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The impact of stochasticity and spatial heterogeneity on the quadratic autocatalytic system is
studied. In a nonspatial setting the reactive state of the system is found to be unstable in small
volumes where internal fluctuations drive the system to the unreactive state. This phenomena is
of potential importance to the stability of reactions in biological cells. A simple spatial model is
constructed by linking N nonspatial models via migration of reactants controlled by a mixing rate λ.
Simulation of this stochastic process demonstrates the importance of such mixing in controlling the
impact of internal fluctuations on the stability of the autocatalytic reaction. For high mixing rate
the mean reactant levels in equilibrium correspond to the well-mixed deterministic system, although
a significant degree of spatial heterogeneity remains. For intermediate mixing rates, mean reactant
levels vary continuously with λ where the interaction of internal fluctuations with limited spatial
mixing modifies the reactive states of the deterministic system. However, there is a threshold below
which mixing is unable to control internal fluctuations which drive the system into the unreactive
state. Thus a critical minimum level of communication between the cells is required to stabilize
the reaction across the entire system. Approximate analytic results, obtained using moment-closure
techniques, support these findings and demonstrate the relationship between the spatial stochastic
and nonspatial deterministic models.
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I. INTRODUCTION

In the absence of macroscopic environmental fluctua-
tions, classical reaction kinetics applies ordinary differ-
ential equations to describe the progress of reactions in
large volumes under conditions of perfect mixing. How-
ever, in many biochemical systems reactions occur in
minute volumes and both stochasticity and spatial het-
erogeneity play important roles in living cells. For ex-
ample, by reference to cell volume Gibson and Bruck [1]
show that the number of protein molecules involved in re-
actions controlling gene regulation in Lambda phage in-
fection of Escherichia coli is of the order 10 to 100. More-
over, the outcome of this infection process is stochas-
tic. Autocatalytic mechanisms play an important role
in the organization and coordination of biological cells,
and quadratic- or cubic-autocatalysis represent generic
models whose behaviour in stochastic and spatially het-
erogeneous systems are important for understanding pro-
cesses in living cells. This paper addresses these issues
by exploring the impact of stochasticity and spatial het-

∗Contact email:glenn@bioss.ac.uk

erogeneity in the quadratic autocatalytic process

A+B → 2B B → C ,

where a B-particle catalyses the conversion of reactant A
into further Bs, and reactant B also decays to product C
[2, 3]. Positive feedback is seen as a central mechanism in
many important biochemical processes such as glycolysis
[4]; autocatalytic systems of this type have been widely
studied as prototypical feedback systems [2, 3, 5, 6].
Horsthemke and Lefever [7] study the effect of environ-
mental noise on a range of one-dimensional dynamical
systems, and find that stochasticity may radically al-
ter the behaviour of deterministic models, for example
by inducing transitions between steady states of the de-
terministic system, altering the level of such states or
by inducing new states. Marion et. al. [8] study the
effect of both environmental and internal noise on the
quadratic autocatalytic processes in the nonspatial set-
ting of a continuous-flow stirred tank reactor (CSTR),
whilst the present paper focuses on the role of internal
fluctuations in a spatially extended system. First, how-
ever, we review the behaviour of the nonspatial process.

When quadratic autocatalysis is carried out in a CSTR
the system can be considered to be well-mixed, of large
volume and adequately described by the deterministic
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model

dα(t)/dt = (α0 − α(t)) ν − κα(t)β(t) (1)
dβ(t)/dt = κα(t)β(t)− (Kb + ν)β(t) ,

where α(t) and β(t) represent the concentrations of A-
and B-particles, respectively. Reactant A is supplied at
rate να0 from a reservoir of fixed concentration α0: both
A and B are removed from the reaction vessel at rates
ν α and ν β, respectively. The decay B → C occurs at
rate Kb β, and the name of the process derives from the
quadratic rate, καβ, for the autocatalytic step A+B →
2B. This system has two fixed points, the reactive state
(α1, β1) and the unreactive state (α2, β2) given by

α1 = (Kb + ν)/κ, β1 = ν(α0κ−Kb − ν)/(κ(Kb + ν))
α2 = α0, β2 = 0 . (2)

