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Abstract

Population systems are often subject to environmental noise, and our aim is
to show that (surprisingly) the presence of even a tiny amount can suppress a
potential population explosion. To prove this intrinsically interesting result, we
stochastically perturb the multivariate deterministic system ẋ(t) = f(x(t)) into the
Itô form dx(t) = f(x(t))dt + g(x(t))dw(t), and show that although the solution to
the original ordinary differential equation may explode to infinity in a finite time,
with probability one that of the associated stochastic differential equation does not.

Key words: Brownian motion, stochastic differential equation, explosion, bound-
edness, Itô’s formula.

1 Introduction

Single-species deterministic population dynamics can often be described by the ordinary
differential equation ẋ = f(x), and to avoid an explosion (i.e. infinite population size
at a finite time) f(x) has to satisfy certain conditions. Consider, for example, the one-
dimensional logistic (i.e. quadratic) equation

ẋ(t) = x(t)[b+ ax(t)] (1)

on t ≥ 0 with initial value x(0) = x0 > 0. Since here the variable x(t) denotes population
size, only positive solutions are of interest. For parameters a < 0 and b > 0, equation (1)
has the global solution

x(t) =
b

−a+ e−bt(b+ ax0)/x0

(t ≥ 0) ,

which is not only positive and bounded but also has the asymptotic property that limt→∞
x(t) = b/|a|. In contrast, if we now let a > 0, whilst retaining b > 0, then equation (1)
has only the local solution

x(t) =
b

−a+ e−bt(b+ ax0)/x0

(0 ≤ t < T ) ,

which explodes to infinity at the finite time

T = −1

b
log
(

ax0

b+ ax0

)
.
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However, given that population systems are often subject to environmental noise, it
is important to discover whether the presence of such noise affects this result. Suppose
that the parameter a is stochastically perturbed, with

a→ a+ εẇ(t)

where ẇ(t) is white noise and ε > 0 represents the intensity of the noise. Then this
environmentally perturbed system may be described by the Itô equation

dx(t) = x(t)[(b+ ax(t))dt+ εx(t)dw(t)] . (2)

In this paper we shall show that with probability one the solution of equation (2) can no
longer explode in a finite time if a > 0. In summary, when a > 0 and ε = 0 the solution
explodes at the finite time t = T ; whilst conversely, no matter how small ε > 0, the
solution will not explode in a finite time. In other words, stochastic environmental noise
suppresses deterministic explosion.

Given the nature of this potentially counter-intuitive result, it is worthwhile present-
ing a simple illustration before we proceed to the general proof. For 0 < h << 1 consider
the discrete-time system

x(t+ h) = x(t) + hx(t)(1 + x(t)) +
√
hx2(t)z(t) , (3)

where, for some constant d > 0, {z(t)} denotes the Bernoulli noise process

Pr(z(t) = d) = Pr(z(t) = −d) = 0.5 .

This system is an appropriate simplification as, in the limit h → 0, it tends towards an
Itô equation of the form (2). Note that the noise intensity is represented by d, in other
words

√
hz(t)→ εdω(t). On denoting the ‘reaction’ component θ(t) ≡ hx(t)(1+x(t)) and

‘noise’ component φ(t) ≡
√
hx2(t)z(t), we see that for x(t) > x̂ ≡

√
h/(d−

√
h) '

√
h/d

we have φ(t) > θ(t), whence negative z(t) result in downwards increments. This suggests
that for x(t) near x̂ the process might exhibit local stability. Moreover, for

x(t) > x̃ =
1 + h√
hd− h

' 1√
hd

a negative z(t)-value results in x(t + h) < 0. So the existence of our environmental
noise {z(t)} places an effective upper bound on {x(t)}, since for x(t) > x̃ the process
becomes negative after a further geometric(0.5) distributed number of steps. This is
highly suggestive of our main result since, once the population grows sufficiently large,
the noise will eventually cause a catastrophic population crash.

