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This paper describes how importance sampling can be applied to estimate likelihoods for spatio-
temporal stochastic models of epidemics in plant populations, where observations consist of the set
of diseased individuals at two or more distinct times. Likelihood computation is problematic because
of the inherent lack of independence of the status of individuals in the population whenever disease
transmission is distance-dependent. The methods of this paper overcome this by partitioning the
population into a number of sectors and then attempting to take account of this dependence within
each sector, while neglecting that between-sectors. Application to both simulated and real epidemic
data sets show that the techniques perform well in comparison with existing approaches. Moreover,
the results confirm the validity of likelihood estimates obtained elsewhere using Markov chain Monte
Carlo methods.

I. INTRODUCTION

Gibson and Austin (1996) introduced a simple method
for estimating parameter likelihoods for a spatio-
temporal SI (Susceptible-Infected) model of epidemic
spread on a lattice. The techniques were then used to
fit the model to observations of Citrus tristeza virus dis-
ease spread in an orchard originally reported in Marcus
et al. (1982). In this model the population members
are identified with the vertices of a rectangular lattice,
L. Each individual is assumed to be either in state S
(susceptible) or in state I (infective). Disease spread is
modelled according to the law.

Pr(σ(x(t+ dt)) = I | σ(x(t)) = S)

∝
∑

{y:σ(y(t))∈I}

Fα(y − x)dt. (1)

Here σ(x(t)) denotes the state at time t of the individual
at x and the summation is over all infected individuals
{y : σ(y(t)) ∈ I} at time t. The model formulation
assumes that the infective challenges presented to sus-
ceptible x by the infectives, y, combine additively to
determine the overall stochastic rate with which x ac-
quires the disease. Fα is a function, parameterised by α,
which describes how the infective challenge presented to
x by y is related to the displacement y − x. Equation
(1) therefore defines the evolution of a stochastic spatio-
temporal process. Gibson and Austin (1996) considered
the situation where observations, E, are the sets of in-
fected individuals I0 ⊆ I1 ⊆ L at two time-points t0 < t1.
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They show how a parameter likelihood L(α |E) can be
defined as

L(α | E) =
∑
ω∈Ω

Pr(ω | α), (2)

where Ω denotes the set of all orderings of I1\I0 =
{x1, ...,xn}, i.e. the set of locations of new infections
occurring between the observation times, and Pr(ω | α)
denotes the probability that these locations become in-
fected in the order ω. Note that this approach ignores
the exact timings of events which is reflected in the miss-
ing constant of proportionality in (1). Gibson (1997b)
shows that a simple re-normalisation of time allows this,
potentially time-dependent constant to be set to unity.
In general, m ≥ 2 observations I0 ⊆ I1 ⊆ ... ⊆ Im−1 ⊆ L
at times t0 < t1 < ... < tm−1 may be available. On
denoting successive observation pairs at tq−1 and tq by
Eq = {Iq−1, Iq} for q = 1, ...,m, the Markovian nature
of the system described by (1) means that the likelihood
conditional on the set of all observations {Eq} may be
written in terms of a product of likelihoods based only
on observation pairs, whence

L(α | {Eq}) =
m−1∏
q=1

L(α | Eq).

In this paper we therefore consider estimation of the like-
lihood (2) based only on pairs of observations. Compu-
tation of Pr(ω | α) is straightforward (see Gibson and
Austin,1996; Gibson 1997b; and the Appendix). How-
ever, since |Ω |= n!, it is not in general possible to com-
pute the integral (2) directly, except for small values of
n.

Gibson and Austin (1996) use a simple stochastic in-
tegration method, simulating orderings ω from a known
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distribution g(ω), and appeal to the fact that for ω gen-
erated in this way Pr(ω |α)/g(ω) is an unbiased estimate
of L(α | E). Using this method with g uniform over Ω
they show that it is possible to estimate L(α |E) for the
particular data and models considered, with useful pre-
cision. However, subsequent investigations showed that
if Fα(y−x) defines a predominantly short-range interac-
tion, then strong dependence of Pr(ω |α) on ω can occur.
As a result, the variance of Pr(ω | α) under g is large,
and the variance of the estimate L(α |E) is therefore also
large for the uniform sampling model.

