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Abstract: Stochastic differential equations provide a useful means of intro-
ducing stochasticity into models across a broad range of systems from chem-
istry to population biology. However, in many applications the resulting equa-
tions have so far proved intractable to direct analytical solution. Numerical ap-
proximations, such as the Euler scheme, are therefore a vital tool in exploring
model behaviour. Unfortunately, current results concerning the convergence
of such schemes impose conditions on the drift and diffusion coefficients of the
stochastic differential equation, namely the linear growth and global Lipschitz
conditions, which are often not met by systems of interest. In this paper we
relax these conditions and prove that numerical solutions based on the Euler
scheme will converge to the true solution of a broad class of stochastic dif-
ferential equations. The results are illustrated by application to a stochastic
Lotka-Volterra model and a model of chemical auto-catalysis, neither of which
satisfy either the linear growth nor the global Lipschitz conditions.
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1 Introduction

Consider stochastic differential equations (S.D.E.s) of the form

dx(t) = f(x(t))dt+ g(x(t))dB(t) (1.1)

where

x = (x1, ..., xn)T , f(x) = (f1(x), ..., fn(x))T , g(x) = (gij(x))n×m

and B(t) is an m-dimensional Brownian motion defined on a given complete
probability space (Ω,F , P ) with a filtration {Ft}t≥0 satisfying the usual condi-
tions (i.e. it is right continuous and F0 contains all P -null sets). The solution
to (1.1), x(t), is a member of the open set G ⊆ Rn for t ∈ [0, T ] and initial
value x0 ∈ G. That is, G is an invariant set of equation (1.1). We note that
G is often the positive cone Rn

+ ≡ {x ∈ Rn : x > 0} or the whole Euclidean
space Rn. The solution x(t) is to be interpreted as the stochastic integral

x(t) = x0 +
∫ t

0
f(x(s))ds+

∫ t

0
g(x(s))dB(s), (1.2)

in the Itô sense. Equation (1.1) represents one method in which stochasticity
may be introduced into the deterministic model

ẋ(t) = f(x(t)).

In general, system (1.1) is analytically intractable (see for example Mao,
1997), and therefore numerical approximation schemes such as the Euler (or
Euler-Maruyama) approximation are invaluable tools for exploring its proper-
ties. Most existing proofs of the convergence of the such numerical schemes
(Kloeden and Platen, 1992; Mao, 1997; Skokorod 1965) rely on the following
conditions:
(Linear growth) there exists a positive constant L such that

| f(x) |2 ∨ | g(x) |2≤ L(1+ | x |2); (1.3)

and, (Global Lipschitz) there exists a positive constant L̄ such that

| f(x)− f(y) |2 ∨ | g(x)− g(y) |2≤ L̄ | x− y |2 (1.4)

For all x ∈ Rn.
Unfortunately these conditions are often not met by systems of interest.

For example, consider the stochastic Lotka-Volterra model

dx(t) = diag(x1, ..., xn(t)) [A(x(t)− x̄)dt+ σ(x(t)− x̄)dB(t)] ; (1.5)



where

x(t) = (x1, ..., xn(t))T , x̄ = (x̄1, ..., x̄n)T , A = (aij)n×n , σ = (σij)n×n ,

and B(t) is now a scalar Brownian motion. This is of the form (1.1) with
f(x) = diag(x1, ..., xn)A(x − x̄) and g(x) = diag(x1, ..., xn)σ(x − x̄). It is
straightforward to see that neither the linear growth condition nor the global
Lipschitz condition will be satisfied by this system. The properties of the so-
lution x(t) = x(t;x0) to equation (1.5) are discussed in detail by Mao, Marion
and Renshaw (2000). Here we discuss numerical approximations to a class
of S.D.E.s including this system, but note that our approach developed from
initial studies of the numerical solutions of (1.5). In particular, we show that
under certain conditions, weaker than (1.3) and (1.4), the Euler scheme ap-
plied to system (1.1), converges to the analytic solution x(t), and in doing so
bound the order of this approximation. We note that others have also weak-
ened these conditions. Yamada (1978) relaxed the global Lipschitz condition,
whilst Kaneko and Nakao (1988) have shown that the Euler approximation
converges, in the strong sense, to the solution of the stochastic differential
equation whenever path-wise uniqueness of the solution holds. However, both
results require the linear growth condition whilst the latter provides no infor-
mation on the order of approximation.

