exp {K2(θ, λzν )} (2.12)

K2(θ, λzν ) ≡ κ10θ + κ01λzν + κ20θ
2/2 + κ11θλzν + κ02λ

2
zν
/2 .

For the immigration-death model, when ν = B(Zν) = Z2
ν , we have κ10 = E[n], κ01 = E[Zν ], κ20 and

κ02 correspond to the variances of n and Zν , respectively, whilst κ11 is their covariance. Closure of

the moment update equations (2.11) can now be achieved by noting that for the truncated process

E[Z3
ν ] = ∂3M2(θ, λzν )/∂λ

3
zν
|θ=λzν =0 and E[nZ2

ν ] = ∂3M2(θ, λzν )/∂θ∂λ
2
zν
|θ=λzν =0 . (2.13)

The next order of approximation requires derivation of the moment evolution equations to third-

order. However, recent work based on univariate saddlepoint approximations suggests that increased

accuracy need not necessarily follow from higher-order cumulant truncation (Renshaw, 1998).

It should be noted that this problem of closure is widespread in population biology since it relates

to any nonlinear stochastic model. In the remainder of this paper we apply the Normal approxima-

tion (second-order cumulant truncation) which was originally proposed by Whittle (1957) and used

subsequently by Isham (1991), who applies it to epidemic models, and Grenfell et al. (1995a,b)

who study macro-parasitic infections.

Simulations: Since we have not yet obtained full analytic solutions, the Normal approximation

is compared with stochastic simulation. For simplicity, we ignore the transient system response

and focus on equilibrium behaviour. Perturbation of the immigration rate means that the inter-

event time (2.5) is now determined by a stochastic integral, so we approximate the dynamics by

incrementing time by a small step ∆t, and updating the population variable n according to the

probabilities (2.1). To simulate the continuous-valued environmental noise process, one approach

is to update ν(t) = Zν(t)
2 according to the stochastic difference equation

Zν(t+ ∆t) = Zν(t) + bν [Z̄ν − Zν ]∆t+ σνη(t)
√

∆t , (2.14)

where η(t) is a white noise process of zero mean and unit variance (Nisbet and Gurney, 1982).

Comparison with the text following Eq. (B.6) shows that the mean and variance of these updates are

equivalent to the instantaneous mean, βν = bν [Z̄ν−Zν ], and variance, αν = σ2
ν , of the corresponding

mean-reverting Uhlenbeck-Ornstein velocity process.

Table I shows the mean and variance of the population fluctuations based on 1000 simulations

of the immigration-death model over t = 0, ..., 1000, with the parameter values shown. Equilibrium
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values obtained from the Normal approximation are also presented. The results demonstrate that as

the variance of the environmental noise increases; fluctuations in the population increase; the Normal

approximation increasingly under-estimates the population variances, and the true distribution

becomes increasingly skewed. This breakdown of the Normal approximation, which allows negative

population sizes, is illustrated in Figure 2 which shows the corresponding Normal distribution

alongside histograms of samples taken from these simulations following a burn-in period.

2.2 An alternative approach

We now examine the relevance of stochastic differential equations (s.d.e’s) to the treatment of

parameter variation and uncertainty. In the immigration-death model, the update, n(t+∆t)−n(t)

is governed by the birth-death probabilities (2.1), and to order O(∆t2) has mean and variance

f(n,u(t))∆t ≡ (+1)P (n(t+ ∆t) = n(t) + 1) + (−1)P (n(t+ ∆t) = n(t)− 1))

= [ν(t)− µ(t)n(t)]∆t , (2.15)

q(n,u(t))∆t ≡ (+1)2P (n(t+ ∆t) = n(t) + 1)) + (−1)2P (n(t+ ∆t) = n(t)− 1))

= [ν(t) + µ(t)n(t)]∆t ,

respectively. Here u(t)T = (ν(t), µ(t)). Now consider a continuous-valued, stochastic variable x(t)

representing the population size in the s.d.e. formulation. In a small interval (t, t+ ∆t) the change

in x(t) is

∆x(t) = x(t+ ∆t)− x(t) = f(x,u(t))∆t+ q1/2(x,u(t))∆t1/2η(t) , (2.16)

where η(t) is a white noise process of zero mean and unit variance. The expectation and variance

of the update ∆x(t) therefore correspond to those of (2.15) for the discrete-valued process n(t). On

dividing (2.16) through by ∆t, and letting ∆t→ 0, we obtain

dx(t)/dt = f(n,u(t)) + q(x,u(t))1/2γ(t) , (2.17)

where γ(t) = lim∆t→0 η(t)/∆t
1/2 is the time derivative of a Weiner process of zero mean and unit

variance; for a rigorous treatment of s.d.e’s see Mao (1997). The first term on the right hand

side of (2.17) corresponds to the deterministic model, whilst the second accounts for demographic

fluctuations inherent in the probabilities (2.1). Note that the continuous-valued x(t) can be regarded

as an approximation to the discrete-valued process n(t).

In Appendix C we formulate a more general stochastic differential equation model with k inter-

acting populations nT = (n1, n2,..., nk), and time varying parameters u(t)T = (u1(t), u2(t), ..., up(t))

(see Eq. C.3). Both deterministic and continuous stochastic parameter fluctuations are considered.

At present no general solution exists for such stochastic differential equations (see Mao, 1997).

Nevertheless progress can be made by linearization. We assume that the variation of parameters

about some constant level is small, i.e. u(t) = u0 + δu(t), and that these fluctuations may be

decomposed into a sum of a sinusoidal deterministic component δd(t) and a zero mean stochastic

element δr(t). If the deterministic equation dx/dt = f(x,u0) has a fixed point x1, the correspond-

ing s.d.e. can then be linearized. The linearized equations, which are strictly valid for large times

only, are then solved and we present expressions for the expectations E[xl] and the time-lagged
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cross- and auto-correlations Cxlxm(τ) of the equilibrium population fluctuations (see Eqs. C.11 and

C.14). Cxlxm(τ) measures the degree of correlation between fluctuations in population l at time

t and population m at time t + τ . Note that the population variances and covariances are given

by Cxlxm(τ = 0). Equation (C.14) shows that these fluctuations can be decomposed into a sum of

terms attributable to deterministic parameter fluctuations, and to demographic and environmental

stochasticity, respectively. Our aim is that Appendix C be regarded as a template for a wide range

of population models, and its use is now illustrated by application to the immigration-death model.

Application to immigration-death model: We now compare the results derived from a

linearized s.d.e. formulation of the immigration-death model with Normal approximations and,

where available, with exact results. Note that the results of Appendix C apply asymptotically, and

so we must compare them with those derived in Section 2.1 in the limit as t→∞.

(i) Demographic stochasticity: In terms of the general form (C.3) the immigration-death model

is one-dimensional (k = 1) with uT = (ν(t), µ(t)), and f1 and q1 defined in Eq. (2.15). Let the death

rate µ = µ0 be constant, and the immigration rate fluctuate about ν0. Linearization is performed

around uT
0 = (ν0, µ0) and x1 = ν0/µ0 ( i.e. f1(x1,u0) = 0 ), so q1(x1, ν0, µ0) = 2ν0. Then the

transfer function (see Eq. C.7) is T (ω) = [iω + µ0]
−1, and the demographic fluctuation (C.17) is

given by

Cdem
x x (τ) =

1

2π

∫ +∞

−∞
q1(x1, ν0, µ0) |T (ω)|2 exp(iωτ)dω

=
ν0

π

∫ +∞

−∞
[exp(iωτ)/(ω2 + µ2

0)]dω = ν0 exp(−µ0τ)/µ0 . (2.18)

See, Gradshteyn and Ryzhik (1965, p. 217) for evaluation of this integral. Note that the generating

function approach is not used to calculate time-lagged correlations, only moments and cumulants

of the population distribution at time t. Here we are interested in Cdem
xx (τ = 0) = ν0/µ0 which, for

t → ∞, corresponds to the population variance in the absence of any environmental perturbation

(see text following Eq. 2.4).

Another example of solely demographic stochasticity is provided by the mean-reverting Uhlenbeck-

Ornstein process itself. Comparison of expressions (C.2) and (2.14) reveals that, in this case k = 1,

f1 = bν [Z̄ν − Zν ] and q1 = σ2
ν . Note also that the parameters uT = (bν , σν , Z̄ν) are constant. It

follows that T (ω) = [iω + bν ]
−1 and Z̄ν is the fixed point of the deterministic dynamics. Therefore,

from (C.17) the equilibrium autocorrelation of the process is

Cdem
ZνZν

(τ) =
σ2

ν

2π

∫ +∞

−∞
exp(iωτ)/(ω2 + b2ν)dω = σ2

ν exp(−bντ)/2bν . (2.19)

Thus, Zν has exponentially decaying autocorrelation, with parameter bν controlling the rate of decay.

