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Abstract

The role of stochasticity and spatial heterogeneity in foraging systems is investigated. We formulate a spatially explicit model

which describes the behaviour of grazing animals in response to local information using simple stochastic rules. In particular the

model reflects the biology in that decisions to move to a new location are based on visual assessment of the sward height in a

surrounding neighbourhood, whilst the decision to graze the current location is based on the residual sward height and olfactory

assessment of local faecal contamination. It is assumed that animals do not interact directly, but do so through modification of, and

response to a common environment. Spatial heterogeneity is shown to have significant effects including reducing the equilibrium

intake rate and increasing the optimal stocking density, and must therefore be taken into account by resource managers. We

demonstrate the relationship between the stochastic spatial model and its non-spatial deterministic counterpart, and in the process

derive a moment-closure approximation to the full process, which can be regarded as an intermediate, or pseudo-spatial model. The

role of spatial heterogeneity is emphasized, and better understood by comparing the results obtained from each approach. The

relative efficiency of random and directed searching behaviour in spatially heterogeneous environments is explored for both clean

and contaminated pastures, and the impact of faecal avoidance behaviour assessed.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Grazing systems represent approximately 20% of the
total land area of the earth’s surface (Hodgson and
Illius, 1996). Environmental impact can be reduced by
more efficient forage utilization, and grassland diversity
enhanced through improved understanding of grazing
selection. In addition the physical and economic
productivity of a grazing system is intrinsically linked
to the efficiency of a single grazing unit. Herbivore
e front matter r 2004 Elsevier Ltd. All rights reserved.
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utilization of grass swards is limited by the quality and
quantity of forage ingested (Fryxell, 1991; Ungar, 1996),
and the interaction between grazing animal and sward
has important implications for the development of both.
Therefore quantifying diet selection, herbage intake and
modification of the forage resource base by the grazing
animal will help define the limits to sustainable grazing
systems.

There is widespread acknowledgment of key processes
that determine grazing intake, these include bite rate,
bite mass and grazing time (Laca et al., 1992; Ungar,
1996; Ungar and Noymeir, 1988). However, herbivores
forage in spatially heterogeneous environments and
make spatial choices to achieve their nutrient intake
requirements, yet the impact of spatial heterogeneity on
herbivore intake is poorly understood (Schwinning and
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Parsons, 1999). Modelling stochastic foraging behaviour
within spatially heterogeneous environments is emerging
as an important tool for understanding grazing systems
(Parsons et al., 2001). Deterministic modelling of
herbivore grazing has provided valuable insights into
the underlying processes that regulate plant–animal
interactions. Methods, based on predator–prey interac-
tions, which have used differential equations have the
implicit and unrealistic assumption that grazing is a
spatially homogeneous process (Noy-Meir, 1975). Recent
developments have extended this approach to include bite
scale patches with variable grazing intervals (Parsons et
al., 2001; Schwinning and Parsons, 1999). However, these
models fall short of being fully spatially explicit by
assuming that animals defoliate bite-sized patches ran-
domly irrespective of patch state or relative location. In
practice the foraging animal’s next bite or patch choice is
determined by its location in relation to the spatial
distribution of resources (see e.g. Grunbaum, 1998).

Herbivore behaviour can be captured by using a series
of simple rules which they use when making grazing
decisions in heterogeneous landscapes: (i) Select tall
vegetative swards over short swards (Black and Kenney,
1984; Arnold, 1987; Bazely and Ensor, 1989; Bazely,
1990); (ii) Select nutrient rich swards over nutrient poor
swards (Bazely, 1990; Langvatn and Hanley, 1993;
WallisdeVries and Schippers, 1994) and (iii) select non-
contaminated swards over faecally contaminated swards
(Dohi et al., 1991; Hutchings et al., 1998). However,
herbivores have incomplete knowledge of the local
environment which creates a two stage grazing process
within heterogeneous environments i.e. patch selection
based on visual cues (e.g. sward height) and patch
rejection based on more localized cues (e.g. olfactory
cues associated with faeces). The relative strength of the
cues will determine the grazing decisions (i.e. patch
choice) of herbivores which will determine their nutrient
intake rate, subsequent sward structure and thus the
efficiency of use of the forage resource (Hutchings et al.,
2002a).

Behavioural selection is in part determined by the
physiological requirements of the grazing animal, the
energy or nutrient demands of the animal will result in a
strategic behavioural response. On this basis there has
been a disproportionate amount of effort put into
developing intake models that are demand driven
(Yearsley et al., 2001). In practice these models have
failed to deliver a generality which can be used beyond
the specific conditions that they were constructed for.
However, if intake is considered as a proxy for
behavioural selection then the inverse of such a relation-
ship should provide some insight into the limitations of
grazing systems (Bao et al., 1998; Cazcarra and Petit,
1995; Gibb et al., 1998, 2002; Gordon et al., 1996; Illius
et al., 1995). Although in practice there will be an
interaction between demand and response, deriving a
basic set of response functions and exploring their
limitations will help to explain some of the variability
that exists within demand driven intake models.

This paper aims to improve the understanding of the
interaction between foragers and their environment by
formulating stochastic and spatially explicit models of
animal behaviour. We demonstrate the importance of
spatial heterogeneity in grazing systems and explore key
elements of foraging behaviour in the spatial context. In
addition, our treatment reveals the relationship between
stochastic spatial models and their deterministic and
non-spatial counterparts based on differential equa-
tions. In particular our approach builds on early
predator–prey like models (Noy-Meir, 1975; Ungar
and Noymeir, 1988) and the simple spatial models of
Schwinning and Parsons (1999).

The model is developed through a series of stages to
demonstrate the importance of behavioural selection
within a spatial grazing environment. In the next section
we introduce the mathematical concepts required in the
remainder of the paper in the context of a simple
foraging model. Section 3 develops our spatially explicit
model of foraging behaviour, and Section 3.2 discusses
resource management whilst issues related to animal
behaviour are addressed in Section 3.3. The properties
of the models are explored through simulation and by
developing analytic approximations describing the
evolution of the moments of the process; these are
related to statistical properties of the system such as the
spatial mean and variance of sward height. In particular,
we discuss the relationship between stochastic spatial
models and deterministic predator–prey like formula-
tions. This process enables us to demonstrate how the
approach we have adopted enhances understanding of
grazing systems.
2. The importance of spatial heterogeneity

In order to address the issue of spatial heterogeneity
in plant–animal interactions we begin with a simple
deterministic non-spatial predator–prey like model. A
spatial stochastic version of this model is constructed
and we show how equations describing the moments of
this process relate to the original non-spatial model.
This approach provides useful insight into the role of
spatial heterogeneity and simulations of the spatial
system further develop this understanding. In addition
to these concepts we introduce notation which is also
used throughout the paper. We note that a number of
earlier studies consider predator–prey like formulations
(Noy-Meir, 1975; Ungar and Noymeir, 1988), and that
the spatial stochastic process introduced in this section is
broadly similar to models introduced by Schwinning
and Parsons (1999). In subsequent sections we build on
these foundations.
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To begin consider the ordinary differential equation
describing a simple foraging system

dg

dt
¼ gg � bcg; (1)

where g is the average resource density, g the growth rate
of the resource, c the average density of foraging
animals and b their feeding rate. The linear response
bcg is supported by the observation that bite depth is
proportional to sward height (Carrere et al., 2001).
Nonetheless this is perhaps the simplest conceivable
model of a foraging system, ignoring as it does spatial
heterogeneity, stochasticity, interactions between indi-
viduals and non-linearity in resource growth or animal
foraging behaviour. However, it serves as a useful
starting point to analyse the impact of spatial hetero-
geneity in such systems. Solving for the fixed points of
Eq. (1) we find that either g ¼ 0; or for any resource
density g40 the stable stocking density is

c� ¼ g=b .