In Section 2 the Euler approximation is introduced and we state Theorem
1, namely that, under certain conditions, the Euler approximate solution con-
verges to the true solution for system (1.1). This result is proved in Sections 3,
4 and 5. Section 3 demonstrates that the Euler approximate solution will con-
verge to the true solution x(t) if both remain within a compact set. A compact
set appropriate to our needs is introduced in Section 4; the escape times from
this set, both of x(t) and the approximate solution, are bounded in probabil-
ity. These results are brought together in Section 5 to prove our convergence
result of Theorem 1. Finally, Section 6 applies this result to two interesting
models, namely the Lotka-Volterra system (1.5) and a model describing an
auto-catalytic reaction system.

2 The Euler Approximation

For system (1.1) the discrete time Euler approximation on t ∈ {0,∆t, ..., N∆t =
T} is given by the iterative scheme

x∆t(t+ ∆t) = x∆t(t) + f(x∆t(t))∆t+ g(x∆t(t))∆B(t) (2.1)

with initial value x∆t(0) = x0. Here the time increment is ∆t, and the ∆B(t) =
B(t+ ∆t)−B(t) represent N independent draws from an m-dimensional Nor-
mal distribution whose individual components have mean zero and variance



∆t. We will prove the following useful convergence result.

Theorem 1 Let G be an open subset of Rn, and denote the unique solution
of (1.1) for t ∈ [0, T ] given x0 ∈ G by x(t) ∈ G. Define x∆t(t) as the Euler
approximation (2.1) and let D ⊆ G be any compact set. Suppose the following
conditions are satisfied:

(i) (local Lipschitz condition) there exists a positive constant K1(D) such
that x, y ∈ D

| f(x)− f(y) |2 ∨ | g(x)− g(y) |2≤ K1(D) | x− y |2;

(ii) there exists a C2-function V : G→ R+ such that {x ∈ G : V (x) ≤ r}
is compact for any r > 0;

(iii) LV (x) ≤ K(1 + V (x)) where

LV (x) ≡ Vx(x)f(x) +
1

2
trace

[
gT (x)Vxx(x)g(x)

]
is the diffusion operator associated with (1.1);

(iv) there exists a positive constant K3(D) such that for all x, y ∈ D

| V (x)− V (y) | ∨ | Vx(x)− Vx(y) | ∨ | Vxx(x)− Vxx(y) |≤ K3(D) | x− y | .

Then for any ε, δ > 0 there exists ∆t∗ > 0 such that

Pr

(
sup

0≤t≤T
| x∆t(t)− x(t) |2≥ δ

)
≤ ε,

provided ∆t ≤ ∆t∗ and the initial value x0 ∈ G.

In order to prove this result it is useful to note that if condition (i) holds
then there exists a positive constant K2(D) such that for x, y ∈ D

| f(x) |2 ∨ | g(x) |2≤ K2(D). (2.2)

Furthermore, we shall rewrite x∆t(t) as the integral

x∆t(t) = x0 +
∫ t

0
f(x̂∆t(s))ds+

∫ t

0
g(x̂∆t(s))dB(s), (2.3)

where we have introduced the piecewise constant process

x̂∆t(t) = ΣN
k=1x∆t((k − 1)∆t)I[(k−1)∆t,k∆t](t), (2.4)



and IA is the indicator function for set A. Expression (2.3) extends the defi-
nition of the Euler scheme to all t ∈ [0, T ], and may also be expressed in the
stochastic differential form

dx∆t(t) = f(x̂∆t(t))dt+ g(x̂∆t(t))dB(t), (2.5)

with initial condition x∆t(0) = x0 ∈ G.

3 Convergence of the Euler scheme

To proceed we consider only trajectories x(t) and x∆t(t) which remain within
a bounded region D. To achieve this, introduce the stopping time τ = ρ ∧ θ
where

ρ = inf{t ≥ 0 : x∆t(t) /∈ D} and θ = inf{t ≥ 0 : x(t) /∈ D}

are the first times that x∆t(t) and x(t), respectively, leave D. We will define
D more precisely later.