Furthermore, this expression reveals that for the mean-reverting Uhlenbeck-Ornstein process, the

spectral density SZνZν (ω) = σ2
ν/(ω

2 + b2ν), since by definition its inverse Fourier transform is the

autocorrelation, i.e. CZν ,Zν (τ) =
∫∞
−∞ SZν ,Zν (ω) exp(iωt)dω/2π.

(ii) Deterministic variation: Consider constant death rate µ = µ0, and let the immigration

rate vary sinusoidally as ν = ν0 + εν0 cos(ωt). Then Eq. (C.12) defines the phase shift ξ(ω) =

tan−1(−ω/µ0), and on using Eq. (C.11) the expected displacement is approximated by

E [x(t)] = (ν0/µ0) + εν0 cos(ωt− tan−1(ω/µ0))/
√
µ2

0 + ω2 , (2.20)
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which agrees with the exact result derived from Eq. (A.2).

(iii) Response to temporal correlations in environmental fluctuations: Assume a constant

death rate as above, but now let the immigration rate be described by a transformed mean-reverting

Uhlenbeck-Ornstein process, ν = B(Zν). Adapting the calculation (2.18) above, it is straight-

forward to show that the demographic term is now Cdem
x x (τ) = B(Z̄ν) exp(−µ0τ)/µ0. Similarly,

using Eq. (C.16) the variance of population fluctuations induced by this environmental noise is

Cran
x x (τ = 0) =

1

2π

∫ +∞

−∞
|T (ω)|2 (∂f/∂Zν)

2SZνZν (ω)dω . (2.21)

If ν(t) = B(Zν) is Z2
ν or exp(Zν), and the parameters of the noise model are obtained from ex-

pressions (2.9) and (2.8), respectively, we find that σ2
ν = 2bνσ

2
Zν

. The dependence of the spectral

density on bν , namely SZνZν (ω) = 2bνσ
2
Zν
/(ω2 + b2ν), is obtained on using the definition of SZνZν (ω)

following Eq. (2.19), whence

Cran
x x (τ = 0) =

(
∂B(Z̄ν)/∂Zν

)2
σ2

Zν
/ [µ0(bν + µ0)] (2.22)

which is maximized for bν → 0. This response to the colour of the environmental noise can also

be understood in terms of the frequency response of the system to sinusoidal perturbations. Equa-

tion (C.11) shows that the magnitude of a sinusoidal perturbation in Zν is scaled by the factor

|T (ω)| ∂f(x1, Z̄ν , µ0)/∂Zν which, in the present case, is maximized by ω∗ = 0. Now, for |T (ω)|
sufficiently peaked around ω∗, the population variance (2.21) can be further approximated as

Cran
x x (τ = 0) ≈ 1

2π
|T (ω∗)|2 (∂f/∂Zν)

2SZνZν (ω
∗) (2.23)

which is largest when SZνZν (ω
∗) is maximized with respect to the correlation parameter (i.e., bν =

ω∗ = 0).

Comparison with simulations: The total variance of the population fluctuations given by local

linearization is Cran
xx (τ = 0) + Cdem

xx (τ = 0). When B(Zν) = Zν the model is linear, and it is

no surprise that (2.18) and (2.22) give the same result as the exact calculation (the possibility of

which was mentioned earlier). However, when ν = B(Zν) = Z2
ν we have no exact analytic results,

though we have derived the Normal approximation in Section 2.1. In equilibrium, the Normal

approximation for the population variance reduces to

lim
t→∞

var[x] = [(Z̄2
ν + σ2

Zν
)/µ0] + 4Z̄2

νσ
2
Zν
/ [µ0(bν + µ0)] . (2.24)

The second term in this expression is identical to Cran
xx (τ = 0) (Eq. 2.22), and so the Normal approx-

imation predicts the same response to the colour of the environmental noise as does local lineariza-

tion. The first term in Eq. (2.24) differs from the local linear calculation Cdem
xx (τ = 0) = Z̄2

ν/µ0, in

that the numerator is the correct mean (E[ν] = Z̄2
ν + σ2

Zν
). That the Normal approximation is thus

superior is confirmed by Figure 3a, which compares both approximations with variances derived

from simulation of the immigration-death process in equilibrium. This graph also demonstrates that

the true system response to perturbation is maximized for bν → 0. Note also that the difference

between the Normal and linear approximations is smallest in this limit where their common term

is enhanced (i.e. for small bν).
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Finally, Figure 3b compares Normal and local linear approximations to simulation results for

the case ν=B(Zν)=exp {Zν}. The local linearization is less accurate here than in the previous case,

but once again the predicted response to temporal correlations in the environment is qualitatively

correct. Note that although both methods provide satisfactory results in equilibrium, only the

Normal approximation can be applied to transient dynamics.

In summary, in the context of the immigration-death model we have shown how to formulate

a stochastic population model, and write down forward equations describing its evolution. Some

problems associated with modelling variability in the environment are discussed and several ap-

proaches suggested. Nonlinear models are found to be intractable to exact solution, a feature

reflected in the problem of closure of the associated moment (or cumulant) evolution equations.

Approximations based on cumulant truncation or distributional assumptions are introduced. In

particular, the Normal approximation (where both approaches are equivalent) is applied to the

immigration-death process in which stochastic environmental fluctuations are modelled by the

mean-reverting Uhlenbeck-Ornstein process. This procedure is compared with another based on

the linearization of a stochastic differential formulation of the model. Analytic and simulation re-

sults suggest that both approaches predict the correct response to the temporal correlation of the

environmental noise, in addition to giving reasonable estimates of the size of the resultant fluctua-

tions. In the remainder of this paper these techniques are applied to a multi-dimensional non-linear

model of nematode infection of ruminants.

3 Helminth infection

Let nL(t) denote the number of free-living infective larval individuals in the area associated with

one host animal, and nA(t) the number of adult parasites infecting a host. Transmission rates from

larvae to host will naturally reflect the stocking density of the host animals, which in this model

is fixed. In addition, we model the level of immunity to these parasites in the host population by

some notional level, nr(t), which we consider discrete and non-negative. The model is identical to

that formulated in Marion et al. (1998), except that here the transition rates are time-varying. In

a small time interval (t, t+ ∆t) the changes in the populations nL, nA and nr are governed by the

transition probabilities

Pr(nL(t+ ∆t) = nL(t) + 1) = q(t)λ(r)nA∆t , P r(nL(t+ ∆t) = nL(t)− 1) = (β(t) + ρ(t))nL∆t

Pr(nA(t+ ∆t) = nA(t) + 1) = β(t)p(nr)nL∆t , P r(nA(t+ ∆t) = nA(t)− 1) = µ(nr)nA∆t

Pr(nr(t+ ∆t) = nr(t) + 1) = β(t)nL∆t , P r(nr(t+ ∆t) = nr(t)− 1) = σnr∆t . (3.1)

The probability that an egg develops to the free-living stage is q(t), and ρ(t) is the death rate of free-

living stages. The probability of parasite establishment p(nr), and the rate of egg production λ(nr),

are monotonic non-increasing functions, whilst the adult parasite mortality µ(nr) is monotonic

non-decreasing. The contact rate of infection is β(t), and σ is the rate of loss of immunological

memory. This model is a natural reformulation of the deterministic model with time-dependent rates

proposed by Roberts and Grenfell (1992); the corresponding autonomous model was introduced in

Roberts and Grenfell (1991). We restrict ourselves to the time-varying parameters considered by

these authors, but in principle the methods described here can also be applied to variation in other

model parameters.
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3.1 Local linearization

Our first step is to re-cast this model in the form of Eq. (C.3); x(t)T = (x1, x2, x3) is the vector of

continuous population variables corresponding to nT = (nL, nA, nr), with uT = (β(t), q(t), ρ(t)) the

vector of time-varying parameters. The deterministic model is then defined by

f(x(t),u(t)) =
d

dt

 x1(t)
x2(t)
x3(t)

 =

 q(t)λ(x3)x2 − (β(t) + ρ(t))x1

β(t)p(x3)x1 − µ(x3)x2

β(t)x1 − σx3

 ; (3.2)

whilst the stochastic term is

g(x(t),u(t), t) =


[q(t)λ(x3)x2 + (β(t) + ρ(t))x1]

1/2 γL(t)

[β(t)p(x3)x1 + µ(x3)x2]
1/2 γA(t)

[β(t)x1 + σx3]
1/2 γr(t)

 ,

where (γL(t), γA(t), γr(t)) is the time derivative of a three-dimensional Brownian motion. The steady

state parameters are uT
0 = (β0, q0, ρ0), and local linearization is applied around the fixed point of

the deterministic dynamics xT
1 = (L1, A1, r1), defined by f(x,u0) = (0, 0, 0)T . The results of Section

2.2 are now applied to this system.