This system can be interpreted as a grazing model where
g is the average sward height, g the sward growth rate, c

the average animal density, and b their bite rate. In this
paper we focus on modelling grazing systems, however
the insights gained shed some light on foraging systems
in general.

To recast Eq. (1) as a spatial stochastic process,
imagine that the area under grazing is divided into N

patches. The sward height is gi in patch i ¼ 1; . . . ;N and
the corresponding number of animals ci: Both gi and ci

are assumed to be integers. An animal may only graze its
current location or move to a new location anywhere
within the system (we consider local movement later). At
patch i the probability of a bite being taken during a
small time interval ðt; t þ dtÞ is

Pðgiðt þ dtÞ ¼ giðtÞ � 1Þ ¼ bciðtÞgiðtÞdt;

where the sward height is measured in units of bite size
and there is no variation in bite size. The probability of
grass growth in patch i is given by

Pðgiðt þ dtÞ ¼ giðtÞ þ 1Þ ¼ ggiðtÞdt .

So far this is simply a stochastic version of the
deterministic non-spatial model (1) for N isolated
patches. To link patches, introduce directed-searching
by assuming that animals move preferentially towards
taller swards (Black and Kenney, 1984; Arnold, 1987;
Bazely and Ensor, 1989; Bazely, 1990), with the
probability of movement from patch i to j in the time
interval ðt; t þ dtÞ being

P
ciðt þ dtÞ ¼ ciðtÞ � 1

cjðt þ dtÞ ¼ cjðtÞ þ 1

� �
¼

n
N

ciðtÞgjðtÞdt ,

where n is the intrinsic directed-search rate. This model,
with global searching directed toward taller swards, is
similar to those considered by Schwinning and Parsons
(1999), but latterly we shall make the model truly
spatially explicit by introducing local searching. If the gj

are thought of as resource quality then this search
strategy can be interpreted as the selection of nutrient
rich swards (Bazely, 1990; Langvatn and Hanley, 1993;
WallisdeVries and Schippers, 1994). Note that all the
event probabilities introduced above share the common
structure

Pðnðt þ dtÞ ¼ nðtÞ þ dnÞ ¼ Rðn ! n þ dnÞdt , (2)

where Rðn ! n þ dnÞ represents the rate of an event
causing the change dn in state space nT ¼ ðfgi; ci : i ¼

1; . . . ;NgÞ: Given Eq. (2) the model can then be defined
in terms of the event rates

Rðn ! n þ dnÞ dgi dci dcj

ggi þ1 0 0 Growth at i;

bcigi �1 0 0 Bite at i;

ncigj 0 �1 þ1 Move i ! j:

(3)

Taken together Eq. (2) and the event rates (3) describe a
discrete state-space Markov process (Cox and Miller,
1965). Stochastic processes of this type have been widely
used in modelling biological populations (Keeling et al.,
2000; Bolker and Pacala, 1997; Renshaw, 1991),
epidemics (Filipe and Gibson, 1998; Rohani et al.,
2002), and chemical reactions (Van Kampen, 1992;
Marion et al., 2002) . Exact simulation is straightfor-
ward as the inter-event times are exponentially dis-
tributed (see e.g. Renshaw, 1991). Whilst an
approximate alternative method results from updating
time by a sufficiently small increment dt and allowing
events to occur with probabilities given by Eqs. (2)
and (3).

The relationship with the non-spatial deterministic
system (1) can be seen if we consider the evolution of
expectations in the stochastic model. First introduce the
expectation of the spatial average

zh i ¼ E
1

N

XN

i¼1

zi

" #
, (4)

for any quantity zi defined at each site i ¼ 1; . . . ;N: If
ziðtÞ is a stochastic process then zðtÞ

� �
is the expected

density over all sites, and over all realizations of the
process, at time t. In the sequel we shall implicitly
assume such time dependence, thus g

� �
is the expected

average sward height over all the patches, and similarly
ch i the expected average animal density, both at time t.
The appendix shows how to derive equations describing
the time evolution of these quantities. Given that the
model contains neither animal mortality nor fecundity it
is reassuring to note that d ch i=dt ¼ 0: Similarly evolu-
tion of the average sward height is governed by,

d

dt
g
� �

¼ g g
� �

� b ch i g
� �

� bCovðc; gÞ , (5)
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where the spatial covariance

Covðc; gÞ ¼ cg
� �

� ch i g
� �

,

is a measure of the association between animals and the
resource. If we identify g

� �
with the deterministic sward

height g; and a constant ch i with the stocking density c;
then for Covðc; gÞ ¼ 0 Eq. (5) corresponds to the
deterministic model (1). In the spatial stochastic model
positive correlation Covðc; gÞ40 will increase the graz-
ing pressure with respect to (1), whilst negative
correlation will have the reverse effect. Fig. 1 shows
the results from a simulation of the linear global
directed-search model (2) and (3), alongside the corre-
sponding output from the deterministic non-spatial
model. The animal density is chosen to be the stable
stocking density c ¼ ch i ¼ c� of the non-spatial model.
In the spatial system the correlation between the animals
and the resource is initially zero, but quickly becomes
negative as the animals deplete the local sward, the total
intake rate is then below that expected from the
deterministic model and the average height of the sward
increases. However as the heterogeneity grows the
animals select the taller swards, the correlation increases
until Covðc; gÞ40; and intake rate rises to an unsustain-
able level. Thus in the stochastic spatial model the
system is over-grazed and the sward becomes extinct,
which is in marked contrast to the results obtained from
the non-spatial system (1). It is worth noting that for the
case N ¼ 1; the animals cannot move so Covðc; gÞ ¼ 0;
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Fig. 1. Global directed searching. Results from the deterministic

model (1) (dashed lines) for gð0Þ ¼ 1; b ¼ 1 and g ¼ 0:1; and a stable

stocking density c ¼ 0:1: The top graph shows the average sward

height, the middle the normalized correlation Cðc; gÞ and the bottom

the average intake rate. Means and � 2 standard deviation confidence

intervals (dot–dashed curves) from the stochastic spatial model (2) and

(3) obtained by averaging 200 realizations of the process for 100 time

points in the interval t 2 ð0; 60Þ: The simulations were performed on a

10� 10 lattice with parameter values b ¼ 1; g ¼ 0:1; and n ¼ 1; with
initially uniform sward with g

� �
¼ 1 and with randomly distributed

animals at stocking density ch i ¼ 0:1:
and simulation results show that this, essentially non-
spatial, stochastic system is stable. Therefore, the
behavioural response is a critical component when
predicting intake rate, but it cannot be isolated from
the spatial heterogeneity of the sward (Wilmshurst et al.,
1999). These results demonstrate that spatial hetero-
geneity, which in this case is generated by individual
behaviour, has the potential to radically alter the
predictions of models of foraging systems.
3. A stochastic spatial model of grazing