Let T1 ∈ [0, T ] be an arbitrary time. Then subtracting (1.2) from (2.3),
applying the inequality | a+ b |2≤ 2 | a |2 +2 | b |2, taking the supremum over
t ∈ [0, τ ∧ T1], and then finally the expectation, leads to

E

[
sup

0≤t≤τ∧T1

|x∆t(t)−x(t) |2
]
≤ 2E sup

0≤t≤τ∧T1

|
∫ t

0
[f(x̂∆t(s)− f(x(s))] ds |2 (3.1)

+ 2E sup
0≤t≤τ∧T

|
∫ t

0
[g(x̂∆t(s))− g(x(s))] dB(s) |2 .

The Hölder inequality shows that

2E sup
0≤t≤τ∧T1

|
∫ t

0
[f(x̂∆t(s))−f(x(s))]ds |2≤ 2T E

∫ τ∧T1

0
|f(x̂∆t(s)−f(x(s)) |2 ds, (3.2)

whence applying the well-known Doob inequality (c.f. Theorem 1.7.2, Mao,
1997) to the second term of (3.1) leads to

2E sup
0≤t≤τ∧T1

|
∫ t

0
[g(x̂∆t(s))−g(x(s))]dB(s) |2≤ 8 E

∫ τ∧T1

0
|g(x̂∆t(s))−g(x(s)) |2 ds.(3.3)

If the coefficients of (1.1) are locally Lipschitz continuous (i.e. satisfy condition
(i) of Theorem 1), then since both x(s) and x∆t(s) are bounded we may write

|f(x̂∆t(s)−f(x(s)) |2 ∨ |g(x̂∆t(s)−g(x(s)) |2≤ K1(D) | x̂∆t(s)−x(s) |2 (3.4)



for s ∈ [0, τ ∧ T1]. Substituting (3.2), (3.3) and (3.4) into (3.1) then reveals
that

E

[
sup

0≤t≤τ∧T1

| x∆t(t)− x(t) |2
]

≤ 2K1(D)(T + 4) E
∫ τ∧T1

0
| x̂∆t(s)− x(s) |2 ds

= 2K1(D)(T + 4) E
∫ τ∧T1

0
| x̂∆t(s)− x∆t(s) + x∆t(s)− x(s) |2 ds

≤ 4K1(D)(T + 4) E
∫ τ∧T1

0

(
| x̂∆t(s)− x∆t(s) |2 + | x∆t(s)− x(s) |2

)
ds

≤ 4K1(D)(T + 4) E
∫ τ∧T1

0
| x̂∆t(s)− x∆t(s) |2 ds

+4K1(D)(T + 4)
∫ T1

0
E

[
sup

0≤s′≤τ∧s
| x∆t(s

′)− x(s′) |2
]
ds. (3.5)

Bounding the first term on the right-hand side of (3.5) and then applying

the Gronwall inequality leads to a bound on E
[
sup0≤t≤τ∧T | x∆t(t)− x(t) |2

]
.

Inspection of (2.4) reveals that x̂∆t(s) = x∆t([s/∆t]∆t) where [s/∆t] is the
integer part of s/∆t. We can now use (2.3) to show that

| x̂∆t(s)−x∆t(s) |2=|x∆t([s/∆t]∆t)−x∆t(s) |2

= |
∫ s

[s/∆t]∆t
f(x∆t([s/∆t]∆t))du+

∫ s

[s/∆t]∆t
g(x∆t([s/∆t]∆t))dB(u) |2

≤ 2 |f(x∆t([s/∆t]∆t)) |2 ∆t2 + 2 |g(x∆t([s/∆t]∆t)) |2|B(s)−B([s/∆t]∆t) |2

≤ 2K2(D)∆t2 + 2K2(D) |B(s)−B([s/∆t]∆t) |2 .

Note that the last line follows provided s ∈ [0, τ∧T1] and condition (2.2) holds.
If T∆t < 1 this inequality leads to

E
∫ τ∧T1

0
| x̂∆t(s)−x∆t(s) |2 ds ≤ 2K2(D)T1∆t2

+2K2(D)
∫ T1

0
E |B(s)−B([s/∆t]∆t) |2 ds

≤ 2K2(D)T∆t2 + 2K2(D)T1m∆t

≤ 2K2(D)(mT + 1)∆t (3.6)

(recall that our Brownian motion has dimension m). Using this result in (3.5)
shows that

E

[
sup

0≤t≤τ∧T1

|x∆t(t)−x(t) |2
]
≤ C1(D)∆t

+ C2(D)
∫ T1

0
E

[
sup

0≤r≤τ∧s
|x∆t(r)−x(r) |2

]
ds



where C1(D) = 8K1(D)K2(D)(T + 4)(mT + 1) and C2(D) = 4K1(D)(T + 4).
On applying the Gronwall inequality we then have the following theorem.