Importance sampling (Ripley, 1987) was considered
as a means of reducing the variance of the estimates
Pr(ω | α)/g(ω), by drawing the ω from a known distri-
bution g approximately proportional to Pr(ω | α). Ini-
tial attempts to identify a suitable g with this prop-
erty were unsuccessful, and subsequent studies (Gibson,
1997a, 1997b; Gottwald et al. 1999) focused on the use
of Markov chain Monte Carlo (MCMC, see e.g. Robert
and Cassella, 1999; O’Neill and Roberts, 1999) methods
to estimate the relative values of L(α | E) over the pa-
rameter space, by recasting the problem in a Bayesian
framework. In this approach, the unknown order ω is
treated as a nuisance parameter, and the joint posterior
π(α, ω |E) is investigated using MCMC. When the prior
density of α is uniform the marginal posterior π(α | E)
specifies the relative values of L(α | E), and π(α, ω | E)
is proportional to Pr(ω | α). A variety of algorithms
then allow the construction of a Markov chain with lim-
iting distribution π(α, ω | E) using the proportionality
to Pr(ω |α) in defining the transition probabilities (Gib-
son, 1997a,b). Once the chain has reached equilibrium,
samples {(αi, ωi) | i = 1, ...,m} may then be used to
estimate

π(α | E) =
1
m

m∑
i=1

π(α | ωi, E).

If α is constrained to take one of a finite set of values
{αl : l = 1, ...,M}, then the conditional density

π(αl | ω,E) = Pr(ω | αl)/
M∑
k=1

Pr(ω | αk).

is easily calculated.
In this paper we return to the importance sampling

approach. We show that by considering a simplified
spatio-temporal process it is possible to identify a dis-
tribution g(ω) which considerably reduces the variance
of Pr(ω | α)/g(ω) in comparison with the uniform case.
There are several benefits to pursuing this approach.

• Alternative integration techniques such as importance
sampling are useful for confirming the validity of results
obtained by MCMC. The convergence of MCMC meth-
ods is the subject of much interest, and in many cases
it is not yet possible to determine whether a sequence
of samples from a Markov chain is truly representative

of the stationary distribution (Cowles and Carlin,
1996). This is true for the results of Gibson (1997a,b)
although sample based tests did not indicate convergence
problems. This issue may be circumvented by use of
perfect simulation (Propp and Wilson, 1996) which
generates samples from the equilibrium distribution of
the Markov chain. However, practical implementation of
this approach requires the identification of an ordering
on state space, which is preserved under the evolution
of the Markov chain. Typically, identification of such an
ordering is not straightforward and we have been unable
to do so for the estimation problem considered here.

• To formulate a suitable g one might make qual-
itative, simplifying approximations regarding the
spatio-temporal process. The validity of these should be
reflected by the variance of the corresponding likelihood
estimator. Therefore, by formulating and testing a
distribution g in this way we may be able to gain insight
into the essential dynamics of the spatio-temporal
process of interest.

• Direct estimates of the likelihood obtained via impor-
tance sampling would greatly simplify the process of
model comparison described by Gibson and Renshaw
(2001) who use MCMC sampling to conduct a general-
ized likelihood ratio test.

• The methods described here need not be used in
isolation from other techniques. For example, g may be
used as the proposal distribution for an MCMC sampler,
which should improve the mixing rate of the overall
algorithm.

In the next section we describe the method of construc-
tion of our sampling distribution g which is designed to be
approximately proportional to Pr(ω |α). Then in Section
3 we apply the method to simulated data sets in order
to quantify the improvement in performance in compari-
son with the case where g is uniform. Finally, in Section
4 the technique is applied to a real data set previously
analysed using MCMC by Gibson (1997a).