The stochastic and spatial model of the previous
section is broadly similar to the model introduced by
Schwinning and Parsons (1999). The results clearly
demonstrate the importance of individual behaviour and
spatial heterogeneity in grazing systems. Moreover, our
analytic treatment makes clear the relationship to non-
spatial deterministic predator–prey like formulations.
However, the model (2) and (3) is unrealistic in a
number of respects. Firstly, the animals search for tall
swards across the entire system. This becomes increas-
ingly unrealistic as the size of the lattice grows and a
more plausible alternative is that the animals search a
local neighbourhood only. Accordingly, the search term
is modified to

P
ciðt þ dtÞ ¼ ciðtÞ � 1

cjðt þ dtÞ ¼ cjðtÞ þ 1

� �
¼

n
z

ciðtÞgjðtÞdt 8j 2 Ni ,

where the neighbourhood of i, Ni contains z patches. In
the following we assume a square lattice and a von-
Neumann neighbourhood Ni shown in Fig. 2 where
z ¼ 4 (except for those patches at the boundary). This
reflecting boundary condition was chosen as it prevents
the animals from being ‘stuck’ at the edges of the
finite domain, and is more realistic than a toroidal
boundary condition. Introducing this change results in a
model where the average sward height diverges. This
happens because the animals are less mobile than before
and the linear rate allows ungrazed patches to grow
Search rate:  ci gj

Site i
Bite rate :  ci(gi g0)

Growth rate :  gi(1 gi /gmax)
�
�

�

Fig. 2. Schematic representation of local directed-search model (2) and

(6). This is a stochastic and spatial extension of the deterministic model

(1) in which patches are linked via directed searching by foraging

animals. The animals are assumed to search in some local neighbour-

hood j 2 Ni shown here by the dark patches.
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exponentially fast. The growth function is there-
fore modified to the more realistic self-limiting logistic
form

Pðgiðt þ dtÞ ¼ giðtÞ þ 1Þ ¼ ggiðtÞð1� gi=gmaxÞdt .

The choice of logistic growth also reflects the idea that
growth rate varies with sward height and that there is an
optimum height for cutting and regrowth as is well
known to pasture managers (Johnson and Thornley,
1984). Despite this modification, simulations suggest
that the system is still unstable with the sward now
becoming extinct for a wide range of parameter values.
This situation is rectified once we note that grazing
animals typically graze the sward down to a certain
minimum level, leaving an ungrazable portion to
recover. For example, cattle typically graze swards
down to 2 cm (Phillips, 1993). Thus the probability of
a bite in patch i becomes

Pðgiðt þ dtÞ ¼ giðtÞ � 1Þ ¼ bciðtÞðgiðtÞ � g0Þdt ,

where g0 is the ungrazable portion of the sward. This
functional form gives rise to a linear relationship if we
plot the average number of bites per visit to a patch
against the sward height at the time an animal arrives in
the patch. This is in accord with the behavioural
observation that bite depth is proportional to sward
height (Carrere et al., 2001). Clearly such a relationship
holds only in a limited range to which we restrict
ourselves here. However, it is anticipated that depar-
tures from linearity will be negligible where the sward
height is sufficiently low, for example in heavily or
moderately grazed systems. The above relationship also
ignores the effect of intake requirements on the system,
and in this paper we assume animals graze continuously.
A further criticism of the model is that for the sake of
simplicity the movement rate does not depend on the
quantity of forage available at the current patch but
only on that in neighbouring patches. However, it
should be noted that although the movement rate is
unaffected as the local forage availability increases the
bite rate goes up and so the probability the next event is
a move diminishes.

The model is summarized by the event rates which
now read

Rðn ! n þ dnÞ dgi dci dcj

ggið1� gi=gmaxÞ þ1 0 0 Growth at i;

bciðgi � g0Þ �1 0 0 Bite at i;
n
z

cigj 0 �1 þ1 Move i ! j 2 Ni:

(6)

Eqs. (2) and (6) define the local directed search model.
As noted above the neighbourhood structure is

defined on a square lattice with reflecting boundaries.
Simulations based on an alternative formulation of this
model in which the search distance is governed by a
power-law suggest that the results presented here are
relatively insensitive to the precise geometry used. (i.e.
similar results obtained if allow searching out to the next
nearest neighbours). Additional simulations (not shown
here) suggest that our results are relatively insensitive to
the patch scale (i.e. the number of patches N). For
example, with four animals g ¼ ch i; b ¼ 1; n ¼
0:1; gmax ¼ 10; and g0 ¼ 1 we found that the expected
intake rate at equilibrium varied by less than 2:5% for
N 2 ð100; 900Þ; and at least some of this variation is
accounted for by the effective reduction in nearest-
neighbour search distance as N increases. Therefore
in the following we restrict our attention to the case
N ¼ 100:
3.1. Non-spatial and pseudo-spatial deterministic models

The non-spatial deterministic representation of this
system is easily constructed by neglecting the site index i

and the search rate in Eq. (6). Thus,

dg

dt
¼ gg 1�

g

gmax

� �
� bcðg � g0Þ , (7)

is the generalization of Eq. (1) resulting from introduc-
tion of a minimum grazable portion g0; and logistic
growth of the resource. In this section we develop a
pseudo-spatial deterministic approximation to the sto-
chastic spatial model (2) and (6) which reveals the
relationship between the fully spatial stochastic system
and Eq. (7).

As before equations describing the expecta-
tion of spatial averages can be derived from the
full stochastic spatial model (2) and (6). As shown in
the appendix the average animal density ch i is still
constant,

d

dt
ch i ¼ 0 , (8)

whilst now,

d

dt
g
� �

¼ g g
� �

�
g
� �2
gmax

 !
� b ch ið g

� �
� g0Þ

�
g

gmax

VarðgÞ � bCovðc; gÞ , ð9Þ

where VarðgÞ ¼ g2
� �

� g
� �2

: The deterministic and non-
spatial counterpart to this model (7) corresponds to the
case where the sward height is uniform, VarðgÞ ¼ 0;
and there is no association between animal location
and the resource, Covðc; gÞ ¼ 0: In contrast, the
discrepancy between (7) and (9) grows with the degree
of spatial heterogeneity measured by VarðgÞ40 and
Covðc; gÞa0:

To determine spatial effects the variability across
the system of both the resource VarðgÞ and the
animals VarðcÞ; and their covariance Covðc; gÞ must be
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quantified. The appendix outlines the derivation of the
following equations

d

dt
Covðc; gÞ ¼ ðgþ b ch iÞCovðc; gÞ þ

g ch i

gmax

VarðgÞ

þ bg0VarðcÞ �
g

gmax

ð cg2
� �

� ch i g
� �2

Þ

� bð c2g
� �

� ch i2 g
� �

Þ þ nzð gð0Þgð0Þcð1Þ
� �

� cð0Þgð0Þgð1Þ
� �

Þ , ð10Þ

d

dt
VarðgÞ ¼ g g

� �
1�

g
� �
gmax

� �
þ b ch ið g

� �
� g0Þ

þ 2g 1þ
1

gmax

ð g
� �

� 1=2Þ

� �
VarðgÞ

þ 2b g0 þ g
� �

þ
1

2

� �
Covðc; gÞ

�
2g

gmax

ð g3
� �

� g
� �3

Þ

� 2bð cg2
� �

� g
� �2

ch iÞ , ð11Þ

and

d

dt
VarðcÞ ¼ 2nzð gð0Þcð1Þ

� �
þ cð0Þgð0Þcð1Þ
� �

� cð0Þcð0Þgð1Þ
� �

Þ , ð12Þ

which describe the time evolution of these quanti-
ties. These expressions describe the expected values of
spatial averages with fluctuations between different
stochastic realizations being ignored. Note that the
factors of z appearing above simply reflect the defini-
tion of the two-site terms (e.g. gð0Þcð1Þ

� �
) given in the

appendix. Since we have ignored any boundary effects
in this derivation it is anticipated that this approxima-
tion improves with the number of patches N, and the
results presented below suggest that it is a good
approximation for the moderately sized systems con-
sidered here.