Where chemical and biochemical reactions occur in small
volumes, or in poorly mixed conditions, deterministic de-
scriptions such as (1) prove inadequate, and this is par-
ticularly true at low densities where finite size effects
are most significant. In such cases discrete state-space
Markov models, or birth-death processes, have been ex-
tensively used in modelling chemical reactions and a wide
range of biological and physical systems. In the physico-
chemical literature, models of this type are said to de-
scribe the state of the system at a mesoscopic scale:
that is, an intermediate scale between the microscopic,
where molecular dynamic or even quantum mechanical
descriptions should be used, and the macroscopic scale
where (in deterministic environments) deterministic de-
scriptions such as (1) are often employed [9]. In a general
birth-death process the probability of change of state in
a small time interval (t, t+ δt) can be written

P(n(t+ δt) = n(t) + δn) = R(n→ n+ δn)δt , (3)

where the vector δn = (δn1, δn2, ...)T represents the
change in state n = (n1, n2, ...)T which occurs at rate
R(n → n + δn). The change δni in population i is an
integer, and often ±1. The fluctuations caused by the
stochastic nature of the events are typically referred to
as internal fluctuations in physical and chemical mod-
els, and as demographic fluctuations in biological sys-
tems. Whilst exact simulation is straightforward, since
inter-event times are exponentially distributed [10], an
approximate alternative approach is to update time by
a sufficiently small time step δt and then to choose the
event n→ n+ δn with probability (3).

To model the nonspatial quadratic autocatalytic sys-
tem described above at the mesoscopic level, write n =
(nA, nB)T with δn = (δnA, δnB)T and the rates R(n →
n+ δn) as

Rate δnA δnB
KnAnB −1 +1 Autocatalytic reaction
KbnB 0 −1 Decay of reactant B
νnA0 +1 0 Influx of reactant A
νnA −1 0 Outflow of reactant A
νnB 0 −1 Outflow of reactant B

0 otherwise.

(4)

A+B −> 2B
A in A out

B out

B −> C

FIG. 1: Schematic representation of a nonspatial model of the
autocatalytic process.

The connection with the deterministic system (1) is made
by introducing the system volume Ω and writing the den-
sities α = nA/Ω and β = nB/Ω, which for finite vol-
umes are random variables. However, if the the reaction
rate scales like K = κ/Ω, then in the large volume limit
Ω → ∞ it can be shown that α and β obey the deter-
ministic equations (1) [8, 11, 12].
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FIG. 2: The effect of volume in the nonspatial system. His-
tograms from simulations of the Markov process (3)-(4), with
α = nA/Ω, β = nB/Ω, and parameter values κ = 1, α0 = 1,
ν = Kb = 1/17. Samples of the process are taken for
t = (900000, 1000000). The solid vertical lines represent the
equilibrium values obtained from the deterministic model (1).

Figure 2 shows the effect of system volume on the sta-
bility of the reactive state. The results shown are based
on simulated data collected for t = (900000, 1000000) and
thus represent samples from the quasi-equilibrium distri-
bution of the birth-death process (3)-(4). The parameter
values used are κ = 1, α0 = 1, ν = Kb = 1/17 [5].
For large volume (Ω = 200) internal fluctuations induce
a distribution centered on the deterministic steady state
(α1, β1); the reactive state is stable with respect to inter-
nal fluctuations. However, for small volumes (Ω = 20)
the system is driven toward an unreactive state with fluc-
tuations about the deterministic steady state (α2, β2). At
intermediate volumes (Ω = 50) the reactive state remains
stable with non-zero probability, but a proportion of re-
alizations fall into the unreactive state. Thus, for small
volumes, where the reactive state is totally destabilized
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by internal fluctuations there are qualitative differences
between deterministic and stochastic models. Zheng et.
al. [13] study a related system in which the concentra-
tion of A-particles is held fixed. The exact stationary
distribution may then be calculated since the resulting
system is one-dimensional [10]. Zheng et. al. show that
as the system volume increases the relative heights of
peaks in this distribution invert; a similar effect to that
shown in Figure 2. However, in contrast with the present
case where only one fixed point of the deterministic dy-
namics is attracting, these peaks are associated with two
attracting steady states of the corresponding determinis-
tic system. For cellular systems it may seem un-natural
to adjust system volume. However, the above results hold
for changes in the density of reactants, with low densi-
ties corresponding to an unstable reactive state; for fixed
cell volume changes in density correspond to changes in
the number of reactant molecules per cell. Indeed, it has
been found that in living cells the number of molecules
can be very low and enzymatic reactions occur in small
volumes [1, 14].