II. LIKELIHOOD ESTIMATION USING
IMPORTANCE SAMPLING

Because the models considered have a simple Markov
structure throughout, it suffices to discuss the compu-
tation of likelihoods for the case where an epidemic is
observed at two distinct time points, t0 and t1. How-
ever, data from several sequential pairs of observation
times may each be treated as described below, and
combined using the Markov property. We retain the
notation introduced in Section 1. The approach taken
to construct the appropriate sampling distribution g is
the following. We decompose the lattice as a partition
of k disjoint subsets L = L1 ∪ ...∪Lk. Then we consider
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a modified spatio-temporal model for the development
of the epidemic between t0 and t1. The modified model,
denoted M ′, is as described in the Introduction with the
following addendum. We assume that a susceptible at x
can acquire the disease:

• either from an individual y ∈ I0;

• or, from an individual y ∈ Lj∩(I1\I0) where x ∈ Lj .

Now for 1 ≤ j ≤ k, let the set Xj = Lj ∩ (I1\I0), with
|Xj | elements. In addition, let ωj be an ordering of Xj

and consider the probability

φj(ωj) = Pr{the first |Xj| infections (after t0) in Lj

occur at Xj in the order ωj |M ′}

Since for M ′ the infection process within Lj is
independent of that in Li, i 6= j, then φj(ωj) depends
only on ωj . Moreover, if |Xj| is sufficiently small then it
is possible to evaluate φj(ωj) for all possible choices of ωj .

The algorithm for generating orderings of I1\I0 is now
described.

1. For each j, 1 ≤ j ≤ k, generate an ordering ωj of Xj

from the distribution φj .

2. Generate a total ordering ω of I1\I0 by repeatedly
selecting the first previously unselected site in ωj ,
for j selected with probability proportional to the
number of previously unselected sites in Xj .

The densities φj are easily computed as shown in
the Appendix. Moreover, if J denotes the sequence of
j1, ..., jn selected in (2) above then the density f(J) can
be easily computed (see Appendix). Therefore the den-
sity of the ordering ω generated by (1) and (2) above can
be expressed as

g(ω) = f(J)
k∏
j=1

φj(ωj).

By partitioning the lattice in this way we attempt to
take account of chains of causality within each sector Lj
and the effect that this may have on the probabilities
of different temporal orderings in the sector, while ne-
glecting the effect of chains of causality (infection) which
cross between sectors. So the method shares something
of the philosophy of cluster approximations (e.g. Filipe
and Gibson, 1998) to spatio-temporal model behaviour
in that it neglects aspects of interactions between clus-
ters. When k = 1, the density g(ω) is precisely propor-
tional to Pr(ω | α) and the original problem is recovered.
By selecting the Lj so that the number of new infec-
tions occurring in each is manageable (so that the den-
sities φj can be computed and stored) the generation of
ω and the computation of g(ω) become computationally
feasible. The simplification of the dynamics of spatio-
temporal lattice processes by partitioning has also been
considered by Rand and Wilson (1995).

III. RESULTS WITH SIMULATED EPIDEMICS

In this and the following section we apply our impor-
tance sampling procedure to analyse first simulated and
then real epidemic data sets, and quantify the improve-
ments over the case where the orderings ω are sampled
uniformly. First we explore the application to data gen-
erated by a model infection process of the type described
by equation (1) where the force of infection is described
by a power-law, namely

Fα(y − x) =| y − x |−2α . (3)