Eqs. (9)–(12) describe the evolution of expectations of
the first- and second-order statistics of the spatial
system. Just as the evolution of g

� �
depends on the

second-order terms Covðc; gÞ and VarðgÞ; and indirectly
on VarðcÞ; so these depend on the single-site third-order
quantities g3

� �
; c2g
� �

and cg2
� �

; and on two-site terms

like gð0Þcð1Þ
� �

(see appendix for definition), which
account for correlations between nearest-neighbours.
The evolution of these nearest-neighbour quantities are
described in terms of interactions between next nearest-
neighbours, which in turn depend on those between a
site and the neighbours of its next nearest neighbours,
and so on. We choose to close this infinite hierarchy
simply by ignoring correlationsbetween sites and thus
writing two-site quantities as functions of single-site
terms as follows:

gð0Þcð1Þ
� �

¼ g
� �

ch i;

cð0Þgð0Þcð1Þ
� �

¼ cg
� �

ch i;

cð0Þcð0Þgð1Þ
� �

¼ c2
� �

g
� �

;

gð0Þgð0Þcð1Þ
� �

¼ g2
� �

ch i;

cð0Þgð0Þgð1Þ
� �

¼ cg
� �

g
� �

. ð13Þ

Similarly the third-order single-site terms g3
� �

; c2g
� �

and cg2
� �

depend on fourth-order terms, and so on.
Therefore following Keeling (2000a) assume that the
state variables gi and ci are distributed log-normally
across sites. As shown in the appendix this allows the
following approximations to be made:

c2g
� �

¼
c2
� �

cg
� �2

ch i2 g
� � , cg2

� �
¼

g2
� �

cg
� �2

g
� �2

ch i
and

g3
� �

¼
g2
� �

g
� �

 !3

. ð14Þ

At present, for systems of more than one dimension,
there are only a few distributional assumptions which
allow closure to be obtained in a parametric form which
for the log-normal takes the simple form shown above.
In addition the log-normal has positive support and is
therefore more appropriate than commonly used closure
approximations such as the normal distribution (see
e.g.,Whittle, 1957; Marion et al., 2000; Keeling, 2000b).
In Section 3.1.1 below we explore the validity of the log-
normal distribution in the current context.

Applying the approximations (13) and (14) to the
moment evolution equations (9)–(12)) results in a log-
normal approximation to the local directed search
model. This can be regarded as an approximation to
the full spatial stochastic process or used as a
deterministic pseudo-spatial model in its own right. A
similar attitude to an analytic approximation was
adopted by Ferguson et al. (2001) in the context of
modelling Foot and Mouth disease. In the remainder of
this paper we refer to this approximation as the pseudo-
spatial model or the log-normal approximation.

3.1.1. Validity of pseudo-spatial model

Figs. 3 and 4 compare this log-normal approximation
with results obtained from the spatial stochastic process
(9)–(14). Approximation of the average sward height g

� �
and the intake rate b cg

� �
are good, but that of VarðgÞ

and Cðc; gÞ are somewhat less convincing especially in
Fig. 4 where the movement rate n is small relative to the
bite rate b: Fig. 13 (to be discussed in detail later) clearly
shows that the accuracy of the pseudo-spatial model
increases with the directed search rate and becomes
essentially exact for large n: In contrast for a more
realistic search rate(n ¼ 0:1) the lower panel of Fig. 7
(also discussed in detail later) shows the accuracy of the
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Fig. 3. Moment-closure approximation. The top graph shows the

intake rate b cg
� �

against time, the middle graph the sward status g
� �

and VarðgÞ; and the lower graph the association between the animals

and the resource in terms of the normalized covariance Cðc; gÞ ¼
Covðc; gÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðgÞVarðcÞ

p
: In each case the solid curves show the log-

normal approximation (9)–(14), the dashed curves the non-spatial

deterministic model (7), and the dot-dashed curves the results obtained

by averaging 200 realizations of the stochastic process simulated on a

10� 10 lattice, for 100 evenly spaced time points in the interval t 2

½0; 100�: The parameter values used are b ¼ 0:1; g0 ¼ 1; n ¼ 1; g ¼ 0:1;
and gmax ¼ 10; with initially uniform sward with g

� �
¼ 2 and with

randomly distributed animals at stocking density ch i ¼ 0:1:
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search rate n as shown. The right-hand graphs similarly compare the

distribution of animals across sites PðcÞ taken from the same

simulation results. The approximation of PðcÞ by a log-normal

distribution is insensitive to the directed search rate n: In contrast

the sward height distribution PðgÞ becomes increasingly log-normal as

n increases.
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pseudo-spatial model decreasing and then increasing
again as the stocking density is increased.

This observed accuracy reflects both the spatial
independence (13) and the log-normal (14) assumptions.
The latter assumption appears to be reasonable for the
distribution of animals across sites, but is a less
satisfactory description of sward heights. For example,
in the simulations of Fig. 13 the sward height distribu-
tion across sites is bimodal for small n; but for large
movement rates is well approximated by a log-normal
form (see Fig. 5). The top graph in Fig. 6, which
corresponds to the simulations of Fig. 13, shows that
nearest neighbour correlations decrease (i.e the accuracy
of the spatial approximation (13) increases) as the
movement rate increases. Thus the accuracy of both
components of the approximation improve with the
search rate n: However, for the simulations shown in
Fig. 7, at low stocking densities the distribution of sward
heights is poorly described by a log-normal, whilst the
pseudo-spatial model is rather accurate. In contrast the
sward heights have approximately log-normal distribu-
tions for intermediate stocking density where the
pseudo-spatial model is least accurate. This suggests
that the spatial approximations (13) are the key factor
determining the accuracy of the pseudo-spatial mod-
el.This idea is supported by the results in the lower panel
of Fig. 6 which demonstrate that the relative accuracy of
the pseudo-spatial model for different stocking densities
(shown in Fig. 7) is reflected in the quantity cð0Þgð1Þ

� �
�

ch i g
� �

which measures the validity of the spatial
approximation (13).

These results suggest that the biggest improvement in
accuracy of the pseudo-spatial model would come from
replacing Eq. (13) with an approximation incorporating
between-site correlations. Indeed the importance of
accounting for such correlations in spatial models is
widely recognized (Rand, 1999). Additional improve-
ment would result from modifying the distributional
assumption, for example to account for the bi-modality
seen in Fig. 5. Despite these shortcomings we employ the
pseudo-spatial log-normal approximation in the remain-
der of this paper.
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which measure of the effect of ignoring

nearest-neighbour correlations. In the log-normal approximation used

in this paper cð0Þgð1Þ
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and similar spatial

approximations are made for other two-site quantities (see Eq. (13)).