(i) Sinusoidal variation: Roberts and Grenfell (1992) consider the effects of applying sinusoidal

perturbations, Aj cos(ωjt), to the model parameters β0, q0 and ρ0 (e.g. β(t) = β0+Aβ cos(ωβt)), and

here we outline some of their results. Applying Eq. (C.11), the magnitude of response in population

l to unit sinusoidal perturbations in parameter uj is found to be

|T (uj, l, ωj)| ≡ |Tlm(ωj)| ∂fm(x1,u0)/∂uj . (3.3)

The resonant frequency of these perturbations is the ωj which maximizes this response. Roberts

and Grenfell (1992) then show that the system response to variation in ρ is proportional to that

corresponding to q. Furthermore, for the parameter values of Table II the responses |T (β, x1, ω)| /L1,

|T (β, x2, ω)| /A1 and |T (q, x2, ω)| /A1 are visually indistinguishable from |T (q, x1, ω)| /L1, and so it

is sufficient to examine only the effect, in the free-living population x1, of sinusoidal perturbations

of q. The resonant frequencies of the system are found to be in the region of ω∗ ≈ 0.4046 where

|T (q, x1, ω)| /L1 ≈ 500, but for more realistic perturbations (of period one year) the system response

is of a more reasonable level, |T (q, x1, ω)| /L1 ≈ 1. Numerical experiments support these conclusions.

(ii) Stochastic variation: We now focus on stochastic variation in the probability of egg de-

velopment, q(t). As in the immigration-death model (Section 2.1), assume that these fluctuations

are modelled by a transformed mean-reverting Uhlenbeck-Ornstein process (i.e. q(t) = B(Zq(t))).

Recall that in the linearized regime the cross- and auto-correlations of the population fluctuations

decompose into a sum of terms due to demographic and environmental fluctuations (see Eq. (C.14)).

In the present case, the demographic terms are given by application of Eq. (C.17) employing the

definitions (3.2), and since these calculations are described in some detail by Marion et al. (1998)

we shall not consider them further here. Instead we focus on the environmental component given

by expression (C.16), and consider only the response in the free-living population, whence

Cran
nLnL

(0) =
1

2π

∫ ∞

−∞
|T (q, nL, ω)|2 SZqZq(ω)dω . (3.4)
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Note that the spectral density of the mean-reverting Uhlenbeck-Ornstein process, Zq, is SZqZq(ω) =

2bqσZq/(ω
2+b2q). For |T (q, nL, ω)| sufficiently peaked around the resonant frequency ω∗, the variance

(3.4) can be approximated as

Cran
nLnL

(0) ≈ 1

2π
|T (q, nL, ω∗)|2 SZqZq(ω∗) , (3.5)

which is analogous to (2.23). This observation suggests that the shape of the system response to

variations in the correlation parameter of the environmental noise (bq) is proportional to bq/(ω
2
∗+b

2
q)

with a maximum at bq ≈ ω∗. Thus, for the parameters of Table II the maximum response will occur

at bq ≈ 0.4046, and direct evaluation of (3.4) shows this to be a reasonable approximation. In Section

4 we will compare the results of this linearization procedure with simulations of the full model for

q(t) = Z2
ν . However, we first turn to the problem of closure, and the Normal approximation.

3.2 Normal approximation

(i) Deterministic parameter variability: In Marion et al. (1998) we consider the m.g.f. of the

helminth process (3.1) in which there is no parameter variability. As in Section 2.1(ii), the forward

equation for the m.g.f. is essentially unchanged for deterministically varying model parameters: time

dependence of parameters is simply added. The derivation of moment equations is also unchanged,

and, as for constant parameters, these equations are not closed and so one is forced to make some

assumption regarding the higher-order terms. In Section 2.1 we see that one possibility is to assume

that the process is Normally distributed, or, equivalently, that the cumulants of order three and

above are zero. Assuming that λ(nr), µ(nr) and p(nr) take the functional forms suggested in Table

II, and excepting the time dependence of the model parameters, the system of equations obtained by

applying the Normal approximation in this case is identical to that obtained for constant parameters

in Marion et al. (1998) to which we refer the reader for a full derivation. The results of this procedure

are compared with local linear approximation and simulation in Section 4.

(ii) Stochastic parameter variability: Now consider stochastic perturbations in the probability

of egg development q(t) = Bq(Zq(t)), and the contact rate β(t) = Bβ(Zβ(t)). As earlier, we model

these as transformations of the mean-reverting Uhlenbeck-Ornstein processes Zq(t) and Zβ(t). We

allow a fluctuating contact rate as this is the variable treated explicitly by the biologically motivated

model considered in Section 5.

Following the argument presented in Appendix B, consider the Chapman-Kolmogorov forward

equation for the joint density p(nL, nA, nr, Zq, Zβ; t) where Zq and Zβ are random walks in discrete

time and space. Taking the continuous limit, which preserves finite instantaneous means and

variances of Zq(t) and Zβ(t), results in a forward equation for the process under continuous stochastic

perturbation of the rate parameters. Introduction of the associated m.g.f. M(θ, φ, γ, ψq, ψβ) =

E [exp {θnL(t) + φnA(t) + γnr(t) + ψqZq(t) + ψβZβ(t)}] results in

∂M/∂t = λ0(e
θ − 1)B̂q(∂/∂ψq)∂M(θ, φ, γ − λ1, ψq, ψβ; t)/∂φ (3.6)

+ (e−θ − 1)(B̂β(∂/∂ψβ)∂M/∂θ + ρ∂M/∂θ)

+ p(0)(eφ − 1)B̂β(∂/∂ψβ)∂M/∂θ + µ(0)(e−φ − 1)∂M/∂φ

+ (eγ − 1)B̂β(∂/∂ψβ)∂M/∂θ + (e−γ − 1)σ∂M/∂γ

+ bβψβ∂M/∂ψβ + (σ2
βψ

2
β/2 + bβZ̄βψβ)M + bqψq∂M/∂ψq + (σ2

qψ
2
q/2 + bqZ̄qψq)M ,
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where theˆnotation of Appendix B has been used (see Eq. B.5).

As an example, consider the case where q(t) varies stochastically but where all other parameters

are constant, that is bβ=σβ=0. As before, appropriate differentiation of Eq. (3.6) with respect to θ,

φ,... leads to a set of moment evolution equations. The mean and variance of Zq(t) obey equations

analogous to (B.7), whilst the remaining first- and second-order moments satisfy

dE [nL(t)] /dt = E [Bq(Zq)nAλ(nr)]− (β + ρ)E [nL(t)] ,

dE [nA(t)] /dt = p(0)βE [nL(t)]− µ(0)E [nA(t)] ,

dE [nr(t)] /dt = βE [nL(t)]− σE [nr(t)] ,

dE
[
n2

L(t)
]
/dt = (β + ρ)(E [nL(t)]− 2E

[
n2

L(t)
]
)

+(E [Bq(Zq)nAλ(nr)] + 2E [Bq(Zq)nAnLλ(nr)]) ,

dE
[
n2

A(t)
]
/dt = βp(0)(E [nL(t)] + 2E [nLnA]) + µ(0)(E [nA(t)]− 2E

[
n2

A(t)
]
) ,

dE
[
n2

r(t)
]
/dt = β(E [nL(t)] + 2E [nLnr]) + σ(E [nr(t)]− 2E

[
n2

r(t)
]
) ,

dE [nLnA] /dt = −(β + ρ+ µ(0))E [nLnA] + βp(0)E
[
n2

L(t)
]
+ E

[
qn2

A(t)λ(nr)
]

,

dE [nLnr] /dt = βE
[
n2

L(t)
]
− (β + ρ+ σ)E [nLnr] + E [qnAnrλ(nr)] ,

dE [nrnA] /dt = βE [nLnA]− (σ + µ(0))E [nrnA] + βpE [nLnr] ,

dE [nLZq] /dt = −bq(E [nLZq]− Z̄qE [nL(t)]) + E [nABq(Zq)Zqnrλ(nr)]− (β + ρ)E [nAZq] ,

dE [nAZq] /dt = −bq(E [nAZq]− Z̄qE [nA(t)]) + βp(0)E [nLZq]− µ(0)E [nAZq] ,

dE [nrZq] /dt = −bq(E [nrZq]− Z̄qE [nr(t)]) + βE [nLZq]− σE [nrZq] .