In the remainder of this paper we study the effect of
spatial heterogeneity on the stability of the reactive state
in quadratic autocatalysis. Section II introduces a spa-
tial autocatalytic model in which N nonspatial processes
(3)-(4), each with volume Ω = 1, are coupled via random
migration of B-particles which is controlled by a mix-
ing rate λ. Stochastic simulation is used to explore the
stability of the reactive state for a range of values of λ.
Section III applies moment-closure techniques to develop
approximations describing the system, they: support the
simulation results; reveal the relationship between the
nonspatial deterministic model and the spatial stochastic
system; and yield analytic insights into system behaviour
in the limits of high and low mixing. Finally, in section
IV we discuss the relevance of our results to living cells.

II. SPATIAL PROCESS

Figure 3 depicts the spatial autocatalytic process con-
structed by linking N nonspatial models via the migra-
tion of B-particles. The numbers of A and B particles
at site i = 1, ..., N are denoted nAi and nBi , respectively.
The within-site behaviour is described by the nonspatial
model (3)-(4), whilst the migration of B-particles is de-
scribed by

P(nBi (t+ δt) = nBi (t)− 1) = λnBi δt (5)

P(nBi (t+ δt) = nBi (t) + 1) =
λ

N

N∑
j=1

nBj δt .

where the first equation is the probability of migration
from site i and the latter, that of migration to site i. The
resulting model can therefore be described as quadratic
autocatalysis with random mixing of B-particles between

cells. In what follows the volume of each site is taken to
be Ω = 1, where the total system volume is then N , the
reaction rate K = κ and nA0 = α0.

λnBi

1/N

Site i
Non-spatial process

FIG. 3: Schematic representation of the spatial autocatalytic
process in which N nonspatial Markov processes (3)-(4) are
linked together via random migration of B-particles.

Consider the evolution of the average reactant levels

<nA>≡
1
N

N∑
i=1

nAi and <nB>≡
1
N

N∑
i=1

nBi .

Since we have set Ω = 1, <nA> and <nB> are dimen-
sionless quantities corresponding to the densitiesα and β
respectively. Figure 4 shows these average reactant levels
for typical realizations of the spatial process at two mix-
ing rates. The results show that for small mixing rate
λ = 0.01 the reactive state is unstable just as in the non-
spatial model. However, a moderate mixing rate λ = 1
stabilizes the reactive state.

Figure 5 shows equilibrium estimates of the expected
average reactant levels for a range of mixing rates λ ∈
[0, 2]. These results show that a critical minimum level
of mixing is required to stabilize the reactive state. For
small λ the mixing is insufficient to stabilize the reac-
tion against stochastic fluctuation. However, as the rate
of mixing increases, at some critical point the reaction
becomes stable across the system. Communication al-
lows the cells to act coherently. Moreover, just above
this threshold, the density of the reaction product B is
considerably lower than predicted by equation (2), but
this increases with the mixing rate to an asymptote at
the level of the well-mixed deterministic system. Thus
one can think of λ as controlling the effective noise level:
for small noise (large λ) the system is well mixed and
the mean reactant levels coincide with the deterministic
nonspatial model predictions; for intermediate levels of
noise the reactive state is shifted with respect to the well
mixed case; and for large noise (small λ) the reactive state
is completely destabilized. Qualitatively similar results
are obtained for small values of Ω 6= 1.

III. SPATIAL MOMENT CLOSURE
APPROXIMATION

In order to understand better the phenomena de-
scribed above we derive analytic approximations describ-
ing the spatial system. In so doing we demonstrate the
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FIG. 4: Simulation of spatial system: The top graph
shows typical realizations of the average density <nA(t)>
from the stochastic spatial autocatalytic process described in
Section II against dimensionless time tK for λ = 1 (solid
curve) and λ = 0.01 (dashed curve). The bottom graph
depicts the same information for reactant B. In each case
the dot-dashed lines show the corresponding reactant levels
obtained from deterministic equilibrium (2). The parameter
values are K = 1, α0 = 1, Kb = ν = 1/17 and N = 500.
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FIG. 5: Stability of reaction state: The symbols and solid
curves represent estimates of E[<nA>] (diamonds) and E[<
nB>] (circles) obtained from 10 simulation runs, with samples
collected, after a burn-in period, from t = 500, ..., 1000, for a
range of relative values of the mixing rateλ/K. The standard
errors in these estimates are approximately equal to the size
of the symbols. The dot-dashed lines show the corresponding
reactant levels obtained from deterministic equilibrium (2).
The parameter values are K = 1, α0 = 1, Kb = ν = 1/17 and
N = 500.

relationship between the deterministic nonspatial model
and the stochastic spatial process. In particular, we con-
struct equations describing the average reactant levels
and apply the methodology developed by Keeling et. al,
in the context of spatial models in ecology [15, 16]. This
approach has two principal advantages over dealing di-
rectly with the site specific reactant levels, nAi and nBi .