For h = 10−4 we found that for one simulation d had to be as high as 5 to ensure that
x(t) remained positive over 0 ≤ t ≤ 100 (Figure 1a), which suggests that non-negativity is
associated with early domination of the deterministic logistic term by the environmental
noise. This ties in with known results in population dynamics, for which persistence
is associated with the avoidance of ‘boom-and-bust’ dynamics. Note that x(t) exhibits
‘epidemic’-like behaviour, spending most of the time hovering around a relatively low
‘endemic’ level with occasional upward surges. Moreover, over the time range shown, x(t)
substantially exceeds x̂ = 0.002, so x̂ does not relate to local equilibrium levels; whilst
x(t) < 3.0 remains considerably less than the critical value x̃ = 20. The role of h can
be seen by running the simulation over 0 ≤ t ≤ 1000, since (for this given run) x(t)
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became negative even when d = 100, though persistence was achieved by decreasing h to
10−6. Figures 1b and 1c show x(t) for h = 10−6 and h = 10−8, respectively, sampled at
t = 0, 0.01, . . . , 100, and visual comparison between all three shows little evidence that
the structure of sampled x(t)-values depends on h. A question of considerable interest is
whether one can determine the limiting distribution of {x(t)|x(t) > 0} as h→ 0.

This behavioural stability can be shown (informally) by considering a small fixed
time interval (s, s + τ) over which x(t) ' x(s) (i.e. changes little). Then as the variance
of each step increment is ' (

√
hx2(s)d)2/2, and there are τ/h independent steps, the

displacement variance for time length τ is (hx4(s)d2/2) × (τ/h) = x4(s)d2τ/2 which is
clearly independent of h. It is interesting to note that this stability occurs only because
the environmental noise takes order O(

√
h); for any other order either the reaction or the

environmental components will become totally dominant as h→ 0.

More practically, let us now consider bivariate systems. When there are no interspe-
cific interactions, a bounded system can be described by the purely logistic scheme

ẋ1(t) = x1(t)[b1 − a11x1(t)]

ẋ2(t) = x2(t)[b2 − a22x2(t)] , (4)

for positive parameters b1, b2, a11 and a22. However, if each species enhances the growth of
the other, then the interactive dynamics are governed by the coupled ordinary differential
equations

ẋ1(t) = x1(t)[b1 − a11x1(t) + a12x2(t)]

ẋ2(t) = x2(t)[b2 − a22x2(t) + a21x1(t)] , (5)

where a12, a21 > 0. This type of ecological interaction is known as facultative mutualism;
that is, each species enhances the growth of the other although each species can persist in
the absence of the other. There exists an extensive literature concerned with the dynamics
of mutualism (cf. Boucher [2], He and Gopalsamy [5], Wolin and Lawlor [16]). In general,
a12, a21 are assumed to be smaller than a11, a22, e.g. a12a21 < a11a22, otherwise the solution
of equation (5) may explode at a finite time. For example, consider the symmetric system

ẋ1(t) = x1(t)[1− x1(t) + 2x2(t)]

ẋ2(t) = x2(t)[1− x2(t) + 2x1(t)] . (6)

If we let the initial values be the same, e.g. x1(0) = x2(0) = 1, then by symmetry
x1(t) = x2(t). Thus

ẋ1(t) = x1(t)[1 + x1(t)] ,

which has the solution

x1(t) =
1

−1 + 2e−t
(0 ≤ t < log(2)) ,

with explosion at t = log(2). However, this situation will change significantly if there is
environmental noise. To be precise, let such a system be governed by the Itô equation

dx1(t) = x1(t)[(b1 − a11x1(t) + a12x2(t))dt+ (ε11x1(t) + ε12x2(t))dw(t)]

dx2(t) = x2(t)[(b2 − a22x2(t) + a21x1(t))dt+ (ε21x1(t) + ε22x2(t))dw(t)] . (7)

We shall see that for arbitrary parameters bi, aij, system (7) will not explode in a finite
time with probability 1 provided the noise intensities ε11, ε22 > 0 and ε12, ε21 ≥ 0.
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2 Noise Suppresses Explosion