As in the non-autonomous system (Marion et al., 1998), this set of equations is not closed, but de-

pends on an infinite series of higher-order moments through expectations such as E [Bq(Zq)nAλ(nr)].

Paralleling Section 2.1 we employ second-order cumulant truncation. Let xT = (nL, nA, nr, Zq)

with expectation x̄ = E [x] and variance-covariance matrix Σ = E
[
(x− x̄)T (x− x̄)

]
. Then for

wT = (w1, w2, w3, w4), the c.g.f. for the truncated process is K2(w) = wT x̄ + 1
2
wT Σw, and approx-

imations to expressions such as E [Bq(Zq)nAλ(nr)] can be obtained via the associated m.g.f.

M2(w) = exp (K2(w)) ≈ E [exp {w1nL + w2nA + w3nr + w4Zq}] . (3.7)

It is clear that this procedure is possible for a wide range of transformations Bq(Zq), including

Bq(Zq) = Z2
q and Bq(Zq) = exp {Zq}. Normal approximations to the moment update equations

can be obtained for alternative scenarios in a similar fashion. For example, in Section 5 we apply

the above techniques to the case where only β(t) = Bβ(Zq) is perturbed by a continuous stochastic

process. Other possible extensions include employing more general processes in place of Zq.

4 Simulation in the endemic regime

The endemic regime corresponds to the fixed point of the deterministic system with constant

parameters, and, in the stochastic model, to fluctuations around this point. We compare local

linearization and the Normal approximation with the results of simulation, and consider both de-

terministic and stochastic variation of the probability in egg development.

Deterministic time dependence of model parameters means that no steady-state solution exists.

However, Figure 4 depicts the Normal approximation to E[nL] ± σL and a time series generated
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from the full stochastic process for q(t) = q0 [1 + sin(2πt)]. Empirical observations reported in

Roberts and Grenfell (1992) confirm that this perturbation is biologically reasonable. The Normal

approximation appears to predict the fluctuations reasonably well, though it breaks down at t ≈ 34

years (not shown). This is a reflection of the magnitude of fluctuations around q0. Figure 4 clearly

shows fluctuations from the endemic equilibrium L1 = 78847 greater than 10×L1, in clear conflict

with the magnitude of approximately L1 (i.e. |T (q, nL, ω)| /L1 ≈ 1) predicted by the linearization

of Section 3.1. However, it should be noted that this is a purely transitory response, and the linear

prediction is correct for large time.

Now consider the stochastic case q(t) = Bq(Zq(t)) = Z2
q , where, as before, Zq(t) is a mean-

reverting Uhlenbeck-Ornstein process. We assume that E[q] = 0.35 corresponding to the steady-

state value given in Table II, and that the other parameters remain as stated there. For a given

variance, var[q], the parameters Z̄q and σq describing Zq(t) are given by application of equations

analogous to (2.9). This process implies a choice of the correlation parameter bq, but we will

consider representative values. Table III shows the standard deviation of fluctuations in the free-

living population, σL, derived from a long simulation over t = 0, ..., 5000 years in the endemic

regime. The approximations to this quantity derived from the Normal and local approximations

are also shown. Both methods predict the correct magnitude of response. Note also that the

value of bq has a significant impact on the magnitude of σL. For a given var[q] this response is

increased considerably as we move towards bq = ω∗ ≈ 0.4046. This prediction of local linearization

is also supported by the Normal approximation, which for var[q] = 10−7 has a maximum σL for

bq ∈ (0.40457, 0.4046). However, for fluctuations much larger than this the Normal approximation

breaks down. This is the reason for the missing figure in Table III. Recall that we witnessed a

similar, but less extreme, breakdown of the Normal approximation in Section 2.1 (see Figure 2).

For environmental variances greater than those examined in Table III we find that stochastic

fluctuation around the endemic equilibrium frequently results in extinction. Table IV shows some

results pertaining to this. Here the population fluctuations are large, and the Normal approximation

is unhelpful. In most cases it breaks down, and where it does not it seems to underestimate the

fluctuations. In contrast the local linear approximation appears to be rather robust. Comparison

with simulations suggests that variances predicted by local linearization can be used to provide

estimates of the extinction risk. Note also that the resonant frequency effect can be seen clearly,

with the percentage of runs ending in extinction associated with var[q] = 10−4 (bq = 0.5) being

considerably greater than that associated with the larger variance var[q] = 10−3 (bq = 50). We

note that in the context of discrete time models, Halley and Iwasa (1998) investigate extinction

risk in the presence of white environmental noise, whilst Johst and Wissel (1997) demonstrate the

importance of correlation in environmental fluctuations for extinction risk.

5 A more realistic environmental perturbation

So far we have explored the effects of theoretical perturbations and time-dependencies of the rate

parameters. However, Beecham (1997) has investigated the effects of micro-climatic fluctuations on

the behaviour of free-living nematodes within grass swards. The resultant vertical movements of the

parasites cause variations in the numbers ingested by hosts, resulting in weather-driven fluctuations

in the contact rate β. In this section we make use of a time series of daily values of the contact rate,
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β̃(t) (Beecham, 1997). Note that for fractions of a day one must interpolate between daily values

when using β̃(t) in simulations.

The length of this series is limited to fourteen years by the available weather data, with the

first year shown in Figure 5. As can be seen, the fluctuations in the contact rate are large. The

periods where β̃(t) is zero reflect a management regime where the hosts are removed from the

pasture between day 300 of one year and the 51st day of the following year. Roberts and Grenfell

(1991, 1992) consider a management scenario in which hosts are removed at the end of each year

and replaced by individuals with no acquired immunity. Marion et al. (1998) demonstrate that,

for constant rate parameters, the stochastic effects are negligible in this case (see Section 5). Here

we combine both management models, assuming that hosts have no acquired immunity when they

return to pasture after the period of absence. In this case, without environmental fluctuations

the deterministic model still provides a highly accurate representation of the population dynamics.

However, Figure 5b shows that the effect on the population dynamics of these weather driven

fluctuations in the contact rate is considerable.

Our first attempt to predict uncertainty in model output resulting from fluctuations in the

contact rate involved re-sampling from the existing time series β̃. However, this did not yield

satisfactory results and will not be considered further. Our second approach was to produce realistic

stochastic models of the fluctuations β̃, and we now describe two such models. Using ARIMA

processes (Box and Jenkins, 1970) a good fit is obtained by modelling the square root of the

contact rate using a third-order auto-regressive process. Figure 6a shows the result of applying this

model of β̃(t) in simulations of the helminth process. The approach seems to work reasonably well,

but fluctuations between yearly peak values are slightly greater than those associated with β̃(t)

itself. A large number of simulations could be used to obtain confidence intervals of the population

fluctuations, though this may be computationally expensive. ARIMA processes are flexible models

for environmental perturbations, but so far we have been unable to incorporate them into the

theoretical approximations derived earlier. We therefore consider models of β̃(t) based on the

mean-reverting Uhlenbeck-Ornstein process, which itself can be regarded as a continuous limit of a

first-order auto-regressive process. This allows us to calculate approximate confidence intervals for

the population fluctuations.

Using expressions analogous to (2.9), a mean-reverting Uhlenbeck-Ornstein process is fitted to

the square root of β̃ (that is, β = Zβ(t)2). As noted, this procedure leaves the correlation parameter

bβ to be determined. One possible approach is to fit, by least squares, the spectral density of Zβ(t) to

that of
√
β̃(t), though this yields a highly correlated time series (small bβ) at odds with that shown in

Figure 5a. Furthermore, when this is used in simulations, the resultant population fluctuations are

dissimilar to those of Figure 5b. Instead, we vary the correlation parameter bβ until the population

fluctuations qualitatively resemble those obtained when using β̃ directly. A reasonable value is

found to be bβ = 200, and the resulting population fluctuations are shown in Figure 6b.