The top graph corresponds to the simulations of Fig. 13 and shows

that the accuracy of this spatial approximation increases with the

directed searching rate. The lower graph shows the validity of such

approximations for the simulations shown in Fig. 7 in which the

stocking density ch i is varied. Comparison with Figures 7 and 13 shows

that in each case cð0Þgð1Þ
� �

� ch i g
� �

reflects the accuracy of the log-

normal approximation.
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Fig. 7. Optimal stocking density. Both graphs show the intake rate

b cg
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plotted against the grazing intensity b ch i: In the upper graph the

grazing rate is varied b 2 ½0; 5� with ch i ¼ 0:1; whilst in the lower graph

the stocking density is varied ch i 2 ½0; 0:5�; with b ¼ 1: In each case the

dashed curves show the non-spatial deterministic model (7), the solid

curves the log-normal approximation (9)-(14), and the dot-dashed

curves with symbols the results obtained by averaging 1000 realizations

of the stochastic process simulated on a 10� 10 lattice for t 2 ½50; 100�:
The size of the symbols represent approximate two standard deviation

confidence intervals. The other parameter values used are g0 ¼ 1; n ¼
0:2; g ¼ 0:1; and gmax ¼ 10; with initially uniform sward g

� �
¼ 2 and

randomly distributed animals.
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3.1.2. Spatial heterogeneity and the non-spatial model

Figs. 3 and 4 show not only the log-normal
approximation and the spatial stochastic process but
also the non-spatial deterministic model (7). The results
from the non-spatial model show that spatial effects are
relatively minor when the movement rate is large
compared with the bite rate. Note that even in this case
the pseudo-spatial model is the more accurate and
moreover gives a prediction of the spatial heterogeneity
(VarðgÞ and Cðc; gÞ) unavailable from Eq. (7). When
nob (Fig. 4) the pseudo-spatial model is a considerably
more accurate approximation to the stochastic spatial
system than the non-spatial deterministic model. In this
case comparison of the three models also shows that
spatial heterogeneity radically alters both the intake rate
b cg
� �

and the average sward height g
� �

: In the sequel we
further explore the role of spatial heterogeneity with
reference to animal behaviour and resource manage-
ment by contrasting the spatial process and its pseudo-
spatial approximation with the non-spatial model.

3.2. Optimal resource management

In managing a grazing system there are only a few
factors which can be controlled. These include the
stocking rate, and perhaps to a lesser extent, the sward
quality. Here we wish to consider the impact of spatial
heterogeneity on management decisions. We shall focus
on the long-term, or equilibrium, behaviour of the
system following any transient phase. Fig. 3 clearly
shows both the transient (to50) and equilibrium (t450)
phases, whilst in Fig. 4 the transient phase is more short-
lived. Understanding the equilibrium regime is crucial in
the sustainable management of the system. However, we
note that the transient phase is also of considerable
importance especially in intensively managed systems
where human intervention may maintain the system far
from equilibrium. In order for the system to reach
equilibrium the productivity of the resource must match
the total consumption rate of the animals, which
corresponds to the criterion that b ch i � g: To define
the time scale we assume b � 1 and therefore take ch i ¼

g: In the following we useN ¼ 100 patches to model an
area which will support n ¼ 10 animals, then g ¼ ch i ¼

n=N ¼ 0:1: As we have seen the relationship between the
movement and bite rates is crucial in determining the
importance of spatial effects in the system: for n4b such
heterogeneity has a relatively weak effect; whilst for
nob its role is enhanced. In grass-based systems we
expect the bite rate b to be larger than the movement
rate n (WallisDeVries et al., 1998).

Fig. 7 shows the expected average intake rate b cg
� �

in
the equilibrium regime, for a range of grazing intensities
b ch i for n ¼ 0:2: The upper graph shows the result of
varying the bite rate b; whilst the lower graph shows that
of varying the stocking density ch i: In the non-spatial
deterministic model (7) these are equivalent, but in the
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confidence intervals. The parameter values (except for g and gmax

where varied) are b ¼ 1; g0 ¼ 1; n ¼ 0:2; g ¼ 0:1; and gmax ¼ 10; with
initially uniform sward g

� �
¼ 2 and randomly distributed animals at

stocking density ch i ¼ 0:1:
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log-normal approximation and the spatial stochastic
model they are not. In particular, the true optimal
stocking density is larger than predicted by either the
non-spatial or pseudo-spatial approximations. These
results also show that spatial heterogeneity causes a
reduction in the productivity of the system, an effect
which is captured qualitatively by the log-normal
approximation. In particular the optimal stocking
density in the spatially heterogeneous system is more
than twice that in the non-spatial model, and the
corresponding intake rate is found to be approximately
40% lower. Therefore neglecting spatial effects could
lead to considerable sub-optimality in resource use.
Fig. 8 shows the corresponding results for a larger
search rate n ¼ 1:0; where we find that, although still
apparent, the discrepancy between spatial and non-
spatial models is reduced, and the accuracy of the log-
normal approximation increased.

The model has two measures of resource quality, the
growth rate g; and the maximum sward height gmax: Fig.
9 shows that the expected average intake rate increases
with either g; or gmax: The results suggest that increasing
the sward growth rate is a particularly effective way of
boosting the intake rate, which rises sharply for small g:
These effects are overestimated by the non-spatial
model, and better predicted by the log-normal approx-
imation, particularly for varying gmax:

Spatial heterogeneity therefore has a major impact on
issues of resource management. The results presented
here suggest that neglecting such effects may lead to an
underestimation of the optimal stocking density, and an
overestimation of the impact of sward improvement.
3.3. Understanding animal behaviour

3.3.1. Minimum grazable portion

In formulating the spatial grazing process (2) and (6)
we assumed that the animals were unable to completely
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Fig. 8. As Fig. 7, but with larger search rate n ¼ 1:0:
deplete the resource due to physical constraints such as
bite depth (Flores et al., 1993; Laca et al., 1992; Ungar
and Ravid, 1999), and this was described in terms of the
minimum grazable portion g0: However, is there some
advantage in raising g0 above this physical limit—for
example to allow for faster re-growth? The results of
Fig. 10, which shows an optimal intake rate for g0 � 2;
suggests that there might. This observation is consistent
with grazing systems in which bite mass values leave a
residual leaf area index to optimize re-growth (Caldwell
et al., 1981; Jatimliansky et al., 1997; Johnson and
Thornley, 1984; Schapendonk et al., 1998; Warringa and
Kreuzer, 1996). Note also that once again ignoring
spatial effects alters the results, with the non-spatial
modelpredicting a larger optimal g0: Pasture managers
might be able to manipulate go via breeding pro-
grammes and in any case it is likely that it has been
optimized by natural selection. However, it should be
emphasized that an optimal g0 arising from our model
must be treated with caution in the context of natural
selection as no account has been taken of between
animal competition and there is no advantage in leaving
resources for a competitor to consume.