Theorem 2 If τ is the first exit time of either the solution x(t) or the
Euler approximate solution x∆t(t) from a bounded region D, and f(x) and
g(x) satisfy condition (i) of Theorem 1, then for ∆tT < 1

E

[
sup

0≤t≤τ∧T
| x∆t(t)− x(t) |2

]
≤ C1(D)eC2(D)T∆t = C(D)∆t.

Thus, as long as x∆t(t) and x(t) remain in D the Euler scheme x∆t(t) converges
to the solution x(t) of equation (1.1) as ∆t→ 0.

4 Characterising stopping times
To proceed further we define the bounded domain

D = D(r) ≡ {x ∈ G such that V (x) ≤ r}.

In order to prove Theorem 1 we will determine the probability that both x∆t(t)
and x(t) remain in D(r). To do so we assume the existence of the non-negative
function V (x) satisfying condition (ii) of Theorem 1. Since x(t) is governed by
equation (1.1), applying Itô’s formula to V (x(t)) yields

dV (x(t)) = LV (x(t)) + Vx(x(t))g(x(t))dB(t).

Integrating from 0 to t ∧ θ and taking expectations gives

E[V (x(t ∧ θ)] = V (x0) + E
∫ t∧θ

0
LV (x(s))ds.

Whence applying condition (iii) of Theorem 1 leads to

E[V (x(t ∧ θ)] ≤ V (x0) +KE
∫ t∧θ

0
(1 + V (x(s)))ds.

≤ (V (x0) +KT ) +
∫ t

0
E[V (x(s ∧ θ))]ds

≤ (V (x0) +KT )eKT .

The last line follows on application of the Gronwall inequality. On noting that
V (x(θ)) = r, since x(θ) is on the boundary of D(r), the probability p(θ < T )
can now be bounded as follows.

(V (x0) +KT )eKT ≥ E[V (x(t ∧ θ)]
≥ E[V (x(θ))I{θ<T}(ω)]

≥ rE[I{θ<T}(ω)]

≥ rP (θ < T ), (4.1)



whence rearranging (4.1) leads to

P (θ < T ) ≤ (V (x0) +KT )eKT/r = ε̃. (4.2)

Here r can be made as large as required, for a given T and x0, to accommodate
any ε̃ ∈ (0, 1). Theorem 3 now follows immediately.

Theorem 3 If θ is the first exit time of the solution x(t) to equation (1.1)
from the domain D(r), and a function V (x) exists which satisfies conditions
(ii) and (iii) of Theorem 1, then

P(θ ≥ T ) ≥ 1− ε̃.

We note that the following useful result follows directly from Theorem 3.

Lemma 4 Let θ be the first exit time of the solution x(t) to equation (1.1)
from the domain D(r), and let the coefficients of (1.1) satisfy condition (i) of
Theorem 1. If a function V (x) exists which satisfies conditions (ii) and (iii) of
Theorem 1, then the limit of limr→∞D(r) ≡ G and, for t ∈ [0, T ] and x0 ∈ G,
x(t) remains in G. Furthermore, x(t) is the unique solution of equation (1.1)
on t ∈ [0, T ] for all finite T .

In order to prove this, first note that if the coefficients of (1.1) are lo-
cally Lipschitz continuous then there exists a unique local solution x(t) on
t ∈ [0, τe] where τe is some random explosion time (cf. Arnold, 1972 or Mao,
1997). Since D(r) is an increasing set (with r) limr→∞D(r) =

⋃∞
r=1 D(r) ⊆ G.

Suppose that limr→∞D(r) 6≡ G, then there exists some x ∈ G such that
x /∈ ⋃∞r=1 D(r). However, if x ∈ G then V (x) < ∞ and there exists an r > 0
such that V (x) < r, which implies that x ∈ ⋃∞

r=1 D(r) and therefore that
limr→∞D(r) ≡ G. Now by Theorem 3 the probability of escape from the set
limr→∞D(r) in any finite T is zero. Thus x(t) must remain in G for any finite
time, and limr→∞D(r) identifies the invariant set G ⊆ Rn of Theorem 1. Since
G ⊆ Rn, this implies there will be no explosion in any finite time, and so x(t)
is unique on any finite interval t ∈ [0, T ].