Throughout this paper, unless otherwise specified, we let (Ω,F , {Ft}t≥0, P ) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right
continuous and F0 contains all P -null sets). Let w(t) denote one-dimensional Brownian
motion defined on this probability space. If A is a vector or matrix, its transpose is

denoted by AT . If A is a matrix, its trace norm is denoted by |A| =
√

trace(ATA) whilst

its operator norm is denoted by ‖A‖ = sup{|Ax| : |x| = 1}. We also introduce the
notation Rn

+ = {x ∈ Rn : xi > 0 for all 1 ≤ i ≤ n}.
Consider the Lotka-Volterra model for a system with n interacting components,

namely

ẋi(t) = xi(t)
(
bi +

n∑
j=1

aijxj

)
(1 ≤ i ≤ n) .

Define diag(x1(t), · · · , xn(t)) as the n × n matrix with all elements zero except those on
the diagonal which are x1(t), · · · , xn(t). Then the Lotka-Volterra model takes the matrix
form

ẋ(t) = diag(x1(t), · · · , xn(t))[b+ Ax(t)] , (8)

where
x = (x1, · · · , xn)T , b = (b1, · · · , bn)T , A = (aij)n×n

and aij denotes the element in the ith row and jth column of an n× n matrix. Suppose
that every parameter aij is stochastically perturbed, with

aij → aij + σijẇ(t) .

Then equation (8) takes the stochastic form

dx(t) = diag(x1(t), · · · , xn(t))[(b+ Ax(t))dt+ σx(t)dw(t)] , (9)

where σ = (σij)n×n. Since the purpose of this paper is to discover the effect of environ-
mental noise, we naturally impose the following simple hypothesis on the noise intensities,

(H1) σii > 0 if 1 ≤ i ≤ n whilst σij ≥ 0 if i 6= j.

As the ith state xi(t) of equation (9) is the size of the ith component in the system, it
should be nonnegative. Moreover, in order for a stochastic differential equation to have a
unique global (i.e. no explosion in a finite time) solution for any given initial value, the
coefficients of the equation are generally required to satisfy the linear growth condition
and local Lipschitz condition (cf. Mao [14]). However, the coefficients of equation (9) do
not satisfy the linear growth condition, though they are locally Lipschitz continuous, so
the solution of equation (9) may explode at a finite time. In this section we shall show
that under the simple hypothesis (H1) the solution of equation (9) is positive and global.
This result reveals the important property that the environmental noise suppresses the
explosion, as suggested by the stochastic simulation shown in Section 1.

Theorem 2.1 Under hypothesis (H1), for any system parameters b ∈ Rn, A ∈ Rn×n,
and any given initial value x0 ∈ Rn

+ , there is a unique solution x(t) to equation (9) on
t ≥ 0 and the solution will remain in Rn

+ with probability 1, namely x(t) ∈ Rn
+ for all

t ≥ 0 almost surely.
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Proof. Since the coefficients of the equation are locally Lipschitz continuous, for any
given initial value x0 ∈ Rn

+ there is a unique local solution x(t) on t ∈ [0, τe), where τe is
the explosion time (cf. Arnold [1] or Friedman [4]). To show this solution is global, we
need to show that τe =∞ a.s. Let k0 > 0 be sufficiently large for every component of x0

lying within the interval [1/k0, k0]. For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, τe) : xi(t) 6∈ (1/k, k) for some i = 1, · · · , n} ,

where throughout this paper we set inf ∅ =∞ (as usual ∅ denotes the empty set). Clearly,
τk is increasing as k → ∞. Set τ∞ = limk→∞ τk, whence τ∞ ≤ τe a.s. If we can show
that τ∞ = ∞ a.s., then τe = ∞ a.s. and x(t) ∈ Rn

+ a.s. for all t ≥ 0. In other words, to
complete the proof all we need to show is that τ∞ =∞ a.s. For if this statement is false,
then there is a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε .

Hence there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ ε for all k ≥ k1 . (10)

Define a C2-function V : Rn
+ → R+ by

V (x) =
n∑
i=1

[√
xi − 1− 0.5 log(xi)

]
.

The nonnegativity of this function can be seen from

√
u− 1− 0.5 log(u) ≥ 0 on u > 0 .