3.3.2. The impact of searching behaviour

An interesting question is whether directed searching
is more efficient than a random searching strategy.
Alternatively what impact does the inclusion of the more
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and randomly distributed animals at stocking density ch i ¼ 0:1:
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realistic directed searching behaviour have on the
system? To address such questions, modify the search
rate to include random movement of an individual
at site i to some neighbouring site j 2 Ni at rate nrnd=z:
Eq. (6) is therefore modified to

Rðn ! n þ dnÞ dgi dci dcj

ggið1� gi=gmaxÞ þ1 0 0 Growth at i;

bciðgi � g0Þ �1 0 0 Bite at i;
ci

z
ðnrnd þ ngjÞ 0 �1 þ1 Move i ! j 2 Ni

(15)

and Eqs. (2) and (15) define a new model including both
random and directed local searching. Moment-equa-
tions can be derived, indeed the only change is the
addition of the term 2nrndz to Eq. (12), and a log-
Normal closure scheme applied as before. Fig. 11 shows
a comparison of random only, and directed only
searching over time. The search rates nrnd ¼ 1:0 and n ¼
0:2 have been chosen so that the resultant rates of
movement are lower for the more targeted search. Note
that the random movement rate nrnd appears larger as it
is not scaled by the local sward height in Eq. (15). The
results show that directed searching is more efficient
than the random strategy, requiring less moves per unit
time to achieve a greater intake rate b cg

� �
: Note that the

movement rate forthe random search model is essen-
tially constant over time whilst the movement rates in
the directed search model increase to an asymptote. This
behaviour is understood by reference to Fig. 12 which
shows the sward heterogeneity VarðgÞ increasing over
the same period. The sward is initially uniform and
therefore the number of moves required by directed
searching is minimal. However, as time goes on the
spatial heterogeneity of the resource grows and there is a
commensurate increase in directed searching. In con-
trast random searching is insensitive to the resource
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distribution. In addition, Fig. 12 shows that directed
searching ultimately results in a reduced level of
sward heterogeneity when compared with random
searching. Moreover, as expected the correlation be-
tween the animals and the resource is greater for
directed searching once the sward develops sufficient
heterogeneity.

Fig. 13 shows the expected equilibrium intake rates
associated with random searching and directed search
for a wide range of movement rates associated with n 2
½0; 5� and nrnd 2 ½0; 11�: The advantage of directed over
random searching (per move) is most marked when the
search rate n is smaller, or comparable with the bite rate
b: As noted earlier this is a characteristic of grazing
systems. For larger search rates this advantage is
considerably reduced and, for a directed search rate
which is approximately twice the bite rate, the random
strategy maximizes the expected equilibrium intake rate.
The log-normal approximation, shown for the directed
search model, is again increasingly accurate as the
search rate increases. That a random search method
should out-perform directed searching for large search
rates seems puzzling until one notes that, over the long
term, each behaviour modifies the environment, in this
case the sward height and distribution. The lower graph
of Fig. 13 shows the average sward heights in
equilibrium. The long term effect of directed searching
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Fig. 13. Random and directed searching. The top graph shows the

expectation of the intake rate, b cg
� �

against the movement rate, whilst

the lower graphs plots the corresponding average sward height g
� �

: In
each graph simulation results for random searching (nrnd 2 ½0; 11�;
n ¼ 0) are shown by the circular symbols, and for directed searching

(nrnd ¼ 0; n 2 ½0; 5�) by squares. For the directed search model only the

results from the non-spatial deterministic model (7) are shown by the

dashed curves whilst those of the log-normal approximation (9)–(14)

are shown by solid curves. The simulation results were obtained by

averaging 1000 realizations of the stochastic process on a 10� 10

lattice for t 2 ½50; 100�; and two standard deviation confidence intervals

are smaller than the symbol size. The other parameter values are b ¼ 1;
g0 ¼ 1; g ¼ 0:1; and gmax ¼ 10; with initially uniform sward g

� �
¼ 2

and randomly distributed animals at stocking density ch i ¼ 0:1:
is a much shorter sward than that associated with
random searching. Thus, animal behaviour has a major
impact on the environment, with the more efficient
strategy (on short time scales) depleting the sward to a
greater extent. Despite this lower average sward height
directed searching is able to out do random searching
for a wide range of search rates.

Although the directed search strategy considered here
only accounts for resource selection in a rather crude
way, the random search may be regarded as essentially
behaviour free. In this section we have found that
incorporation of behaviour via simple rules of thumb,
such as directed searching, can radically alter model
predictions (See e.g. Figs 11 and 13). In particular, for
foraging animals it is the interaction between individual
behaviour and a spatially heterogeneous environment
which accounts for these differences. Schwinning and
Parsons (1999) use a counter example to point out that
the widely held view that sward heterogeneity is always
deleterious to production is not correct. However, in
Fig. 11, the inclusion of more realistic animal behaviour
suggests that greater search effort is required as sward
heterogeneity increases. In addition our results show
that patch selection can simultaneously increase intake
and drive down sward heterogeneity when compared
with random selection (Figs. 11 and 12).

3.3.3. Avoided areas

A key feature of foraging behaviour in grazing
animals is that of avoidance, the canonical example of
which is faecal avoidance (Bao et al., 1998; Cooper et
al., 2000). Animals can only detect the presence of faeces
locally through olfactory stimuli, and therefore an
individual may travel to a promising patch only to find
it contaminated. For a high level of contamination and a
marked aversion to faeces this behaviour will reduce the
animals intake rate. Since contaminated patches are
more likely to be ungrazed they will be taller than the
average patch, with potentially detrimental effects on
searching efficiency. Similar considerations apply to any
unpalatable characteristic which is only detected locally,
for example in mixed swards the presence of an
unpalatable species hidden (at a distance) within a stand
of a more preferred species. Nonetheless here we will
focus on faecal avoidance.

Faecal deposition is a major source of heterogeneity
in grazing systems (Hutchings et al., 2001, 2002a,b). The
deposition of faeces is often non-random with concen-
trations tending to accumulate at specific sites (Haynes
and Williams, 1993). Herbivores avoid grazing swards
contaminated with faeces and thus parasites: fresh faeces
are avoided most strongly and this avoidance declines
with the age of faeces (Hutchings et al., 1998). During
the initial period of faecal avoidance the surrounding
sward may become relatively tall, creating patches of tall
sward (Hutchings et al., 2001). Also, as a consequence of
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the concentrating effect of digestion and defecation
there tend to be high levels of nutrients (nitrogen,
phosphorus and potassium) in areas of faecal deposits.
This has an important effect on nutrient cycling and in
low nutrient ecosystems, typical of many extensive
rangelands, can lead to an increase in soil nutrient
levels around defecations. Consequently, the plants
associated with areas where faeces are concentrated
tend to have higher concentrations of nutrients in their
tissues than the average in the system (Edwards and
Hollis, 1982). This faeces avoidance behaviour may then
be seen as leading to a mosaic of tall, nutrient rich and
short, nutrient poor sward patches(Penning et al., 1991;
Gordon et al., 1996; Hutchings et al., 2001). The
increased sward height and nutrient concentration of
swards associated with faeces makes them highly
desirable for grazing.