The larger the value of α the shorter the range over which
infection is likely. We consider this infection process on a
lattice of 20×20 sites with unit spacing. In order to gen-
erate test data, initial infections on the lattice are drawn
randomly from a multinomial distribution with infection
probability 0.1; in the realization used here 46 primary
cases are created which corresponds to a relatively se-
vere initial infection. Approximately 50 secondary in-
fections are then generated by the process (1) with the
power-law infection force (3). This is performed for two
power-law exponents α = 2 and α = 2.5. Figures 1a and
2a show that the results obtained by applying random
sampling to estimate the likelihood L(α | E) from both
sets of data are rather poor. This is because the infec-
tion process is dominated by predominantly short-range
interactions and Pr(ω | α) is strongly dependent on the
ordering ω of secondary infections. This situation is one
in which our importance sampling technique should per-
form well. However, before it can be applied the lattice
L must be decomposed into appropriate disjoint subsets
Lj , j = 1, ..., k. Figures 1d and 2d show the primary
and secondary infections for each data set, and the re-
gions used. The Lj are chosen subject to some upper
limit on the number of secondary cases within a given
region, such that they contain a spatially distinct group
of secondary infections. Under the action of infection pro-
cess (1) these regions are likely to contain causally linked
chains of secondary infections, and importance sampling
based on such regions should result in more precise es-
timates of the likelihood compared with those obtained
from random sampling.

In the examples considered here only rectangular re-
gions are considered, although more general geometries
could be used. Furthermore, for reasons of computa-
tional effort the number of secondary infections per re-
gion is limited to a maximum of nine. For the data set
generated with α = 2 Figure 1b shows the estimates of
L(α | E) obtained by applying the importance sampling
method with regions (shown in Figure 1d) containing less
than 7 secondary infections. Comparison with Figure 1a
shows a clear improvement over random sampling with
a marked reduction in the variance of the likelihood es-
timates. Importance sampling (results not shown) with
regions containing less than 5 secondary infections show
a similar improvement over random sampling to those of
Figure 1b with a corresponding reduction in computa-
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FIG. 1: Parameter likelihoods estimated from data generated by the infection process (1) with a power-law contact rate (3) with
α = 2.0. (a) shows the estimate of L(α |E) (solid curve) and ± two standard deviation interval (dot-dashed curves) obtained
by random sampling, whilst (b) shows that obtained by using the importance sampling procedure (see text for details). (c)
shows the coefficient of variance of the estimates of L(α |E) obtained for random (solid curve) and importance (dot-dashed
curves) sampling. In (d) the open squares show the relative positions of the primary infections, the solid squares those of the
secondary infections, and the lines delineate the regions used in the importance sampling algorithm.

tional effort. This reduction of variance is further illus-
trated by the coefficient of variation shown in Figure 1c
where the improvement gained by using our method of
importance sampling increases markedly as the range of
the interaction reduces (α increases).

Figures 2b and 2c show the application of the im-
portance sampling procedure to data generated by the
power-law infection process with α = 2.5 starting with
the same 46 primary infections. In this case regions con-
taining less than 9 secondary infections (Figure 2d) are
used and, as anticipated, the improvement over random
sampling is even more pronounced in this case where the
interactions are shorter in range.

In order to assess the impact of region choice on the
performance of the importance sampling algorithm three
further designs are explored for the case α = 2.5. Fig-
ure 3c shows the first of these, which is intended as an
example of extremely poor region design; the boundaries
have been chosen so as to break up clusters of secondary
infections to the extent that no adjacent pairs of sec-
ondary infections appear in the same region. Figures 3a
and 3b show that, as expected, the precision of the esti-
mates is no better than for random sampling. Figure 4c

shows a slightly improved design in which regions enclose
at most adjacent pairs of secondary infections. However,
since the data contain clusters of three or more adjacent
pairs this design is also expected to perform poorly. This
result is confirmed by Figure 4a which shows little im-
provement over random sampling. Moreover, Figure 4b
shows that these results are poor in comparison to those
obtained from importance sampling based on the larger
regions shown in Figure 2d. Figure 5c shows a similar
design in which regions are slightly enlarged, but remain
smaller than those of Figure 2d, and enclose at most three
adjacent secondary infections. Figures 5a and 5b show
that importance sampling based on this design produces
estimates of the likelihood whose precision is a consider-
able improvement over random sampling, but still poor
compared to the results of Figure 2. The lesson is clear:
regions should be chosen to enclose clusters of adjacent
secondary infections which are as large as possible, but
the number of secondary infections within a region must
be constrained by the need to keep the explosion of pos-
sible orderings of these to a manageable level. However,
our results suggest that useful precision may be obtained
even when regions are forced to break-up natural clusters
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FIG. 2: As Figure 1, but with data generated by infection process (1) with a power-law contact rate (3) with α = 2.5.

of secondary infections, so long as they enclose reasonable
subsets of such clusters.