If x(t) ∈ Rn
+, the Itô formula shows that

dV (x(t)) =
n∑
i=1

{
0.5(x−0.5

i − x−1
i )xi

[(
bi +

n∑
j=1

aijxj
)
dt+

n∑
j=1

σijxjdw(t)
]

+ 0.5(−0.25x−1.5
i + 0.5x−2

i )x2
i

[ n∑
j=1

σijxj

]2

dt
}

=
n∑
i=1

{
0.5(x0.5

i − 1)
(
bi +

n∑
j=1

aijxj
)

+ (0.25− 0.125x0.5
i )

[ n∑
j=1

σijxj

]2}
dt

+
n∑
i=1

n∑
j=1

0.5(x0.5
i − 1)σijxjdw(t) ,

where we write x(t) = x. Compute

n∑
i=1

(x0.5
i − 1)

(
bi +

n∑
j=1

aijxj
)

≤
n∑
i=1

|bi|(x0.5
i + 1) +

n∑
i=1

n∑
j=1

|aij|xj +
n∑
i=1

n∑
j=1

|aij|x0.5
i xj

≤
n∑
i=1

|bi|(x0.5
i + 1) +

n∑
j=1

n∑
i=1

|aij|xj +
n∑
i=1

n∑
j=1

0.5|aij|(xi + x2
j)

=
n∑
i=1

(
|bi|(1 + x0.5

i ) +
n∑
j=1

(|aji|+ 0.5|aij|)xi + 0.5
n∑
j=1

|aji|x2
i

)
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and
n∑
i=1

[ n∑
j=1

σijxj

]2

≤
n∑
i=1

[ n∑
j=1

σ2
ij

n∑
j=1

x2
j

]
= |σ|2

n∑
i=1

x2
i .

Moreover, by hypothesis (H1),

n∑
i=1

x0.5
i

[ n∑
j=1

σijxj

]2

≥
n∑
i=1

σ2
iix

2.5
i .

So

n∑
i=1

{
0.5(x0.5

i − 1)
(
bi +

n∑
j=1

aijxj
)

+ (0.25− 0.125x0.5
i )

[ n∑
j=1

σijxj

]2}

≤
n∑
i=1

{
0.5|bi|(1 + x0.5

i ) +
n∑
j=1

(0.5|aji|+ 0.25|aij|)xi

+ 0.25
( n∑
j=1

|aji|+ |σ|2
)
x2
i − 0.125σ2

iix
2.5
i

}
,

which is bounded, say by K, in Rn
+. We therefore obtain

∫ τk∧T

0
dV (x(t)) ≤

∫ τk∧T

0
Kdt+

∫ τk∧T

0

n∑
i=1

n∑
j=1

0.5(x0.5
i − 1)σijxjdw(t)

since x(t ∧ τk) ∈ Rn
+. Whence taking expectations, yields

EV (x(τk ∧ T )) ≤ V (x0) +KE(τk ∧ T ) ≤ V (x0) +KT . (11)

Set Ωk = {τk ≤ T} for k ≥ k1 and, by (10), P (Ωk) ≥ ε. Note that for every ω ∈ Ωk, there
is some i such that xi(τk, ω) equals either k or 1/k, and hence V (x(τk, ω)) is no less than
either √

k − 1− 0.5 log(k)

or √
1/k − 1− 0.5 log(1/k) =

√
1/k − 1 + 0.5 log(k) .

Consequently,

V (x(τk, ω)) ≥
[√
k − 1− 0.5 log(k)

]
∧
[
0.5 log(k)− 1

]
.