As noted in Section 3.2, the Normal approximation can be derived from Eq. (3.6) with bq =

σq = 0. The result is a set of equations analogous to (3.7), describing the case where β = Bβ(Zβ).

The resultant Normal approximation, when β = Z2
β is fitted to β̃ and bβ = 200, is shown in

Figure 7a. The fluctuations in the free-living larval population nL(t) are shown alongside Normal
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approximations to the expected value E [nL(t)] together with the ±2 standard deviation interval.

The approximation appears reasonable since the population fluctuations, derived from simulation

with β = Z2
β, are contained within the confidence intervals more than 96% of the time (based on one

observation every second day for 14 years). How useful is this analytic approximation in describing

the likely population fluctuations resulting from the weather driven contact rate β̃ itself? The

results shown in Figure 7b are clearly encouraging, though, using the same frequency of observation

over 14 years, the population fluctuations (based on simulation with contact rate β̃ itself) lie outside

the approximate ±2 standard deviation interval more than 15% of the time. However, this figure

may not be significant since successive observations of the model output are highly correlated. Thus

in summary, the Normal approximation gives some guide to the extent of the expected population

fluctuations. Improvements should result from using more realistic distributional assumptions, and

more flexible, but analytically tractable, models for environmental variation. We hope to address

both issues in subsequent publications.

6 Discussion

We have considered the problem of environmental and parameter variation in stochastic popu-

lation models. We find that deterministic and discrete stochastic parameter variation present few

new problems in terms of analytic approximation and simulation of the process. In contrast, care

is needed in introducing continuous stochastic parameter variation. A continuous limit of a simple

random walk is derived and a special case, the mean-reverting Uhlenbeck-Ornstein process, is used

as a prototype model for environmental stochasticity. This process has an exponentially decaying

temporal correlation structure, and it would be interesting to study more general perturbations.

Simulation and analytic treatment of stochastic population models in the presence of environ-

mental variation are introduced using the immigration-death process as an example. In the context

of plausible models of continuous stochastic parameter variation, even this process is found to be

analytically intractable; analytical approximations considered are the Normal approximation and

local linearization of a stochastic differential formulation of the model. These approximations are

evaluated using extensive numerical simulation, and although the Normal approximation is more

flexible and slightly more accurate, both methods predict the correct response to temporal correla-

tions in parameter fluctuations.

These techniques are subsequently applied to a model of nematode infection in ruminants, which

is analytically intractable at present, and computationally more demanding than the immigration-

death process. In the endemic regime, following the deterministic analysis of Roberts and Grenfell

(1992), sinusoidal perturbations in the probability of egg development q are considered. The Nor-

mal approximation accurately reflects the simulated population fluctuations, whilst the linearized

deterministic analysis underestimates the transient system response. Continuous stochastic per-

turbations in q are also examined in the endemic regime. As the variance of these parameter

fluctuations grows, the resultant population fluctuations are increasingly likely to result in extinc-

tion. Unfortunately, the Normal approximation breaks down in this regime, but local linearization

provides a good indication of extinction risk. A key factor in determining the size of resultant pop-

ulation fluctuations, and thus the extent of this risk, is the temporal correlation of the perturbing

process: both the Normal and local linear approximations predict the system response to changes
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in the strength of this correlation. It should be noted that the helminth model was chosen as a case

study. In reality the infection is unlikely to die out spontaneously and the extinctions predicted

may suggest inadequacies in the model. Perhaps the most striking of these is that only one host

is considered, and it is likely that heterogeneity in host response to infection may result in greater

stability (Anderson and May, 1978).

Finally, a time series of fluctuations in the contact rate of the infection, derived from a mech-

anistic model of helminth response to micro-climatic fluctuations, is studied. These fluctuations

give rise to marked stochastic effects in a managed regime, effects which are negligible in the ab-

sence of environmental stochasticity. The limited length of the time series prompted the search for

simple stochastic models of fluctuations in the contact rate. Whilst an adequate auto-regressive

model was identified, its analytic intractability and computational cost presented barriers to the

evaluation of the fluctuation characteristics of the population. This led to the use of a suitably

parametrised transformed mean-reverting Uhlenbeck-Ornstein process, for which approximate, but

reasonably accurate variances can be derived from the Normal approximation. These results may

be improved: (i), by using more appropriate distributional assumptions; and (ii), by developing

more general, but analytically tractable, parameter perturbations.

Environmental fluctuations play a crucial role in realistic population models in biology. Our

studies with a plausible model for helminth infection in ruminants suggests that in this context they

are more significant than demographic stochasticity. In addition, the correlation structure, or colour,

of environmental stochasticity is crucial in determining the resultant population fluctuations; this

effect can be related to a resonant frequency of the linearized system. In this paper we have presented

an important set of quantitative methods for assessing the population variability associated with

both environmental and demographic stochasticity. This methodology is applicable to a wide range

of spatial and non-spatial population models in continuous time, and allows for a simple correlation

structure in the environmental fluctuations. Whilst these techniques are approximate, simulation

results from a multi-dimensional nonlinear model suggest they accurately predict the magnitude

of population fluctuations and the appropriate response to changes in the colour of environmental

noise.

Acknowledgments

The authors are indebted to Jonathan Beecham for providing us with model output describing

weather-driven fluctuations in the contact rate, used in Section 5, and also for useful discussions.

We also wish to express our appreciation for the support of a grant from the Engineering and

Physical Sciences Research Council. Gavin Gibson gratefully acknowledges the support of the

Scottish Office Agriculture, Environment and Fisheries Department. Finally, we wish to thank two

anonymous referees for useful comments and suggestions.

References

Anderson, R.M., and May, R.M. 1978. Regulation and stability of host-parasite population inter-

actions. I. regulatory processes, J. Anim. Ecol. 47, 219-247.

16



Bailey, N. T. J. 1964. “The Elements of Stochastic Processes: with applications to the natural

sciences,” Wiley, New York.

Barnes, E. H., Dobson, R.J., Donald, A. D., and Waller, P.J. 1988. Predicting populations of

Trichostrongylus colubriformis infective larvae on pasture from meteorological data, Int. J.

Parasitol. 18, 767-774.

Beecham, J., 1997. Macaulay Land Use Research Institute: Technical Report.

Box, G. E. P., and Jenkins, G. M. 1976. “Time Series Analysis: forecasting and control,” Holden-

Day, Oakland, CA.

Callinan, A. P. L., Morley, F. H. W., Arundel, J. H., and White, D. H. 1982. A model for the

life cycle of sheep nematodes and the epidemiology of nematodiasis in sheep, Agric. Syst. 9,

199-255.

Cox, D. R., and Miller, H. D. 1965. “The Theory of Stochastic Processes,” Chapman and Hall,

London.

Grenfell, B. T., Dietz, K., and Roberts, M. G. 1995a. Modelling the immuno-epidemiology of

macro-parasites in naturally-fluctuating host populations, in “Ecology of Infectious Diseases

in Natural Populations” (B. T. Grenfell and A. P. Dobson, Eds.), 362-383.

Grenfell, B. T., Wilson, K., Isham, V. S., Boyd, H. E. G., and Dietz, K. 1995b. Modelling

patterns of parasite aggregation in natural populations: trichostrongylid nematode-ruminant

interactions as a case-study. Parasitology 111, S135-S151.

Grenfell, B. T., Smith, G., and Anderson, R. M. 1987. A mathematical model of the population

biology of Ostertagia ostertagi in calves and yearlings, Parasitology 95, 389-406.

Gradshteyn I. S., and Ryzhik, I. M. 1965. “Table of Integrals, Series, and Products,” Academic

Press, Boston.

Gurney, W.S.C. and Middleton, A.J. 1996. Optimal resource allocation in a randomly varying

environment, Func. Ecol. 10, 602-612.

Halley, J. M., and Iwasa, Y. 1998. Extinction rate of a population under both demographic and

environmental stochasticity, Theor. Popul. Biol. 53, 1-15.

Isham, V. 1991. Assessing the variability of stochastic epidemics, Math. Biosci. 107, 209-224.

Johst, K., and Wissel, C. 1997. Extinction risk in a temporally correlated fluctuating environment,

Theor. Popul. Biol. 52, 91-100.

Kendall, M. G. 1994. “Kendall’s Advanced Theory of Statistics” (A. Stuart and J. K. Ord, Eds.),

Edward Arnold, London.