First, it reduces the dimensionality of the problem to be
solved from 2N to 5 (see below). Second, even for mod-
erate sized systems the variability of the average reactant
levels will be much less than that of individual sites, and
therefore the task of calculating associated statistics more
straightforward.

Writing the change in the level of reactant A at site
i as nAi (t + δt) = nAi + δnAi , the change in the average
reactant level is

1
N

N∑
i=1

nAi (t+ δt) =
1
N

N∑
i=1

nAi +
1
N

N∑
i=1

δnAi .

Using the transition probabilities for site i as defined in
(3), (4) and (5), conditional on the state of the system
at time t being n = {(nA1 , ..., nAN )T , (nB1 , ..., n

B
N )T } the

expected change during a small time interval (t, t+ δt) is
then given by

E

[
1
N

N∑
i=1

nAi (t+ δt) | n(t) = n

]
=

1
N

N∑
i=1

nAi +

(
−κ 1

N

N∑
i=1

nAi n
B
i + να0 − ν

1
N

N∑
i=1

nAi

)
δt .

Whence evaluating expectations E[.] at time t, and rear-
ranging, leads to

E

[
1
N

N∑
i=1

nAi (t+ δt)

]
− E

[
1
N

N∑
i=1

nAi

]
=(

−κE

[
1
N

N∑
i=1

nAi n
B
i

]
+ να0 − νE

[
1
N

N∑
i=1

nAi

])
δt .

For any random variable zi associated with site i, write
the spatial average

<z>=
1
N

N∑
i=1

zi .

Then taking the limit δt→ 0 yields

d

dt
E[<nA>] = −κE[<nAnB>] + να0 − νE[<nA>] . (6)

The equation describing the evolution of the average level
of reactant B, namely

d

dt
E[<nB>] = κE[<nAnB>]− (Kb + ν)E[<nB>] , (7)

is obtained in a similar manner. The difficulty with equa-
tions (6) and (7) is that they depend on the second-order
term E[<nAnB>]. In order to close this system of equa-
tions one may choose to approximate this term as a func-
tion of the first-order terms E[<nA>] and E[<nB >].
This problem is characteristic of non-linear stochastic
processes and a number of closure approximations ex-
ist. Broadly speaking, they may be classified into three
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types, namely moment-closure, cumulant-truncation and
spatial moment-closure. In each case higher-order terms
such as E[<nAnB>] are replaced by functions of lower-
order terms (i.e. E[<nA>] and E[<nB>]). Moment-
closure [17, 18] achieves this by making some ansatz
which determines the functional dependence; for exam-
ple that the process is Gaussian [19]. An alternative ap-
proach is cumulant-truncation [20, 21] whereby the mo-
ment equations are re-expressed in terms of cumulants
(see e.g., 22) and higher-order cumulants are assumed
to be zero. For example second-order cumulant trunca-
tion sets third- and higher-order cumulants to zero and
thus corresponds to moment-closure by Normal approxi-
mation. The complexities involved in such methods are
highlighted by the fact that higher-order truncation does
not necessarily improve the accuracy of the approxima-
tion [23]. In spatial systems isotropy is often invoked and
boundary (finite-size) effects are ignored. Attention then
focuses entirely on spatial moments, and to eliminate
higher-order terms one either makes a distributional as-
sumption [15, 16] or appeals to the spatial connectedness
of the system [24–26]. We note that closely related clus-
ter approximations have been applied in chemical physics
[27], and the study of non-ideal gases [28].