To explore these issues we introduce faecal contam-
ination, avoidance behaviour and the fertilization effect
into our model. Faecal contamination is f i in patch i

and is assumed to be randomly distributed at rate f
� �

:
In reality faeces is deposited by the foragers and then
decays over time. However, here it is assumed that the
faeces does not decay but remains fixed at the initial
value. Thus we can explore the impact of varying
levels of contamination without considering the compli-
cation of faecal deposition and decay. The local
avoidance of faecally contaminated patches is intro-
duced by multiplying the bite rate by an exponen-
tial function of the contamination level expð�mf iÞ;
where the parameter m represents the strength of the
avoidance behaviour. Thus, the avoidance behaviour
intensifies with increasing m and faecal contamination f i:
The fertilizer effect simply inflates the growth rate
at site i by an amount linearly dependent on f i and
controlled by the parameter gfc: Eq. (6) is therefore
modified to

Rðn ! n þ dnÞ dgi dci dcj

gð1þ gfcf iÞgið1� gi=gmaxÞ þ1 0 0 Growth at i

bciðgi � g0Þe
�mf i �1 0 0 Bite at i

ci

z
ðnrnd þ ngjÞ 0 �1 þ1 Move

i ! j 2 Ni

(16)

and Eqs. (2) and (16) define a faecal avoidance model.
Fig. 14 shows some results from this model for both
directed and random searching. At a fixed level of
contamination the intake rate decreases with increasing
faecal avoidance m: For a given m the decrease in intake
compared with m ¼ 0 represents the trade-off associated
with avoidance behaviour. For m � 5 the animals almost
completely avoid contaminated patches. Moreover, the
effect is similar for both search strategies, although as
anticipated there is a slight reduction in the relative
efficiency of directed searching. Fig. 14 shows trade-off
curves corresponding to high (gfc ¼ 0), medium
(gfc ¼ 0:5) and low (gfc ¼ 1) nutrient soils. In the
nutrient poor system faecal contamination provides
scarce resources, sward growth is greatly enhanced, and
the penalty paid for faecal avoidance is proportionately
higher.

Fig. 15 shows the impact of avoidance behaviour on
the structure of the sward for directed searching. When
the foragers do not avoid contaminated patches the
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sward is relatively uniform. However, as avoidance
behaviour becomes more pronounced the sward be-
comes increasingly heterogeneous, with lightly grazed
contaminated areas growing taller than their unconta-
minated and more heavily grazed counterparts.
4. Discussion

We have developed a simple spatial and stochastic
model of foraging. The model focuses on the behaviour
of individuals foraging in an extended spatial domain,
but whose knowledge is limited to their own local
neighbourhood. It is assumed that, within this neigh-
bourhood animals are able to assess the quality of the
resources and move preferentially towards the best
available (e.g. grazing animals move towards tall
swards). However, individuals can only assess second-
ary, harmful or otherwise undesirable, characteristics at
their current location (e.g. olfactory assessment of local
faecal contamination). Mobility plays a key role; for
small search rates, n; spatial heterogeneity radically
alters the productivity of the system, whereas for large
search rates such effects are minimized. Approximations
to the stochastic spatial system were constructed by
considering the evolution of the moments of the process.
The simplest approximation, which corresponds to
neglecting the variance–covariance structure is equiva-
lent to the non-spatial deterministic model, whilst the
second-order, log-normal, approximation may be con-
sidered to be a pseudo-spatial model as it accounts for
some of the heterogeneity seen in the fully spatial model.
The discrepancy between the three models grows, with
spatial heterogeneity, as the search rate n decreases.
Detailed comparison of the pseudo-spatial approxima-
tion with simulations shows that it could be improved
primarily by accounting for between-site correlations,
but also by employing more appropriate (bimodal)
distributional assumptions. These challenges remain the
subject of future work.

Our results show that spatial heterogeneity radically
alters the sustainable optimal stocking density of the
system, with the non-spatial model simultaneously
under-estimating the optimal stocking rate and over-
estimating the corresponding yield. Similar although less
striking differences were found when considering
changes in the productivity of the sward. Three aspects
of animal behaviour were explored: the minimum
grazable portion; search strategies; and faecal avoid-
ance. Perhaps the most important conclusion is that
incorporating realistic behavioural characteristics has a
profound impact on model output. Firstly, this is true of
the minimum grazable portion, the optimal value of
which is altered by spatial heterogeneity. Secondly, for a
given movement rate and resource distribution directed
searching resulted in a higher intake rate than a random
strategy. Moreover, using directed searching individuals
are able to respond dynamically to changes in the
resource distribution, increasing search rates in more
heterogeneous environments. Thirdly, in contaminated
pastures faecal avoidance behaviour causes a reduction
in the intake rate. This trade-off increases with the
degree of avoidance and is greater in nutrient-poor than
nutrient-rich systems. Interestingly, however, despite the
correlation between contamination and tall swards the
trade-off does not tip the balance in favour of random
searching.

A key issue not directly addressed in this paper is that
of scale. What patch size is appropriate to model
foraging behaviour? Clearly this will depend on the
system under study and the questions one seeks to
answer. For example, in the context of dairy grazing the
patch size could be set with reference to the typical area
affected by faecal contamination � 0:5m2: This leads to
approximately 20000 patches per hectare, which is
rather computationally demanding. However, as noted
earlier preliminary results not reported here in detail
suggest that the broad conclusions drawn in the present
paper are remarkably robust to changes in patch scale.
Moreover, in such situations the pseudo-spatial model
may provide a good compromise between computa-
tional tractability and realism. Such a compromise may
also be appropriate if models of foraging behaviour
were required on a landscape scale.

In the present paper we have largely focused on
grazing behaviour, but the modelling framework devel-
oped here is sufficiently flexible to be relevant to other
foraging systems. For example, it was argued that in the
grazing context movement rates n should be lower than
the bite rate b; however in systems where the resource is
scarce, but of higher value it is expected that n4b; for
which spatial heterogeneity will be less significant.
Indeed in such cases the pseudo-spatial approximation
should prove to be highly accurate. Nonetheless
application of our model to a more general foraging
contexts may require modifications such as accounting
for the costs of searching.

The modelling framework introduced here allows
further layers of behavioural complexity and other
features to be added. These could include: animal
behaviour modified by the physiological state of the
individual, for example current nutritional or lactating
status; defecation; decay of faeces; interaction between
animals; and spatio-temporal variation in sward char-
acteristics reflecting underlying environmental hetero-
geneities. However, the sward growth model and the
simple description of behaviour, adopted in this paper,
seem to capture at a very basic level the plant–animal
interaction in grazing systems. Moreover, our approach
demonstrates the key importance of individual beha-
viour in response to local knowledge in spatially
heterogeneous environments.
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Appendix A. Moment evolution equations and log-normal

approximation

Here we show how to obtain moment equations for
the spatio-temporal Markov processes considered in this
paper. In particular we start by deriving Eq. (5) from
the definition of the global directed search model (2)
and (3).
A.1. Global directed search model

Write the change in the sward height at site i

during the interval ðt; t þ dtÞ as giðt þ dtÞ � giðtÞ ¼

dgiðtÞ: Since the random variable dgiðtÞ is defined
by Eqs. (2) and (3) then taking the expectation at time
t þ dt conditional on the state of the system at time t

yields

E½giðt þ dtÞ j nðtÞ� � giðtÞ ¼ ðþ1Þggidt þ ð�1Þbcigidt

þ Oðdt2Þ .