It then follows from (11) that

V (x0) +KT ≥ E
[
1Ωk(ω)V (x(τk, ω))

]
≥ ε

([√
k − 1− 0.5 log(k)

]
∧
[
0.5 log(k)− 1

])
,

where 1Ωk is the indicator function of Ωk. Letting k →∞ leads to the contradiction

∞ > V (x0) +KT =∞ ,

so we must therefore have τ∞ =∞ a.s. 2

It is easy to see from this theorem that, with probability 1, neither equation (2) nor
(7) will explode in a finite time, as stated earlier in Section 1.
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3 Boundedness

Theorem 2.1 shows that under the simple hypothesis (H1) the positive cone Rn
+ is the

invariant set of the solutions of equation (9). In the sequel we therefore only need to
consider how the solutions vary in Rn

+. Let us denote by x(t;x0) the unique global
solution of equation (9) given initial value x(0) = x0. For convenience, let us define the
diffusion operator L acting on C2-functions V ∈ C2(Rn

+;R) by

LV (x) = Vx(x)diag(x1, · · · , xn)(b+ Ax)

+
1

2
xTσTdiag(x1, · · · , xn)Vxx(x)diag(x1, · · · , xn)σx ,

where
Vx = (Vx1 , · · · , Vxn) and Vxx = (Vxixj)n×n.

Theorem 3.1 Let hypothesis (H1) hold. Let θ1, · · · , θn be positive numbers such that

θ1 + · · ·+ θn <
1

2
. (12)

Then, for any initial value x0 = (x01, · · · , x0n)T ∈ Rn
+, the solution x(t;x0) = x(t) of

equation (9) has the property that

log
(
E
[ n∏
i=1

xθii (t)
])
≤ e−c1t

n∑
i=1

θi log x0i +
c2

c1

(1− e−c1t) for all t ≥ 0 , (13)

where

c1 =
1

4

(
1−

n∑
i=1

θi

)
min

1≤i≤n
θiσ

2
ii and c2 = |θ||b|+ |θ|

2‖A‖2

4c1

.

In particular, letting t→∞ in (13) yields the asymptotic estimate

lim sup
t→∞

E
( n∏
i=1

xθii (t)
)
≤ ec2/c1 . (14)

To prove this theorem consider the following lemma.

Lemma 3.2 Let hypothesis (H1) hold, and θT = (θ1, · · · , θn) be positive numbers such
that

θ1 + · · ·+ θn < 1 . (15)

Then, for any initial value x0 ∈ Rn
+, the solution x(t;x0) = x(t) of equation (9) has the

property that

E
( n∏
i=1

xθii (t)
)
<∞ for all t ≥ 0 . (16)

Proof. Define a C2-function V : Rn
+ → R+ by

V (x) =
n∏
i=1

xθii .
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It is not difficult to show that

LV (x) = V (x)θT (b+ Ax)− 1

2
V (x)xTσT [diag(θ1, · · · , θn)− θθT ]σx . (17)

Note that for any y = (y1, · · · , yn)T ∈ Rn,

yT [diag(θ1, · · · , θn)− θθT ]y =
n∑
i=1

θiy
2
i −

( n∑
i=1

θiyi

)2

≥
n∑
i=1

θiy
2
i −

n∑
i=1

θi
n∑
i=1

θiy
2
i =

(
1−

n∑
i=1

θi

) n∑
i=1

θiy
2
i .

Thus, for x ∈ Rn
+,

xTσT [diag(θ1, · · · , θn)− θθT ]σx ≥
(

1−
n∑
i=1

θi

) n∑
i=1

θi

( n∑
j=1

σijxj

)2

≥
(

1−
n∑
i=1

θi

) n∑
i=1

θiσ
2
iix

2
i ≥

(
1−

n∑
i=1

θi

)(
min

1≤i≤n
θiσ

2
ii

)
|x|2 = 4c1|x|2 ,

where c1 is defined in the statement of Theorem 3.1. It then follows from (17) that

LV (x) ≤ V (x)
[
|θ|(|b|+ ‖A‖|x|)− 2c1|x|2

]
.

Since

|θ|‖A‖|x| ≤ |θ|
2‖A‖2

4c1

+ c1|x|2 .