Kokko, H., and Ebenhard, T. 1996. Measuring the strength of demographic stochasticity, J. Theor.

Biol. 183, 169-178.

Nisbet, R. M., and Gurney, W. S. C. 1982. “Modelling Fluctuating Populations,” Wiley, Chich-

ester.

Mao, X. 1997. “Stochastic Differential Equations and Applications,” Horwood, Chichester.

Marion, G., Renshaw, E., and Gibson, G. 1998. Stochastic effects in a model of nematode infection

in ruminants, IMA J. Math. Appl. Med. Biol., 15, 97-116.

17



Matis, J. H., Kiffe, T. R., and Parthasarathy P. R. 1998. On the cumulants of population size for

the stochastic power law logistic model, Theor. Popul. Biol., 53 16-29.

Rand, D.A., and Wilson, H.B. 1991. Chaotic stochasticity: a ubiquitous source of unpredictability

in epidemics, Proc. Roy. Soc. Lond. B 246, 179-184.

Renshaw, E. 1991. “Modelling Biological Populations in Space and Time,” Cambridge University

Press, Cambridge.

Renshaw, E. 1998. Saddlepoint approximations for stochastic processes with truncated cumulant

generating functions, IMA J. Math. App. Med. Biol. 15, 41-52.

Roberts, M. G., and Grenfell, B. T. 1991. The population dynamics of nematode infections of

ruminants: periodic perturbations as a model for management, IMA J. Math. Appl. Med.

Biol. 8, 83-93.

Roberts, M. G., and Grenfell, B. T. 1992. The population dynamics of nematode infections of

ruminants: the effect of seasonality in the free living stages, IMA J. Math. Appl. Med. Biol.

9, 29-41.

Thomas, R. J., Paton, G., and Waller, P. H. 1986. The application of a simulation model to control

strategies in bovine gastrointestinal parasitism, Vet. Parasitol. 21, 127-133.

Whittle, P. 1957. On the use of the Normal approximation in the treatment of stochastic processes,

J. R. Statist. Soc. B 19, 266-281.

Wilson, H.B. and Hassell, M.P. 1997. Host-parasitoid spatial models: the interplay of demographic

stochasticity and dynamics, Proc. Roy. Soc. Lond. B 264, 1189-1195.

Appendix A: Deterministic variation

Application of the auxiliary equations to expression (2.6) gives rise to the solution

K(θ; t)− U
∫ t

0
ν(w)exp

[∫ w

0
µ(y)dy

]
dw = ψ(U) with U =

(
1− eθ

)
exp

[
−

∫ t

0
µ(w)dw

]
, (A.1)

where ψ(U) is an arbitrary function determined by the boundary conditions. A closed form solu-

tion is possible when the death rate is constant, i.e. µ(t) = µ, and the immigration rate varies

sinusoidally, i.e. ν(t) = ν0 [1 + ε cos(ωt+ φ)]. Then

K(θ; t) = K0(θ; t)− εν0(1− eθ)
[
f(t)− f(0)e−µt

]
(A.2)

where f(t) = [µ cos(ωt+ φ) + ω sin(ωt+ φ)] /(µ2 +ω2), and K0, the c.g.f. for constant immigration

and death rates, is given by (2.4). Repeated differentiation of (A.2) with respect to θ (at θ = 0)

shows that the corresponding cumulants are those for the time-homogeneous case plus the oscillating

component εν0 [f(t)− f(0)e−µt]. Rewriting (A.2) in terms of the m.g.f., and substituting θ =

ln z, gives the probability generating function (p.g.f.) G(z; t) ≡ Σ∞n=0p(n; t)zn. Thus p(n; t) is the

coefficient of zn in the expansion of G(z; t); in particular, the probability of zero population size at

time t is p(0; t) = G(0; t). Note that if n0 = 0 then n(t) follows a Poisson distribution with rate

ρ = εν(0)[f(t)− f(0)e−µt] + ν0(1− e−µt)/µ.
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Appendix B: Continuous stochastic variation

In this appendix we show one possible description of continuous stochastic variation in model

parameters. Once again consider the immigration-death model, but let us now assume that the

rates take the form µ(t) = D(Zµ(t)) and ν(t) = B(Zν(t)), where the perturbing processes Zµ(t)

and Zν(t) are Markov chains. Here Zν(t) changes in increments of size ±∆Z at fixed time steps ∆t

according to the probabilities

P (Zν(t+ ∆t) = Zν(t) + ∆Z) = θν and P (Zν(t+ ∆t) = Zν(t)−∆Z) = φν , (B.1)

with analogous expressions for Zµ(t). It is straightforward to write down the forward equation for

the full process {p(x, Zν , Zµ; t)} by considering the possible changes occurring at discrete intervals

∆t apart, just as before. If care is observed in taking the limits ∆t,∆Z → 0 then a mixed discrete-

continuous process (and associated forward equation) can also be obtained. This requires the

existence of the instantaneous means and variances of the perturbing processes, namely

lim
∆t,∆Z →0

E [Zν(t+ ∆t)− Zν(t)] /∆t = lim
∆t,∆Z →0

∆Z(θν − φν)/∆t = βν(Z, t) , (B.2)

lim
∆t,∆Z→0

var [Zν(t+ ∆t)− Zν(t)] /∆t = lim
∆t,∆Z→0

(∆Z)2(θν + φν − (θν − φν)
2)/∆t = αν(Z, t) ,

for the process perturbing ν; we use analogous limits βµ(Z, t) and αµ(Z, t) for the process perturbing

µ. In the case where the transition probabilities are constant, the successive increments Zν(t+∆t)−
Zν(t) are independent random variables, and conditions (B.2) are equivalent to requiring the unit

time mean and variance of Zν(t) to be finite. It is straightforward to show (see Cox and Miller,

1965, p. 213-215) that if the limits (B.2) are to exist we require

θν =
1

2A
(αν + βν∆Z) and φν =

1

2A
(αν − βν∆Z) , (B.3)

where ∆Z2 = A∆t for some constant A > αν . Analogous expressions also hold for the process Zµ(t).

On taking the continuous limit and applying these conditions we obtain the following Kolmogorov

forward equation for the joint density p(n, Zν , Zµ; t) of the immigration-death process with the

environmental noise, namely

∂p/∂t = B(Zν)p(n− 1, Zν , Zµ; t) + (n+ 1)D(Zµ)p(n+ 1, Zν , Zµ; t) (B.4)

− [nD(Zµ) +B(Zν)] p+ ∂2[αµp]/∂µ
2 − ∂[βµp]/∂µ+ ∂2[ανp]/∂ν

2 − ∂[βνp]/∂ν .

(Here p has been used as shorthand for p(n, Zν , Zµ; t)). In the case where αµ=αν=βµ=βν=0,

upon noting that ν = B(Zν) and µ = D(Zµ) we recover the forward equation (2.2) for the

immigration-death model with constant rate parameters. Introducing the moment generating func-

tion M(θ, λν , λµ; t) = E [exp {nθ + Zνλν + Zµλµ}] now yields

∂M/∂t = (eθ − 1)B̂(∂/∂λν)M + (e−θ − 1)D̂(∂/∂λµ)∂M/∂θ + λ2
να̂ν(∂/∂λν)M/2

+λν β̂ν(∂/∂λν)M + λ2
µα̂µ(∂/∂λµ)M/2 + λµβ̂µ(∂/∂λµ)M . (B.5)

(The ˆnotation means that, for example, if B(x) = a x + b x2, then B̂(∂/∂λν)M = a ∂M/∂λν +

b ∂2M/∂λ2
ν).
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Simple models of environmental stochasticity

On assuming B̂ = D̂ = α̂µ = β̂µ = 0, we reduce (B.5) to the forward equation

∂M(λν ; t)/∂t = λ2
να̂ν(∂/∂λν)M/2 + λν β̂ν(∂/∂λν)M , (B.6)

which describes the evolution of Zν only. When αν = σ2
ν and βν = bν , Cox and Miller (1965, p. 206)

solve Eq. (B.6) to find the cumulant generating function K(λν ; t) ≡ lnM(λν ; t) = (bνλν +λ2
νσ

2
ν/2)t.