Note that multiple events may be ignored as they occur
with probability of order Oðdt2Þ: Now taking expecta-
tions at time t and summing over i ¼ 1; . . . ;N leads to

E
XN

i¼1

giðt þ dtÞ

" #
� E

XN

i¼1

giðtÞ

" #

¼ gE
XN

i¼1

gi

" #
dt � bE

XN

i¼1

cigi

" #
dt þ Oðdt2Þ .

Finally dividing by Ndt and taking the limit as dt ! 0
we obtain

d

dt
g
� �

¼ g g
� �

� b cg
� �

,

where we have used the angle brackets h:i to denote the
expectation of the spatial average, defined by Eq. (4).
Eq. (5) then follows upon noting that the second-order
term may be decomposed as cg

� �
¼ ch i g

� �
þ Covðc; gÞ:

In a similar vain we may consider the change in ci to
obtain

E
XN

i¼1

ciðt þ dtÞ

" #
� E

XN

i¼1

ciðtÞ

" #

¼ E n
XN

j¼1

cj

XN

i¼1

gi � n
XN

i¼1

ci

XN

j¼1

gj

" #
dt .
Noting that the right-hand side is zero, dividing by Ndt

and taking the limit as dt ! 0 we obtain

d

dt
ch i ¼ 0:
A.2. Local directed search model

Focusing on the local directed search model the
equation for the conditional expectation of the change
in gi during a time interval ðt; t þ dtÞ; is

E½giðt þ dtÞ j nðtÞ� � giðtÞ ¼ ðþ1ÞggiðtÞð1� gi=gmaxÞdt

þ ð�1ÞbciðtÞðgiðtÞ � g0Þdt .

Note that this result follows from the model definition
(2) and (6). In this case, following the steps outlined
above leads to:

d

dt
g
� �

¼ g g
� �

�
g2
� �
gmax

� �
� bð cg

� �
� g0 ch iÞ .

Whence on applying the definitions VarðgÞ ¼ g2
� �

�

g
� �2

and Covðc; gÞ ¼ cg
� �

� ch i g
� �

one obtains Eq. (9).
The equation for the evolution of the expected average
animal density ch i is similar to that obtained above for
the global directed search model except that the
summations over j , rather than being over the entire
lattice, are now over the sites in the neighbourhood Ni

of site i, thus

E
XN

i¼1

ciðt þ dtÞ

" #
� E

XN

i¼1

ciðtÞ

" #

¼ E n
X
j2Ni

cj

XN

i¼1

gi � n
XN

i¼1

ci

X
j2Ni

gj

" #
dt .

Dividing by Ndt and taking the limit as dt ! 0 yields

d

dt
ch i ¼ znð cð0Þgð1Þ

� �
� gð0Þcð1Þ
� �

Þ ,

where

z cð0Þgð1Þ
� �

¼ E
1

N

XN

i¼1

ci

X
j2Ni

gj

" #

with the analogous definition of gð0Þcð1Þ
� �

: Since both
quantities measure the correlation between the sward
height at a given site and the animal density in its
neighbouring sites (i.e. only the relative positions are
relevant) then gð0Þcð1Þ

� �
¼ cð0Þgð1Þ
� �

and it follows that
d ch i=dt ¼ 0:

Calculation of the second-order statistics proceeds
in a similar manner to that of the first-order
terms. Rearrange the equation ciðt þ dtÞgiðt þ dtÞ ¼

ðciðtÞ þ dciðtÞÞðgiðtÞ þ dgiðtÞÞ to obtain the change in cigi
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over the interval ðt; t þ dtÞ;

ciðt þ dtÞgiðt þ dtÞ � ciðtÞgiðtÞ ¼ cidgi þ gidci þ dcidgi .

Note that the left-hand side is to be evaluated at time t.
From Eqs. (2) and (6) the expectation of this expression
conditional on the state of the system at time t is

E½ciðt þ dtÞgiðt þ dtÞ j nðtÞ� � ciðtÞgiðtÞ

¼ gi ðþ1Þn
X
j2Ni

cjgi þ ð�1Þn
X
j2Ni

cigj

 !
dt

þ ci ðþ1Þggi 1�
gi

gmax

� �
þ ð�1Þbciðgi � g0Þ

� �
�dt þ Oðdt2Þ .

The term dcidgi makes an Oðdt2Þ contribution since no
single event simultaneously changes the sward height
and the animal density. As before we now take
expectations at time t, sum over i ¼ 1; . . . ;N ; divide
by Ndt and take the limit as dt ! 0: This procedure
leads to

d

dt
cg
� �

¼ nzð gð0Þgð0Þcð1Þ
� �

� cð0Þgð0Þgð1Þ
� �

Þ

þ gð cg
� �

�
cg2
� �
gmax

Þ

� bð c2g
� �

� c2
� �

g0Þ ,

where the two-site terms are defined by

gð0Þgð0Þcð1Þ
� �

¼
1

z
E

1

N

XN

i¼1

gigi

X
j2Ni

cj

" #
and

� cð0Þgð0Þgð1Þ
� �

¼
1

z
E

1

N

XN

i¼1

cigi

X
j2Ni

gj

" #
.

Employing the definitions for Covðc; gÞ; VarðgÞ and
VarðcÞ ¼ c2

� �
� ch i2 and noting that dCovðc; gÞ=dt ¼

d cg
� �

=dt � ch id g
� �

=dt � g
� �

d ch i=dt finally yields Eq.
(10). The derivations of Eqs. (11) and (12) follow a
similar path starting from g2

i ðt þ dtÞ ¼ ðgiðtÞ þ dgiðtÞÞ
2;

andc2i ðt þ dtÞ ¼ ðciðtÞ þ dciðtÞÞ
2; respectively.
A.3. Log-normal approximation

If the sward height gi and animal numbers ci are log-
normally distributed over space and time (Keeling et al.,
2000), then y1 ¼ log ci and y2 ¼ log gi are joint Normal
with m.g.f. (Kendall, 1994)

Mðy1; y2Þ � hexpfy1y1 þ y2y2gi

¼ expfk10y1 þ k01y2 þ k20y
2
1=2

þ k11y1y2 þ k02y
2
2=2g ,
where h:i denotes the expectation over distributions in
space and time, and

k10 ¼ 2 logð ch iÞ � logð c2
� �

Þ=2 ,

k01 ¼ 2 logð g
� �

Þ � logð g2
� �

Þ=2

k20 ¼ logð c2
� �

Þ � 2 logð ch iÞ ,

k02 ¼ logð g2
� �

Þ � 2 logð g
� �

Þ ,

k11 ¼ logð cg
� �

Þ � ðk20 þ k02Þ=2� k10 � k01:

For appropriate choice of y1 and y2 the approximations
(14) of the higher-order terms c2g

� �
; cg2
� �

and g3
� �

are
obtained from

hcy1gy2i ¼ hexpfy1y1 þ y2y2gi ¼ Mðy1; y2Þ .

For example setting y1 ¼ 2 and y2 ¼ 1 yields

c2g
� �

¼ Mð2; 1Þ

¼ expf2k10 þ k01 þ 2k20 þ 2k11 þ k02=2g ,

which simplifies to

c2g
� �

¼
c2
� �

cg
� �2

ch i2 g
� � .
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