We therefore obtain
LV (x) ≤ V (x)

[
c2 − c1|x|2

]
, (18)

where c2 is defined in the statement of Theorem 3.1. For every integer k ≥ 1, define the
stopping time

τk = inf{t ≥ 0 : |x(t)| ≥ k} ,

which by Theorem 2.1 has the properties that, τk < ∞ and τk → ∞ almost surely as
k →∞. Now for any t ≥ 0, the Itô formula shows that

V (x(t ∧ τk)) = V (x0) +
∫ t∧τk

0
LV (x(s))ds+

∫ t∧τk

0
V (x(s))θTσx(s)dw(s) .

Taking expectations of both sides and making use of (18) yields

EV (x(t ∧ τk)) ≤ V (x0) + c2E
∫ t∧τk

0
V (x(s))ds ≤ V (x0) + c2

∫ t

0
EV (x(s ∧ τk))ds ,

whence applying the well-known Gronwall inequality gives

EV (x(t ∧ τk)) ≤ V (x0)ec2t .

Letting k →∞ shows that

EV (x(t)) ≤ V (x0)ec2t (t ≥ 0) ,

and the required assertion follows. 2
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Proof of Theorem 3.1. We use the same notation as in the proof of Lemma 3.2, which
shows that EV (x(t)) is finite for all t ≥ 0. Moreover, by Theorem 2.1, V (x(t)) > 0 with
probability 1, so we must have EV (x(t)) > 0 for all t ≥ 0. In addition, the continuity
of EV (x(t)) in t can be seen by the continuity of the solution x(t) and the dominated
convergence theorem. For convenience, let us set

v(t) = EV (x(t)) for t ≥ 0 .

Then v(t) is a continuous positive function of t ≥ 0. Define the right upper derivative of
v(t) by

D+v(t) = lim sup
δ↓0

v(t+ δ)− v(t)

δ
(t ≥ 0) .

We claim that
D+v(t) ≤ v(t)(c1 + c2 − c1v(t)) (t ≥ 0) . (19)

To show this, note that

V (x) ≤
n∏
i=1

|x|θi = |x|θ1+···+θn ≤ 1 + |x|2 .

Then it follows from (18) that

LV (x) ≤ V (x)
[
c1 + c2 − c1(1 + |x|2)

]
≤ V (x)

[
c1 + c2 − c1V (x)

]
. (20)

On recalling condition (12), namely that θ1 + · · ·+ θn < 1 , we observe from Lemma 3.2
that

EV 2(x(t)) <∞ for all t ≥ 0.

Whence it follows from the Itô formula and (20) that for any t ≥ 0 and δ > 0,

EV (x(t+ δ))− EV (x(t)) ≤
∫ t+δ

t

[
(c1 + c2)EV (x(s))− c1EV

2(x(s))
]
ds .

Using the Hölder inequality which implies that EV (x(s)) ≤ [EV 2(x(s))]
1
2 , we then have

EV (x(t+ δ))− EV (x(t)) ≤
∫ t+δ

t

[
(c1 + c2)EV (x(s))− c1[EV (x(s))]2

]
ds ,

that is

v(t+ δ)− v(t) ≤
∫ t+δ

t

[
(c1 + c2)v(s)− c1[v(s)]2

]
ds .

Dividing both sides by δ and letting δ ↓ 0 yields the claimed inequality (19). We now
compute the derivative

D+

[
ec1t log v(t)

]
= c1e

c1t log v(t) + ec1t
D+v(t)

v(t)

≤ c1e
c1t log v(t) + ec1t[c1 + c2 − c1v(t)] .

Noting that log v(t) ≤ v(t)− 1 we obtain

D+

[
ec1t log v(t)

]
≤ c2e

c1t ,
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whence integration yields

ec1t log v(t) ≤ log v(0) +
c2

c1

[
ec1t − 1

]
.

Consequently,

log v(t) ≤ e−c1t log v(0) +
c2

c1

[
1− e−c1t

]
,

which is the required assertion (13), while the other assertion (14) follows by letting
t→∞. 2.