For the model considered here, the simplest moment-
closure scheme is the mean field approximation which
assumes that there is no correlation between the mean
numbers of A and B particles, that is E[<nAnB>] =
E[<nA>] E[<nB>]. This recovers the deterministic sys-
tem (1) on substituting α = E[<nA>] and β = E[<nB>].
However, to understand the effect of spatial heterogene-
ity, second-order terms must be considered. The follow-
ing equations describing the evolution of E[<nAnB>],
E[<n2

A>] and E[<n2
B>] can be developed along similar

lines to equation (6):

d

dt
E[<nAnB>] = (E[<n2

AnB>]− E[<nAn2
B>])κ (8)

−(κ+Kb + 2ν + λ)E[<nAnB>]
+λE[<nA><nB>] + να0E[<nB>] ,

d

dt
E[<n2

A>] = −2κE[<n2
AnB>] + (2α0 + 1)νE[<nA>]

−2νE[<n2
A>] + κE[<nAnB>] + να0 ,

d

dt
E[<n2

B>] = 2κE[<nAn2
B>]− 2(Kb + ν + λ)E[<n2

B>]

+2λE[<nB>2] + κE[<nAnB>]
+(Kb + ν + 2λ)E[<nB>] .

Equations (6) - (8) contain two sorts of higher-order
terms which must be removed to close the system.
Firstly, E[<nA><nB>] and E[<nB>2] are second-order
moments of <nA> and <nB> with respect to the distri-
bution of state variables at time t. In the following we ig-
nore fluctuations in these quantities (also in E[<nAnB>],
E[<n2

A>] and E[<n2
B>]), so E[<nA><nB>] = E[<nA>

] E[<nB>] and E[<nB>2] = E[<nB>]2. It is antici-
pated that this approximation will be valid for large sys-
tem size N . Secondly, E[<n2

AnB>] and E[<n2
AnB>] are

third-order terms with respect to the spatial distribution.
These terms will be approximated by functions of the
first- and second-order quantities E[<nA>], E[<nB>],
E[<nAnB>], E[<n2

A>] and E[<n2
B>]. Two forms of clo-

sure (functional forms), stochastic linearization and the
log-Normal approximation are now considered.

A. Stochastic linearization

In this method any terms which are non-linear in
stochastic variables are removed by replacing carefully
selected expressions with their expectations [29]. Equa-
tions describing the evolution of the moments of the re-
sulting linear model are closed, and thus can be used
to approximate the original nonlinear process. In the
present case modifying the site specific autocatalytic re-
action rate in (4) to KE[<nAnB>], that is the expecta-
tion of the average reaction rate over all sites, leads to a
closed system of equations which can be obtained from
(6) - (8) by substituting

E[<n2
AnB>] = E[<nA>]E[<nAnB>] and (9)

E[<nAn2
B>] = E[<nAnB>]E[<nB>] .

Under this approximation the covariance
CAB = E[<nAnB >] − E[<nA >]E[<nB >] obeys the
equation

d

dt
CAB(t) = −(λ+ κ+Kb + 2ν)CAB(t) (10)

−κE[<nA(t)>]E[<nB(t)>] ,

which may be solved by Fourier transformation and ap-
plication of the convolution theorem to give

CAB(t) = −κ
∫ ∞

0

E[<nA(t− T )>]E[<nB(t− T )>]

×e−(λ+κ+Kb+2ν)T dT . (11)

Keeling et. al [15] obtain a similar result in the context
of predator-prey models, suggesting that it reveals the
form of delay equation which would account for spatial
heterogeneity in the system. Expression (11) also shows
that CAB ≤ 0, so the reaction rate in the spatial model,
KE[<nAnB>] = KE[<nA>]E[<nB>] + KCAB , is typ-
ically lower than that of the mean field (deterministic)
model KE[<nA>]E[<nB>]. The degree of negative cor-
relation quantifies the local depletion of reactants in the
spatial system. Further insight comes from examining
the steady state solution of the stochastic linearization
(6), (7) and (10) for the large mixing limit, λ → ∞,
where the covariance CAB becomes zero and E[<nA>]
and E[<nB>] correspond to the reactive state of the de-
terministic system (2). Thus a large degree of mixing
reduces the correlations between reactants, reflecting the
associated break-down of spatial structure.