IV. APPLICATION TO CITRUS TRISTEZA
VIRUS DATA

Here we apply importance sampling to the Citrus tris-
teza virus data set studied by Gibson (1997a). Figure
6d shows the positions of the observed primary and sec-
ondary infections, along with the regions (each containing
less than 8 secondary infectives) used in the importance
sampling procedure. Gibson (1997a) uses MCMC to esti-
mate model parameters in a generalisation of (1), namely

Pr(σ(x(t+ dt)) = I|σ(x(t)) = S)

∝ βdt+
∑

{y:σ(y(t))∈I}

Fα(y − x)dt (4)

where β is the background infection rate and the con-
tact rate is the power-law (3). Gibson (1997a) estimates
the joint likelihood L(α, β | E), and the maximum like-
lihood parameter estimates found within α ∈ [0, 3.5] and
β ∈ [0, 1.12] are α = 3.5 and β = 0.833. Although these
estimates are on the boundary of the parameter space
considered, the likelihood is relatively flat for large val-
ues of α (> 3.5) which corresponds to a quasi-nearest-
neighbour interaction. Figure 6a shows the estimate of

the conditional likelihood L(α | E, β = 0.1) obtained us-
ing random sampling, whilst Figure 6b shows the corre-
sponding estimates obtained from importance sampling
(based on the regions shown in Figure 6d). The resulting
variance reduction is quantified by the coefficient of vari-
ation (Figure 6c). The value of the background infection
rate is chosen to be less than the maximum likelihood es-
timate as in this region of parameter space the process of
infection predominates. Moreover, L(α | E, β = 0.1) has
a well-defined maximum in contrast to the profile likeli-
hood L(α | E, β = 0.833) which, as noted above, levels
off as α increases. The results show a striking improve-
ment in the precision obtained from importance sampling
compared with that obtained from random sampling. Al-
though the results are not shown, the importance sam-
pling method was applied to a second Citrus tristeza
virus data set, and the resulting estimates of the like-
lihood agree well with those obtained by Gibson (1997b)
using MCMC.

V. CONCLUSIONS AND DISCUSSION

We introduce a method of importance sampling ap-
plicable to spatial infection processes where observations
of the numbers of infected individuals are made at in-
tervals. This method provides estimates of parameters
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FIG. 3: Parameter likelihoods estimated from data generated by the infection process (1) with a power-law contact rate (3)
with α = 2.5 (as used in Figure 2). (a) shows the estimate of L(α |E) (solid curve) and ± two standard deviation interval (dot-
dashed curves) obtained by importance sampling using regions depicted in (c) containing no neighbouring secondary infections
(see text for details), whilst (b) compares the coefficient of variance of the estimates of L(α |E) obtained (solid curve) with
those of the importance sampling described in Figure 2 (dot-dashed curve). In (c) the open squares show the relative positions
of the primary infections, the solid squares those of the secondary infections, and the lines delineate the regions used in the
importance sampling algorithm

for the process (1) with contact distributions given by
(3) for both model generated data, and for field obser-
vations. Parameter estimation based on the model data
shows that, in accord with expectations, importance sam-
pling is most effective in cases where the interactions are
predominantly short-range. The utility of the method
is further demonstrated through successful application
to observations previously analysed using MCMC tech-
niques by Gibson (1997a).