4 Generalizations

Equation (9) arises from equation (8) by assuming that the system matrix A is stochas-
tically perturbed, with A → A+ σẇ(t). We may assume that both the system vector b
and the matrix A are stochastically perturbed, with

b → b+ βẇ1(t) and A → A+ σẇ2(t) ,

where w1(t) and w2(t) are two independent Brownian motions and β = (β1, · · · , βn)T ,
whilst σ is the same as before. Then equation (8) takes the stochastic form

ẋ(t) = diag(x1(t), · · · , xn(t))[(b+ Ax(t))dt+ βdw1(t) + σx(t)dw2(t)] . (21)

More generally, consider a system taking the form

ẋ(t) = diag(x1(t), · · · , xn(t))[f(x)dt+ g(x)dw(t)] , (22)

where w(t) = (w1(t), · · · , w2(t))T is now an m-dimensional Brownian motion while f :
Rn

+ → Rn and g : Rn
+ → Rn×m. Clearly, equation (21) is a special case of equation

(22), with f(x) = b + Ax, g(x) = (β, σx) and w(t) = (w1(t), w2(t))T . Let fi be the ith
component of f and gi the ith row of g. Then we impose the following hypothesis on the
coefficients:

(H2) Both f and g are locally Lipschitz continuous. Moreover, there are constants h1,
h2, α1 > 0 and α2 ≥ 0 such that

|f(x)| ≤ h1(1 + |x|) and α1x
2
i − α2 ≤ |gi(x)|2 ≤ h2(1 + |x|2)

for all x ∈ Rn
+ and 1 ≤ i ≤ n.

Theorem 4.1 Under hypothesis (H2), for any given initial value x0 ∈ Rn
+ , there is a

unique solution x(t) to equation (22) on t ≥ 0 and the solution will remain in Rn
+ with

probability 1, namely x(t) ∈ Rn
+ for all t ≥ 0 almost surely.

Proof. The theorem can be proved in the same way as for the proof of Theorem 2.1.
Retaining the same notations, we can show by the Itô formula that

dV (x(t)) =
n∑
i=1

[
0.5(x0.5

i − 1)fi(x) + (0.25− 0.125x0.5
i )|gi(x)|2

]
dt

+
n∑
i=1

0.5(x0.5
i − 1)gi(x)dw(t)
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whenever x(t) = x ∈ Rn
+. Applying hypothesis (H2) then yields

dV (x(t)) ≤ Kdt+
n∑
i=1

0.5(x0.5
i − 1)gi(x)dw(t)

for some K > 0. The remainder of the proof is the same as before. 2

We can also extend Theorem 3.1 to equation (22) as described below.

Theorem 4.2 Let hypothesis (H2) hold. Let θ1, · · · , θn be positive numbers such that

θ1 + · · ·+ θn <
1

2
. (23)

Then, for any initial value x0 = (x01, · · · , x0n)T ∈ Rn
+, the solution x(t;x0) = x(t) of

equation (22) has the property that

log
(
E
[ n∏
i=1

xθii (t)
])
≤ e−θ̂α1t/4

n∑
i=1

θi log x0i +
4K

θ̂α1

(1− e−θ̂α1t/4) for all t ≥ 0 , (24)

where

θ̂ =
(

1−
n∑
i=1

θi

)
min

1≤i≤n
θi and K = θ̂

(
h1 +

h1

2α1

+
nα2

2

)
.

In particular, letting t→∞ in (24) yields the asymptotic result

lim sup
t→∞

E
( n∏
i=1

xθii (t)
)
≤ e4K/θ̂α1 . (25)

Proof. The diffusion operator L associated with equation (22) has the form

LV (x) = Vx(x)diag(x1, · · · , xn)f(x)

+
1

2
trace

[
gT (x)diag(x1, · · · , xn)Vxx(x)diag(x1, · · · , xn)g(x)

]
.

Applying this to the C2-function V : Rn
+ → R+ defined by

V (x) =
n∏
i=1

xθii

gives

LV (x) = V (x)θTf(x)− 1

2
V (x)trace

(
gT (x)[diag(θ1, · · · , θn)− θθT ]g(x)

)
,

where θ = (θ1, · · · , θn)T as before. It is not difficult to see from the proof of Lemma 3.2
that

trace
(
gT (x)[diag(θ1, · · · , θn)− θθT ]g(x)

)
≥ θ̂|g(x)|2 = θ̂

n∑
i=1

|gi(x)|2 .

This, together with hypothesis (H2), yields

trace
(
gT (x)[diag(θ1, · · · , θn)− θθT ]g(x)

)
≥ θ̂α1|x|2 − nθ̂α2 .