Figure 6 shows the results of numerical solution of the
stochastic linearization approximation together with a
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typical realization of the full stochastic process, shown
in Figure 4, for moderate mixing rate λ = 1. The confi-
dence intervals shown are based on the standard errors

σA =
√

E[<n2
A>]− E[<nA>]E[<nA>]/

√
N

σB =
√

E[<n2
B>]− E[<nB>]E[<nB>]/

√
N ,

and the results show good agreement between simulation
and approximation. Moreover, the reactant levels are
close to those of the reactive state (α1, β1) of the deter-
ministic system (1). In contrast, the situation shown in
Figure 7 with λ = 0.01 demonstrates that the stochastic
linearization approximation breaks down for low mixing
rates. In this regime Figure 4 shows the reactive state of
spatial stochastic process to be unstable, with the system
settling down to the unreactive state after a short tran-
sient phase. However, stochastic linearization predicts
that the steady state reactant levels will shift compared
with the case of perfect mixing, but that the reactive
state will remain stable. Such failings motivate applica-
tion of an alternative approximation.
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FIG. 6: Stochastic linearization: Large mixing rate λ = 1.
The top graph shows a typical realization (also shown in Fig-
ure 4) of the average density <nA(t)> against re-scaled time
tK from the stochastic spatial autocatalytic process (jagged
line). The confidence interval E[< nA >] ± 1.96σA (solid
curves) are obtained by numerical solution of (6)-(8) under
the stochastic linearization approximation (9). The bottom
graph depicts the same information for reactant B. In each
case the parameter values are K = 1, α0 = 1, Kb = ν = 1/17
and N = 500.

B. Log-Normal approximation

An alternative to stochastic linearization is to make
some assumption concerning the distribution of reactant
levels over sites. A possible choice is the Gaussian dis-
tribution, but in the low mixing regime the average level
of reactant B tends to zero, suggesting that this or any
other symmetric distribution would be a poor approx-
imation. A non-symmetric alternative is to assume a
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FIG. 7: Stochastic linearization: As Figure 6 but for small
mixing rate λ = 0.01. The reactive state (α1, β1) of the de-
terministic system (1) is also shown (dot-dashed lines).

log-Normal distribution of reactant levels over sites. As
shown in Appendix 1, this enables the third-order terms
in the equations (6)-(8) to be approximated by

E[<n2
AnB>] =

E[<n2
A>]E[<nAnB>]2

E[<nA>]2E[<nB>]
(12)

E[<nAn2
B>] =

E[<n2
B>]E[<nAnB>]2

E[<nB>]2E[<nA>]
.

Although the resulting moment evolution equations are
more complex than for those associated with stochastic
linearization, they nonetheless afford analytic insight. In
the large mixing limit, λ→∞, these equations admit to
a steady state solution

E[<nA>] = E[<n2
A>]− E[<nA>]2 = (Kb + ν)/K

E[<nB>] = E[<n2
B>]− E[<nB>]2 =

ν(α0K −Kb − ν)
(κ(Kb + ν))

CAB = 0 , (13)

which corresponds to a Poisson-like distribution about
the deterministic reactive state (2). To first-order as
λ → ∞, the evolution equation for the correlation CAB
becomes

d

dt
CAB(t) = −λCAB(t) .

Thus, in this limit the correlation tends to zero expo-
nentially, as mixing breaks down spatial heterogeneity.
Furthermore this equation suggests that for λ → ∞ the
steady state (13) is an attracting state: this conjecture
is supported by numerical solution of the log-Normal
approximation to the moment evolution equations for
λ = 1, and these results, shown in Figure 8, also demon-
strate the accuracy of the log-Normal approximation.

A second steady state of the log-Normal approxima-
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tion, valid for all λ is

E[<nA>] = α0 E[<n2
A>]− E[<nA>]2 = α0 ,

E[<nB>] = 0 E[<n2
B>]− E[<nB>]2 = 0 ,

CAB = 0 , (14)

which is a Poisson-like distribution whose mean corre-
sponds to the unreactive state of the deterministic sys-
tem. Although we have been unable to determine the
relative stability of the reactive (13) and unreactive (14)
states of the log-Normal approximation analytically, Fig-
ure 9 demonstrates that for λ = 0.01 the unreactive state
(14) is asymptotically stable in accord with results ob-
tained by simulation of the full stochastic model shown
in Figure 4. Thus, in contrast to stochastic linearization,
the log-Normal approximation is able to predict the tran-
sition to the unreactive state seen at low levels of mixing.
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E[<nA(t)>]

E[<nB(t)>]
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FIG. 8: Log-Normal approximation: Large mixing rate
λ = 1. The top graph shows a typical realization of the
average density <nA(t)> against re-scaled time tK (jagged
line) as shown in Figure 6. The confidence interval E[<nA>]±
1.96σA (solid curves) is obtained by numerical solution of (6)-
(8) under the log-Normal approximation (12). The bottom
graph depicts the same information for reactant B. In each
case the parameter values are K = 1, α0 = 1, Kb = ν = 1/17
and N = 500.