An important issue is the design of the regions used
in the importance sampling procedure. Intuitively we
should like borders to avoid going close to new infections
if possible, and we have seen that regions must enclose
sizeable fractions of any natural clusters in order to gain a
worthwhile reduction in variance. However, if long chains
of infection develop, and the features in the set of new
infections are large (i.e. comparable to the number of
nodes in the lattice) then it will not be possible to parti-
tion the lattice such that the assumption of independence
of new infections between sectors is valid. The methodol-
ogy developed here is therefore limited to time intervals
for which the process has not has been able to estab-

lish such large structures. However, the application to
the Citrus tristeza virus data set demonstrates that such
time scales are of practical relevance (see also Gottwald
et al. 1999). The concept of the identification of a critical
scale for the process, as discussed by Rand and Wilson
(1995), is relevant. This is a spatial scale defining regions
over which development of the process is independent of
that in other regions. It may be possible to link the vari-
ance reduction obtained with our importance sampling
method to the problem of determining this critical scale,
though this remains the subject of future work.

APPENDIX

This appendix shows how to calculate the importance
sampling probability function g(ω) defined in Section 2.
Consider the probability

φj(ωj) = Pr{the first |Xj| infections (after t0) in Lj

occur at Xj in the order ωj |M ′}



7

1.5 2.5 3.5 4.5
0.00

0.02

0.04

0.06

α

(a)

1.5 2.5 3.5 4.5
0.00

0.20

0.40

0.60

0.80

α

(b)

(c)

FIG. 4: As Figure 3, but with regions shown in (c) enclosing at most pair clusters of secondary infectives.
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FIG. 5: As Figure 3, but with regions shown in (c) enclosing at most triple clusters of secondary infectives.
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FIG. 6: Parameter likelihoods estimated from CTV data. (a) shows the estimate of L(α |β= 0.1, E) (solid curve) and ± two
standard deviation interval (dot-dashed curves) obtained by random sampling, whilst (b) shows that obtained by using the
importance sampling procedure (see text for details). (c) shows the coefficient of variance of the estimates of L(α |β=0.1, E)
obtained for random (solid curve) and importance (dot-dashed curve) sampling. In (d) the open squares show the relative
positions of the primary infections, the solid squares those of the secondary infections, and the lines delineate the regions used
in the importance sampling algorithm.

Note that for a single region Lj = L covering the entire
lattice this corresponds to the probability Pr(ω | α). In
general, let nj denote the number of secondary infections
|Xj| and {x1, ...,xnj} the locations of the ordering ωj of
the secondary infections Xj in subset Lj . Then

φj(ωj) =
nj∏
i=1

pj(xi | x1, ...,xi−1, I0).

Here the probability pj(xi | x1, ...,xi−1, I0), that xi is
the ith infection in the subset Lj , is dependent on the
primary infections across the entire lattice I0 but only on
the (i−1) secondary infections {x1, ...,xi−1} in Lj . This
may be expressed as the normalised infection pressure

pj(xi | x1, ...,xi−1, I0) =
c(xi | x1, ...,xi−1, I0)∑

xk∈Lj\{x1,...,xi−1,I0} c(xk | x1, ...,xi−1, I0)
,

where the summation is over all sites within Lj that re-
main susceptible following the infection at xi−1. The

infection pressure at xi is given by

c(xi | x1, ...,xi−1, I0) =
∑

y∈{x1,...,xi−1,I0}

Fα(xi − y).

where y ranges over all primary infections in I0 and the
secondary infections x1, ...,xi−1. In order to generate a
total ordering ω, sub-orderings ωj are first generated for
each subset Lj with probability φj(ωj). Denote by nj,r
the number of unselected secondary infections in subset
Lj , immediately prior to the selection of the rth sec-
ondary infection in the total ordering ω. Thus, for the
selection of the first secondary infection, nj,r = nj,1 cor-
responds to the number of secondary infectives nj in Lj .
If region j is selected in the rth iteration then the sec-
ondary infective (nj − nj,r + 1) in the sub-ordering ωj is
assigned to the rth position in the total ordering ω, and
nj,r+1 = nj,r − 1. At each step the value of j is selected
randomly with probability proportional to the number of
unselected sites in Lj . In this way a sequence of subsets
J = (j1, ..., jn), where jr ∈ {1, 2, ..., k}, is generated with
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probability

f(J) =
n∏
r=1

nj,r∑k
j=1 nj,r

,

and the total ordering ω is generated with probability
g(ω) as defined in Section 2.
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