We require a similar result to Theorem 3 for the Euler approximate solu-
tions x∆t(t). Noting that x∆t(t) is the solution to (2.5), and applying the Itô
formula to V (x∆t(t)) yields,

dV (x∆t(t)) =
[
Vx(x∆t(t))f(x̂∆t(t)) +

1

2
gT (x̂∆t(t))Vxx(x∆t(t))g(x̂∆t(t))

]
dt

+ Vx(x∆t(t))g(x̂∆t(t))dB(t)

= LV (x̂∆t(t)) + [Vx(x∆t(t))− Vx(x̂∆t(t))] f(x̂∆t(t))dt



+
1

2
gT (x̂∆t(t)) [Vxx(x∆t(t))− Vxx(x̂∆t(t))] g(x̂∆t(t))dt

+ Vx(x∆t(t))g(x̂∆t(t))dB(t).

Whence on applying condition (iii) of Theorem 1 we obtain

dV (x∆t(t)) ≤ K (1 + V (x̂∆t(t))) + [Vx(x∆t(t))− Vx(x̂∆t(t))] f(x̂∆t(t))dt

+
1

2
gT (x̂∆t(t)) [Vxx(x∆t(t))− Vxx(x̂∆t(t))] g(x̂∆t(t))dt

+ Vx(x∆t(t))g(x̂∆t(t))dB(t)

≤ K (1 + V (x∆t(t))) dt+K [V (x̂∆t(t))− V (x∆t(t))] dt

+ [Vx(x∆t(t))− Vx(x̂∆t(t))] f(x̂∆t(t))dt

+
1

2
gT (x̂∆t(t)) [Vxx(x∆t(t))− Vxx(x̂∆t(t))] g(x̂∆t(t))dt

+ Vx(x∆t(t))g(x̂∆t(t))dB(t).

Integrating from 0 to ρ ∧ t and taking expectations gives

E[V (x∆t(ρ ∧ t))]≤V (x0) +KE
∫ ρ∧t

0
(1 + V (x∆t(s))) ds

+ KE
∫ ρ∧t

0
[V (x̂∆t(s))− V (x∆t(s))] ds

+ E
∫ ρ∧t

0
[Vx(x∆t(s))− Vx(x̂∆t(s))] f(x̂∆t(s))ds

+
1

2
E
∫ ρ∧t

0
gT (x̂∆t(s)) [Vxx(x∆t(s))−Vxx(x̂∆t(s))] g(x̂∆t(s))ds

≤V (x0) +KT +K
∫ t

0
E[V (x∆t(s ∧ ρ))]ds

+ KE
∫ ρ∧t

0
| V (x̂∆t(s))− V (x∆t(s)) | ds

+ E
∫ ρ∧t

0
| Vx(x∆t(s))− Vx(x̂∆t(s)) || f(x̂∆t(s)) | ds

+
1

2
E
∫ ρ∧t

0
| g(x̂∆t(s)) |2|Vxx(x∆t(s))−Vxx(x̂∆t(s)) | ds,

and invoking (2.2) and condition (iv) of Theorem 1 leads to

E[V (x∆t(ρ ∧ t))] ≤ V (x0) +KT +
(
K +K

1/2
2 (D) +K2(D)/2

)
× K3(D)

∫ ρ∧t

0
E | x̂∆t(s)−x∆t(s) | ds

+ K
∫ t

0
E[V (x∆t(ρ ∧ s))]ds.

The bound∫ ρ∧t

0
E | x̂∆t(s)−x∆t(s) | ds ≤ (2K2(D)T (mT + 1))1/2 ∆t1/2,



follows from Hölders inequality and equation (3.6) for t ∈ [0, T ] and ∆tT < 1.
Thus

E[V (x∆t(ρ ∧ t))] ≤ V (x0) +KT +
(
K +K

1/2
2 (D) +K2(D)/2

)
× K3(D) (2K2(D)T (mT + 1))1/2 ∆t1/2

+ K
∫ t

0
E[V (x∆t(s ∧ ρ))]ds.

Whence, on applying the Gronwall inequality,

E[V (x∆t(ρ ∧ T ))] ≤ (V (x0) +KT ) eKT +H(D)∆t1/2,

where H(D) = eKT (K +K
1/2
2 (D) +K2(D)/2)K3(D) (2K2(D)T (mT + 1))1/2.