Figure 10 compares the log-Normal approximation
with the simulation results of figure 5. The log-Normal
approximation is quantitatively correct at the extremes
of mixing and no mixing, and although it is less accurate
it still captures the qualitative behaviour at intermedi-
ate levels of λ. As we have seen in the limit λ→∞, the
spatial system becomes well-mixed, and therefore corre-
sponds to the nonspatial system with volume Ω = N .
The results of Figures 2 and 10 imply that for small sys-
tems (N < 50) the reactive state will be unstable for all
λ, and the log-Normal approximation will break-down, as
is confirmed by direct simulation. This is related to the
fact, noted below equations (8), that the moment-closure
schemes are expected to be most accurate for large N .
This is because we only consider the evolution of the
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FIG. 9: Log-Normal approximation: As Figure 8 but for
small mixing rate λ = 0.01. The reactive state (α1, β1) of the
deterministic system (1) is also shown (dot-dashed lines).

expected values of quantities describing the spatial dis-
tribution (i.e. E[<nA>], E[<nB>], etc.), neglecting any
fluctuations between realizations of the process.

Figure 11 shows the corresponding asymptotic be-
haviour of the covariance and variances in reactant levels
across the system for a range of mixing rates. The data
shown are from the simulations and solutions to the log-
Normal approximation used in Figure 10. The reactants
are maximally separated, and thus spatial heterogeneity
at its greatest, at the critical mixing rate where the re-
action state becomes stable/unstable. For larger mixing
rates the correlation increases with λ.
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1.0

0.0 0.5 1.0 1.5 2.0
0.0
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0.4

0.6

0.8

1.0

E[<nA>]

E[<nB>]

λ/K

FIG. 10: Stability of reaction state: The solid lines show
the asymptotic values of E[<nA>] and E[<nB>] (as indi-
cated) obtained from the solution of the log-Normal approxi-
mation for a range of relative mixing rates λ/K. The symbols
represent estimates of E[<nA>] (diamonds) and E[<nB>]
(circles) obtained from 10 simulation runs, with samples col-
lected, after a burn-in period, from t = 500, ..., 1000. The
standard errors in these estimates are approximately equal to
the size of the symbols. The parameter values are K = 1,
α0 = 1, Kb = ν = 1/17 and N = 500.
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FIG. 11: Stability of reaction state: The solid lines show
the asymptotic values of Var(nA) = E[<n2

A>] − E[<nA>]2,
Var(nB) = E[<n2

B>] − E[<nB>]2 and the normalized corre-

lation Cor(nA, nB) = CAB/
√

Var(nA)Var(nB) (as indicated)
obtained from solution of the log-Normal approximation for a
range of values of the relative mixing rate λ/K. The symbols
represent estimates of E[Var(nA)] (diamonds), E[Var(nB)]
(circles) and E[Cor(nA, nB)] (squares) obtained from 10 sim-
ulation runs, with samples collected after a burn-in period
from t = 500, ..., 1000. The standard errors in these estimates
are approximately equal to the size of the symbols. The pa-
rameter values are K = 1, α0 = 1, Kb = ν = 1/17 and
N = 500.

IV. DISCUSSION

A living cell is an open system, which can communicate
with environments by transferring chemical signals and
energy. Enzymatic reactions in living cells are confined
to very small spatial volumes. Moreover, these reactions
are subject to strong thermal fluctuations inside the cells
due to a flow of energy [14], and these conditions can lead
to qualitative changes in the kinetics of enzymatic reac-
tions in comparison with high-density well mixed condi-
tions. For example, coherent dynamics can form between
substrates and enzymes when the reaction takes place in
small volumes [14, 30–32]. Furthermore, our results sug-
gest that without sufficient communication between cells
certain biochemical reactions might be unstable with re-
spect to thermal fluctuations. It would also be interest-
ing to study the effects of within-cell spatial heterogene-
ity. In living cells, a large number of enzymatic reactions
are networked in complicated ways, and are coupled to
thousands of substrates. Pathways can be unidirectional,
reversible, branched, or cyclic, and there are many dif-
ferent types of inhibition and activation [33]. In the post
genome era, these complex networks can be reconstructed
based on genomic data. Unsurprisingly, the purposes
and functions of complex biochemical networks, in par-
ticular spatio-temporal self-organization behaviour, has
attracted much attention [34, 35]. For enzymatic reac-
tions, various mechanisms may lead to spatio-temporal
behaviour [36]. Autocatalysis represents a class of re-