So on using (H2) once again,

LV (x) ≤ V (x)
[
h1θ̂(1 + |x|)− 1

2
(θ̂α1|x|2 − nθ̂α2)

]
≤ V (x)

[
K − θ̂α1

4
|x|2

]
.

This takes the same form as equation (18), and the remainder of the proof parallels that
of Theorem 3.1. 2
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5 Examples and Computer Simulations

In this section we explore system behaviour using numerical solutions of the stochastic
differential system (22). In particular, for t = ∆t, 2∆t, ..., we employ the Euler scheme

x∆t(t+ ∆t) = diag((x∆t)1(t), · · · , (x∆t)n(t))[f(x∆t(t))dt+ g(x∆t(t))∆w(t)] , (26)

with initial condition x(0) ∈ Rn
+ and time increment ∆t. For each time step the vector

∆w(t) = (∆w(t)1, ...,∆w(t)m)T represents m independent draws from a Normal distribu-
tion with zero mean and variance ∆t. Recent results by Marion et al. [15] show that, for
any finite time and a sufficiently small time step, this numerical scheme will converge to
the true solution of (22) provided that a C2 function V : Rn

+ → R+ exists and satisfies
the following conditions:

(i) The set D(r) = {x ∈ Rn
+ : V (x) ≤ r} is compact for any r > 0 ;

(ii) LV (x) ≤ K(1 + V (x)) ;

(iii) there exists a positive constant K2(D(r)) such that for all x, y ∈D(r)
| V (x)− V (y) | ∨ | Vx(x)− Vx(y) | ∨ | Vxx(x)− Vxx(y) |≤ K3(D(r)) | x− y | .

The function V (x) defined in the proof of Theorem 2.1 satisfies each of these conditions,
and so the Euler scheme may be applied with confidence to the generalized system (22),
and hence also to (9).

Figure 2 shows the results from simulation runs based on the Euler scheme for a
one-dimensional example of system (9) with A = b = 1, the initial condition x0 = 0.5 and
∆t = 10−7. Figure 2a shows a realization of the dynamics of this system for σ = 0.25,
whilst Figure 2b corresponds to σ = 1.0. In each case the corresponding prediction of
the deterministic model, which explodes at t ≈ 1.0986, is also shown. These simulations
illustrate the main result of this paper, namely that environmental noise suppresses pop-
ulation explosion in such systems. Moreover, comparison of Figures 2a and 2b suggests
that fluctuations reduce as the noise level increases.

Finally consider the bivariate system

dx1(t) = x1(1− x1 + 2x2)dt+ εx2
1dω1(t)

dx2(t) = x2(1− 2x2 + 2x1)dt+ 2εx2
2dω2(t) , (27)

which is of the generalized form (22). Figure 3 shows a realization of the numerical
solution of this system based on the Euler scheme, with time step ∆t = 10−4 and noise
level ε = 1.0. Comparison with the deterministic solution (also shown) supports the
conclusion of Theorem 4.1, namely that noise suppresses the population explosion.
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Figure 1: Graph (a) shows a realization of the discrete-time system (3) for d=5 and
h = 10−4. Graphs (b) and (c) show the same system for h = 10−6 and h = 10−8

respectively.
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Figure 2: In graph (a) the solid curve shows a stochastic trajectory generated by the
Euler scheme for time step ∆t = 10−7 and σ = 0.25 for a one-dimensional system (9)
with A = b = 1. The corresponding deterministic trajectory is shown by the dot-dashed
curve. In Graph (b) σ = 1.0.



0
�

2
�

4
�

6
�

8
�

10
�0

5

10

15

20

0
�

2
�

4
�

6
�

8
�

10
�0

5

10

15

20

(a)
�

(b)
�

x1

x2

t

t

Figure 3: In both graphs the solid curve represents a stochastic trajectory for system
(27) generated by the Euler scheme with time step ∆t = 10−4 and ε = 1.0, whilst the
corresponding deterministic solution is shown by the dot-dashed curve. Graph(a) shows
the first component x1 and graph (b) the second, x2.