An argument analogous to that used to prove Theorem 3 can now be used to
bound P (ρ < T ). Since x∆t(ρ) is on the boundary of D(r) then V (x∆t(ρ)) = r
which leads to

(V (x0) +KT ) eKT +H(D)∆t1/2 ≥ E[V (x(ρ ∧ T ))]

≥ E[V (x(ρ))I{ρ<T}(ω)]

≥ rE[I{ρ<T}(ω)]

≥ rP (ρ < T ).

Rearranging this inequality and defining H̄(D) = H(D)e−KT/(V (x0) + KT )
reveals that

P (ρ < T ) ≤ ε̃
(
1 + H̄(D)∆t1/2

)
,

where ε̃ is defined in equation (4.2). This proves the following theorem.

Theorem 5 Let ρ be the first exit time of the Euler approximate solution
(2.3) from the domain D(r). Then if f(x) and g(x) satisfy condition (i) of
Theorem 1 and there exists a function V (x) which satisfies conditions (ii)-(iv)
of Theorem 1 then (for sufficiently small ∆t)

P(ρ ≥ T ) ≥ 1− ε̃
(
1 + H̄(D)∆t1/2

)
.

The significance of Theorems 3 and 5 is that both x(t) and x∆t(t) remain
within the domain D(r), and therefore by Theorem 2 the Euler scheme will
converge to the solution x(t), with probability

P(τ < T ) ≤ P(ρ < T ) + P(s < T ) ≤ ε̃
(
2 + H̄(D)∆t1/2

)
. (4.3)

To prove Theorem 1 we will pursue this argument more rigorously.



5 Convergence in probability

Introducing the event sub-space

Ω̄ = {ω : sup
0≤t≤T

| x∆t(t)− x(t) |2≥ δ},

and using Theorem 2, we find that

C(D)∆t ≥ E

[
sup

0≤t≤τ∧T
| x∆t(t)− x(t) |2

]

≥ E

[
I{τ≥T}(ω) sup

0≤t≤T
| x∆t(t)− x(t) |2

]

≥ E

[
I{τ≥T}(ω)I{Ω̄}(ω) sup

0≤t≤T
| x∆t(t)− x(t) |2

]
≥ δ E

[
I{τ≥T}(ω)I{Ω̄}(ω)

]
= δ P

(
(τ ≥ T ) ∩ Ω̄

)
≥ δ

[
P
(
Ω̄
)
− P (τ < T )

]
.

Whence on using (4.3) we conclude that

P
(
Ω̄
)

= P

(
sup

0≤t≤T
| x∆t(t)− x(t) |2≥ δ

)
≤ 2ε̃+ ε̃H̄(D)∆t1/2 +

C(D)

δ
∆t

which, for appropriate choice of ∆t, proves Theorem 1. It is clear that to
increase the precision δ then ∆t should be reduced. However, it is interesting
to note that to leading order the bound on P

(
Ω̄
)

is independent of δ. Fur-
thermore, to achieve a given precision with increased probability, ∆t should
also be reduced. This is because the domain D(r) grows as ε̃ is reduced (recall
that r ∝ 1/ε̃), and in general H̄(D) and C(D) will increase with the size of
the domain.

6 Two particular models

6.1 Lotka-Volterra model

For the Lotka-Volterra system (1.5) the functions f(x) and g(x) satisfy con-
dition (i) of Theorem 1. Mao et al. (2000) show that a suitable Lyapunov
function for this system is

V (x) = Σn
i=1cix̄ih (xi/x̄i) where h(u) = u− 1− ln(u), (6.1)



for n positive constants c1, ..., cn. This function satisfies conditions (ii) and
(iv) of Theorem 1, whilst it is straightforward to show that