actions of great importance to living cells and has been
much studied in nonspatial contexts [2, 3, 5, 6]. Togashi
and Kaneko [37] show that stochastic fluctuations and
discreteness in molecular numbers leads to transitions be-
tween states in a nonspatial autocatalytic system. The
stochastic spatio-temporal autocatalytic process studied
in this work can be considered a generic model for study-
ing spatio-temporal behaviour in biochemical reactions.
We note that Velikanov and Kapral [38] study the prop-
agation of traveling wave fronts in a spatially explicit
discrete time (Markov Chain) model of quadratic auto-
catalysis. Using a perturbation technique, which sys-
tematically accounts for spatial correlations, they show
that the wave front velocity of the stochastic system is
lower than that predicted by a mean-field analysis which
ignores such correlations. Moreover, as the diffusion co-
efficient increases spatial correlations are minimized and
the discrepancy reduced. The phenomenon is analogous
to the effect of finite mixing on the stability of the re-
active state explored in the current paper. The model
studied here was amenable to a spatial moment-closure
approximation which compared favourably with simula-
tions of the full stochastic process; these results demon-
strate the utility of order-parameters, such as the spatial
averages considered here, in studying system behaviour.
Our investigations clearly show how internal fluctuations,
small volumes and heterogeneity affect the kinetics of the
quadratic catalytic system.

In the nonspatial system at low volumes, the reactive
state of the autocatalytic process is unstable to internal
stochastic fluctuations. The spatial model shows that
such unstable components can be linked together, via
random exchange of reactants, to form a system in which
the reaction is stable. For large mixing rate (λ→∞) the
spatial system with N components behaves like a non-
spatial system with volume N , but for finite mixing rate
this effective volume is less than N . Thus, finite mix-
ing generates spatial heterogeneity (correlation) which
destabilizes the system with respect to a perfectly mixed
system of the same volume, and there is a critical level of
exchange (mixing) below which the reaction is unstable.
Conversely, at the level of the cell, finite mixing stabilizes
the reaction kinetics by forming a system whose effective
volume is much greater than any individual cell. In con-
clusion, our results suggest that autocatalytic reaction
kinetics may only be stable in cellular systems in which
a number of cells are able to exchange reactants via some
transport process. Perhaps such phenomena influenced
evolution by favouring the persistence of aggregations of
multiple cells over that of solitary individuals.

Appendix: Log-Normal approximation

If the reactant levels nA and nB are log-Normally dis-
tributed over sites, then y1 = log nA and y2 = log nB are
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joint Normal with m.g.f. (Kendall, 1994)

M(θ1, θ2) ≡ E[<exp {θ1y1 + θ2y2}>] =
exp {κ10θ1 + κ01θ2 + κ20θ

2
1/2 + κ11θ1θ2 + κ02θ

2
2/2} ,

where E[< . >] denotes the expectation over distributions
in space and time, and

κ10 = 2 log(E[<nA>])− log(E[<n2
A>])/2 ,

κ01 = 2 log(E[<nB>])− log(E[<n2
B>])/2

κ20 = log(E[<n2
A>])− 2 log(E[<nA>]) ,

κ02 = log(E[<n2
B>])− 2 log(E[<nB>])

κ11 = log(E[<nAnB>])− (κ20 + κ02)/2− κ10 − κ01 .

For appropriate choice of θ1 and θ2 expressions for the
higher-order terms E[<n2

AnB >] and E[<nAn2
B >] are

obtained from

E[<nθ1A n
θ2
B>] =<[exp {θ1y1 + θ2y2}>= M(θ1, θ2) .

For example setting θ1 = 2 and θ2 = 1 yields

E[<n2
AnB>] = M(2, 1)

= exp {2κ10 + κ01 + 2κ20 + 2κ11 + κ02/2} ,

which simplifies to

E[<n2
AnB>] =

E[<n2
A>]E[<nAnB>]2

E[<nA>]2E[<nB>]
.

The resulting expressions (12) can then be used to close
the system of moment evolution equations (6)-(8).
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