Thus Zν(t), a Wiener process with drift, is Normally distributed with mean (bνt) and variance (σ2
νt),

both of which diverge linearly with time. Clearly this can be a credible model for environmental

variability only over a short time scale. However, on re-writing βν = bν [Z̄ν −Zν(t)], Zν(t) follows a

mean-reverting Uhlenbeck-Ornstein velocity process (Mao, 1997) which is Normally distributed with

mean and variance (see Cox and Miller, 1965, p. 225)

E [Zν(t)] = Z̄ν + (Zν(0)− Z̄ν)e
−bνt and var(Zν(t)) = σ2

ν

(
1− e−2bνt

)
/2bν . (B.7)

Thus in equilibrium the mean and variance are Z̄ν and σ2
ν/2bν , respectively. In what follows we will

take this equilibrium process to be our basic model of environmental variability. Note one could

consider many alternative forms, for instance α̂ν ∝ Zν produces a geometric Brownian process (Mao,

1997). However, the mean-reverting Uhlenbeck-Ornstein velocity process and its transformations

provide a rich family of models for environmental perturbations.

Appendix C: Stochastic differential equations

Consider the general case with k interacting populations nT = (n1, n2,..., nk), and p parameters

u(t)T = (u1(t), u2(t), ..., up(t)). Given the transition probabilities P (nj(t+ ∆t) = nj(t)− 1), ..., the

mean and variance of the update nj(t+ ∆t)− nj(t) are respectively

fj(n,u(t))∆t ≡ (+1) Pr(nj(t+ ∆t) = nj(t) + 1) + (−1)P (nj(t+ ∆t) = nj(t)− 1) , (C.1)

qj(n,u(t))∆t ≡ (+1)2 Pr(nj(t+ ∆t) = nj(t) + 1) + (−1)2 Pr(nj(t+ ∆t) = nj(t)− 1) .

Now xT = (x1, x2, ..., xk) are the continuous-valued variables corresponding to n, and the change in

population j during the interval (t, t+ ∆t) is

∆xj(t) = xj(t+ δt)− xj(t) = fj(n,u(t))∆t+ q
1/2
j (x)∆t1/2ηj(t) , (C.2)

where {ηj(t)} is a white noise process of zero mean and unit variance. Note that interpreting

(C.2) as a difference equation allows the immediate simulation of the process x(t); indeed, this was

the method adopted for the mean-reverting Uhlenbeck-Ornstein process in Eq. (2.14). Dividing

Eq. (C.2) through by ∆t and taking the limit ∆t → 0 leads to a set of s.d.e’s which, in matrix

notation, can be written as

dx(t)/dt = f(x(t),u(t)) + g(x(t),u(t)) , (C.3)

where f(x(t),u(t))T = (f1, f2, ..., fk) and g(x(t),u(t))T = (q
1/2
1 γ1(t), ..., q

1/2
n γn(t)); γi(t) = lim∆t→0

η(t)/dt1/2 are time derivatives of Weiner processes with zero mean and unit variance at unit time.

At present no general solution exists for s.d.e’s of the form (C.3) (see Mao, 1997), though progress

can be made by linearization. Assume that the parameters are of the form u(t) = u0 + δu(t), where
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the deviations δui of individual components, ui(t), from some constant level (u0)i are small. If

dx/dt = f(x,u0) has a fixed point x1, then in the limit of large t (where the transient solution

can be ignored), and for small deviations v(t) from x1 (i.e. x(t) = x1 + v(t)), Eq. (C.3) can be

linearized to give

dv(t)

dt
= v(t)

∂f(x1,u0)

∂x
+

p∑
j=1

δuj
∂f(x1,u0)

∂uj

+ g(x1,u0, t) . (C.4)

A standard stability analysis of the linearized deterministic system reveals the behaviour of the

transient solution. Such an analysis is conducted by Roberts and Grenfell (1991) for a model of

nematodiasis. One way to solve Eq. (C.4) is to make use of the Fourier transformation

h̃(ω) =
∫ ∞

−∞
h(t)e−iωtdt , (C.5)

and its inverse h(t) =
∫∞
−∞ h̃(ω)eiωtdω/2π. A useful property of this transformation is its lineariza-

tion of the time derivative (i.e. dh̃(ω)/dt = iωh̃(ω)). For t < 0, define v(t)T = g(x1,u0, t)
T =

(0, 0, ..., 0). Then on applying the Fourier transformation to (C.4) we obtain

iωṽ(ω) = ṽ(ω)
∂f(x1,u0)

∂x
+

p∑
j=1

δũj(ω)
∂f(x1,u0)

∂uj

+ g̃(x1,u0, ω) . (C.6)

Collecting terms involving ṽ(ω) and multiplying by the transfer function matrix

T(ω) = [iωIk − ∂f(x1,u0)/∂x]−1 (C.7)

(Ik being the k × k identity matrix) yields

ṽ(ω) = T(ω)

 p∑
j=1

δũj(ω)
∂f(x1,u0)

∂uj

+ g̃(x1,u0, ω)

 . (C.8)

The first term on the right-hand side of (C.8) is attributable to environmental (i.e. parameter)

fluctuations, whilst the second is due to demographic stochasticity. Taking the inverse Fourier

transformation of ṽ(ω) gives

v(t) =
1

2π

∫ ∞

−∞
ṽ(ω)eiωtdω . (C.9)

As a further refinement, assume that the perturbation of the model parameters can be written as

the sum of a deterministic and a stochastic term, that is u(t) = u0 + δd(t) + δr(t). This naturally

leads to the decomposition

v(t) = vdet(t) + vran(t) + vdem(t) . (C.10)

Since the white noise which drives the demographic fluctuations has zero mean, we have E[vdem(t)]

= 0. Let the deterministic component, δd(t), account for any expected displacement from u0, and

assume that E [δr(t)] = 0, so that E [vran(t)] = 0. Then we need only consider E
[
vdet(t)

]
. Noting

that a wide range of perturbations can be expressed in terms of Fourier series of sinusoidal terms,

we consider the deterministic perturbation δdj(t) = Aj cos(ωjt+φj). Since the Fourier transform of
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Aj cos(ωjt+φj) is Ajπ [exp (iφ)δ(ωj − ω) + exp (−iφ)δ(ωj + ω)], where δ(·) denotes the Dirac delta

function, it follows that

E [vl(t)] =
p∑

j=1

k∑
m=1

|Tlm(ωj)|
∂fm(x1,u0)

∂uj

Aj cos(ωjt+ φj + ξlm(ωj)) , (C.11)

where the phase shift is

tan(ξlm(ωj)) = =[Tlm(ωj)]/<[Tlm(ωj)] , (C.12)

and <[..] and =[..] denote real and imaginary parts (see Nisbet and Gurney, 1982, p. 37). The

deterministic population fluctuations E [xl(t)] = (x1)l + E [vl(t)] are thus of the same frequency as

the environmental perturbation, but the magnitude and phase, determined by the transfer function

matrix T(ω), are different.

Let us now consider the second-order fluctuation characteristics, namely the time-lagged auto-

and cross-correlations defined by

Cxlxm(τ) = Et [{vl(t)− Et [vl]}{vm(t+ τ)− Et [vm]}] , (C.13)

where the time average Et [g(t)] = limT→∞(1/T )
∫ T
0 g(t)dt. In general, Cxlxm(τ) can be calculated

directly from the linear solution (C.9), and when τ = 0 this corresponds to population variances

and covariances. Furthermore, if we make the (not unreasonable) assumption that the white noise

process driving the demographic fluctuations and the stochastic environmental perturbations of

different parameters are independent, both of one another and of the deterministic environmental

fluctuations, we find

Cxlxm(τ) = Cdet
xlxm

(τ) + Cran
xlxm

(τ) + Cdem
xlxm

(τ) . (C.14)

Thus, as with the fluctuations v(t) themselves (see Eq. C.10), the total time-lagged covariance can

be decomposed into terms due to deterministic environmental fluctuations, and demographic and

environmental stochasticity. Whilst this reflects Rand and Wilson’s (1991) partition of stochastic-

ity into demographic and environmental components, it is important to realize that this additive

property is a result of the linearization procedure, in addition to the independence of the fluctuating

terms. Assuming sinusoidal deterministic environmental fluctuations, δda(t) = Aa cos(ωat+φa), we

find

Cdet
xlxm

(τ) = Et[{vdet
l (t)− Et[v

det
l ]}{vdet

m (t+ τ)− Et[v
det
m ]}] (C.15)

=
k∑

c,d=1

p∑
a,b=1

AaAb |Tlc(ωa)|
∂fc

∂ua

|Tmd(ωb)|
∂fd

∂ub

×
∫ ∞

−∞
cos(ωat+ φa + ξlc(ωa)) cos(ωb(t+ τ) + φb + ξmd(ωb))dt

Cran
xlxm

(τ) = Et[{vran
l (t)− Et[v

ran
l ]}{vran

m (t+ τ)− Et[v
ran
m ]}] (C.16)

=
k∑

c,d=1

p∑
a,b=1

1

2π

∫ +∞

−∞
Tlc(ω)

∂fc

∂ua

Tmd(−ω)
∂fd

∂ub

Sδraδrb
(ω)eiωτdω
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Cdem
xlxm

(τ) = Et[{vdem
l (t)− Et[v

dem
l ]}{vdem

m (t+ τ)− Et[v
dem
m ]}] (C.17)

=
k∑

c,d=1

1

2π

∫ +∞

−∞
Tlc(ω)q1/2

c Tmd(−ω)q
1/2
d eiωτdω .