LV (x) = −1

2
(x(t)− x̄)TH(x(t)− x̄) (6.2)

where

H = −CA− ATC − σTdiag((c1x̄1, ..., cnx̄n)σ (6.3)

and C = diag(c1, ..., cn). Thus, if the n positive constants c1, ..., cn can be found
such that the symmetric matrix H is non-negative definite then it follows that
LV (x) ≤ 0 and condition (iii) of Theorem 1 is satisfied. Finally, we note
that under this condition, Theorem 1 of Mao et al. (2000) shows that for any
x0 ∈ Rn

+ = {x ∈ R2 : xi > 0 for all 1 ≤ i ≤ n} x(t) ∈ Rn
+ for all t ≥ 0 almost

surely, and furthermore that x(t) is unique. Therefore, when H is non-negative
definite for any x0 ∈ R2

+, the Euler scheme will converge to the true solution of
(1.5) in the sense of Theorem 1, provided that the time step ∆t is sufficiently
small. Mao et al. (2000) make extensive use of simulations of (1.5) to confirm
analytic results and to explore model behaviour in regimes not amenable to
analysis. Since these simulations are based on the Euler scheme the results of
this section support the numerical results in that earlier paper.

6.2 The Quadratic Autocatylator

Many catalytic systems can be formulated in terms of S.D.E.s. One such
example is the quadratic autocatylator which models the catalytic reaction

A + B→ 2B.

If these reactions occur in a large volume, in well mixed conditions and in the
absence of environmental noise, then the concentrations of A and B particles,
α(t) and β(t), may be described by the deterministic equations (Marion et al.
2000)

dα(t)/dt = (α0 − α(t))ν − κα(t)β(t)

dβ(t)/dt = κα(t)β(t)− (Kb + ν)β(t)

where the parameters α0, κ, Kb, ν ≥ 0. There are many ways in which envi-
ronmental noise may be introduced into this system, but one simple approach
is to assume that the parameter Kb → Kb +σḂ(t) is perturbed by noise. This
gives rise to the stochastic differential system

dα(t) = [(α0 − α(t))ν − κα(t)β(t)]dt (6.4)

dβ(t) = [κα(t)β(t)− (Kb + ν)β(t)]dt+ σβ(t)dB(t).



The drift and diffusion terms satisfy condition (i) of Theorem 1. In this case
define

V (α, β) = h (α) + h (β) where, as before, h(u) = u− 1− ln(u). (6.5)

Then it is straightforward to see that for (α, β) ∈ R2
+, V (α, β) satisfies condi-

tion (iii) of theorem 1 since,

LV (α, β) ≤
(
να0 + 2ν +Kb + σ2/2

)
+ kβ

≤ K(1 + V (α, β)).

Moreover, (6.5) also satisfies conditions (ii) and (iv) of Theorem 1. So in order
to prove convergence it is sufficient to show that for any (α(0), β(0)) ∈ R2

+ the
solution (α(t), β(t)) remains in R2

+ for t ∈ [0, T ] for all T > 0. To achieve this
we note that the limit, as r →∞, of

D(r) ≡ {(α, β) ∈ R2 such that V (α, β) ≤ r},

is limr→∞D(r) = R2
+. Thus, applying Lemma 4 we find that for finite T ,

t ∈ [0, T ] and (α(0), β(0)) ∈ R2
+ the solution (α(t), β(t)) remains in R2

+ and is
unique. So, the Euler approximate solution will converge to the true solution
of (6.4) for any (α(0), β(0)) ∈ R2

+ in the sense of theorem 1, provided ∆t is
sufficiently small. Marion et al. (2000) employ the Euler scheme to study
auto-catalytic systems of the type considered here. The results of this paper
support this numerical approach.

7 Discussion

We have shown that under the conditions of Theorem 1 the Euler approximate
solutions will converge to the true solutions of (1.1) with large probability,
provided that the time step is sufficiently small. Furthermore, under the same
conditions Lemma 4 identifies an invariant set of the stochastic differential
equation (1.1) and shows that its solutions are unique up to any finite time.
However, there are a number of ways in which one might improve upon these
results. One possible extension would be to widen the applicability of theorem
1 to a non-autonomous system

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t).

However, the key difficulty in applying Theorem 1 is in identifying a function
V appropriate to a given system and this might become considerably easier
if less stringent conditions could be imposed on V . Finally, whilst we have



bounded the order of approximation achieved by the Euler scheme it would
also be very useful to obtain a more accurate estimate of the approximation
error. We hope to address these issues in subsequent work.
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