Note that all expressions are to be evaluated at (x1,u0). The term Sδraδrb
(ω) =

∫∞
−∞ Cδraδrb

(t) exp(−iωt)dt
in expression (C.16), known as the spectral density, is simply the Fourier transformation of Cδraδrb

(t)

which is the autocorrelation of the environmental stochasticity, δr. Note that in many cases cross-

correlations Cδraδrb
(τ) (a 6= b) will be zero since fluctuations in different model parameters are likely

to be independent. The above expressions (C.15)−(C.17) can often be evaluated analytically for

τ = 0, and also in simple cases for τ > 0, (see Section 2.2). Otherwise numerical integration is

required.

Appendix D: Notation

General

n(t) − population size in discrete stochastic models
x(t) − population size in continuous models
µ(t) − death rate in immigration-death model
ν(t) − immigration rate in immigration-death model
p(n; t) − probability of population size n at time t
M(θ; t) − moment generating function E[exp (θn)]
E[nj] − jth moment of n, e.g. the mean is the first-order moment
K(θ; t) − cumulant generating function K = lnM
κj − jth cumulant, e.g. κ2 is the variance.
G(z; t) − probability generating function G(z, t) =

∑∞
n=0 p(n; t)zn

Zν − mean-reverting Uhlenbeck-Ornstein process, perturbing parameter ν
bν − exponential correlation parameter for Zν

Z̄ν − mean (in equilibrium) of Zν

σ2
Zν

= σ2
ν/2bν − variance (in equilibrium) of Zν

B(Z), D(Z) − transformations of Z e.g. ν(t) = B(Zν)
Cxlxm(τ) − time-lagged auto- and cross-correlations
T(ω) − transfer function matrix

Helminth model

nL(t) − free-living larval population
nA(t) − adult parasite population
nr(t) − host immunity level
β(t) − contact rate of infection

β̃(t) − weather-driven fluctuations in contact rate
q(t) − probability of egg development
ρ(t) − death rate of free-living stage
σ − rate of loss of immunological memory
λ(nr) − rate of egg production
µ(nr) − adult mortality rate
p(nr) − probability of parasite establishment
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TABLE I

Var[ν] E[n] Var[n] Cfd. Intvl.

1 Norm. approx. 5.0 5.663 (0.34, 9.66)
Simulation 4.996 5.672 (0, 10)

5 Norm. approx. 5.0 8.246 (−0.63, 10.63)
Simulation 4.999 8.329 (0, 11.52)

35 Norm. approx. 5.0 21.515 (−4.09, 14.09)
Simulation 5.005 26.66 (0, 18.11)

Comparison of Normal approximation and simulation:
Mean, variance and 95% confidence intervals for the immigration-
death model population size with ν = B(Zν) = Z2

ν . Parameter
values are E[ν] = 5, µ0 = 1, bν = 0.5, and var[ν] as shown.

TABLE II

p(0) = 0.65 q = 0.35
β = 0.365 ρ = 7
µ(0) = 25 σ = 0.01
p′(r) = µ′(r) = 0 λ(r) = λ0 exp(−λ1r)
λ1 = 10−6 λ0 = 39420

Parameter values: suggested by Roberts and Gren-
fell (1991); p(0), q, r and λ1 are dimensionless, whilst
the remaining quantities are in units of year−1.

TABLE III

Var[q] bq σL

Simulation Local lin. Norm. approx.
10−7 50 30620 31147 38380

0.5 35640 31415 38920

10−6 50 35010 31188 38480
0.5 39950 33770 -

Comparison of Normal and linear approximations to sim-
ulation: Standard deviation σL in free-living population from sim-
ulations of t = 0, ..., 5000 years, and the equilibrium solution of the
Normal and linear approximations when q = B(Zq) = Z2

q . Param-
eter values are as in Table II, with E[q] = 0.35 and bq and var[q] as
shown.



TABLE IV

Var[q] bq Measures of extinction

Simulation Local lin. Norm. approx.
% σL/E [nL(t)] σL/E [nL(t)]

10−4 50 0 0.4495 −
0.5 54 1.702 −

10−3 50 2 0.785 −
0.5 100 5.250 1.047

Extinction: Simulation results showing the percentage of runs
up to t = 200 years corresponding to extinction. The coefficients
of variation σL/E [nL(t)] calculated from the Normal and linear
approximations are shown. Here q = B(Zq) = Z2

q with the mean
E[q] = 0.35 and bq and var[q] as shown. Other parameters are as
in Table II.
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Figure 1: Distributional approximations. (a) p(0; t) for the immigration-death process with
sinusoidally varying immigration rate (solid curve) and Normal (dotted) approximation. On the
scale of the figure, the binomial approximation is indistinguishable from the exact calculation.
(b) The third-order cumulant κ3, (solid) and its binomial approximation (dotted). The Normal
approximation to κ3 is zero. In both graphs µ = 1, ν(t) = 1 + cos (t) and n0 = 10.
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Figure 2: Normal approximation. Histograms of samples from repeated realizations of the
immigration-death process with ν(t) = Zν(t)

2, E[ν] = 5, µ0 = 1 and bν = 0.5. The samples are
collected in the latter stages (t = 900, ..., 1000) of 1000 independent runs. (a) var[ν] = 1 and (b)
var[ν] = 35. The dot-dashed curves show the corresponding Normal approximations to p(n; t).
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Figure 3: Normal and Local linear approximations. Normal (dot-dash) and local linear (solid)
approximation to the population variance of the immigration-death model against bν with (a) ν = Z2

ν

and (b) ν = exp {Zν}. In each case diamonds show variances obtained from 1000 simulations for
t = 0, ..., 1000 with µ = 1 over a range of bν .
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Figure 4: Normal approximation. Mean with ±1 standard deviation intervals, E[nL]±σL, (solid
curves) for Table II parameter values but with q(t) = q0 [1 + sin(ωt)]. The dot-dash curve shows
a simulation run. The starting conditions are the deterministic equilibrium values to the nearest
integer.
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Figure 5: Micro-climatic fluctuations. (a) shows one year of the time series β̃(t) obtained from
the model of Beecham (1997). The zero periods reflect the assumption that hosts are put out
to pasture on the 51st day of the year and are then removed on day 300. (b) shows a standard
simulation in which the contact rate is β̃(t) and the acquired immunity is zero when hosts are put
out to pasture. Other parameter values are given in Table II. The population nL is shown in the
uppermost curve, the lower jagged curve depicts nA × 100, whilst the lower dotted curve shows
nr × 5.
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Figure 6: Models of micro-climatic fluctuations. Simulations using simple stochastic models
of the weather-driven contact rate. In both graphs the top curve shows the free-living population
nL(t), the jagged lower curve the adult population nA(t) × 100, and the dotted lower curve the
immune level nr(t)× 5 from one simulation run. (a) the contact rate is modelled as the square of a
third-order auto-regressive process fitted to β̃. (b) the simulation is that resulting from the contact
rate modelled by a transformed mean-reverting Uhlenbeck-Ornstein process (β = Z2

β), also fitted

to β̃. Other parameter values are given in Table II.
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Figure 7: Normal approximation. Both graphs show (solid lines) the Normal approximation to
E [nL] and ±2 standard deviations for the case when the contact rate β = Z2

β is fitted to β̃ with
bβ = 200 and the other parameters values are as given in Table II. The dot-dash curve shows (a)
the corresponding population fluctuations nL(t) from a simulation of the process when β = Z2

β and

(b) shows nL(t) from a simulation using the weather-driven contact rate β̃.


